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ABSTRACT
Storage of personal information by service providers risks
privacy loss from data breaches. Our prior work on minimal
disclosure credentials presented a mechanism to control the
dissemination of personal information. In that work, per-
sonal data was broken into individual claims, which can be
released in arbitrary subsets while still being cryptographi-
cally verifiable. In applying that work, we encountered the
problem of connections between claims, which manifest as
disclosure dependencies. In this work, we provide an ef-
ficient way to provide minimal disclosure, but with cryp-
tographic enforcement of dependencies between claims, as
specified by the claims certifier. This provides a mecha-
nism for redactable signatures on data with disclosure de-
pendencies. We show that an implementation of our scheme
can verify thousands of dependent claims in tens of millisec-
onds. We also describe ongoing work in which the approach
is being used within a larger system for dispensing personal
health records.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Authentication

General Terms
Algorithms, Performance, Design, Security, Verification

1. INTRODUCTION
The amount of personal information that is supplied by

individuals and stored electronically by other entities, pri-
marily service providers, is enormous and growing. This
information ranges from basic (and yet still sensitive) at-
tributes such as name, address, date of birth, and social
security number to payment information, e.g. credit card
numbers and expiration dates, to much more comprehen-
sive personal information such as detailed financial records
and medical records. Unauthorized disclosure of this per-
sonal information is a major problem that has been steadily

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WPES’09, November 9, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-783-7/09/11 ...$5.00.

increasing in severity over the last several years.
The overarching goal of our research is to give users more

control over their personal information, while also providing
trust in the information that is supplied. An important com-
ponent of our approach is the principle of “least disclosure”,
i.e. that an entity requesting personal information should
be given the minimum amount of information required to
authorize the necessary operation or transaction. Our prior
work developed new redactable signature schemes that were
used to design minimal disclosure digital credentials, which
combine a large set of attributes into a digital credential
with one signature, which can be used to verify any subset
of the attributes [1]. As opposed to a single “all-or-nothing”
credential, this allows the user flexibility to provide some
attributes, while hiding the remaining ones, but it still al-
lows the credential recipient to verify cryptographically and
efficiently the provided attributes.

While digital credentials are one application area for min-
imal disclosure technology, it can also be applied to general
disclosure of sensitive personal information, e.g. financial
records or medical records. Medical record protection is the
subject of the MedVault project [6], which is a joint under-
taking between Georgia Tech and Children’s Healthcare of
Atlanta. Each individual element of personal information
that can be disclosed is referred to as a claim. In medical
records, a claim is an individual component of the record,
e.g. an X-ray image or doctor’s notes about an office visit.
In this paper, we consider how to apply minimal disclosure
technology in the form of redactable signatures to the prob-
lem of selective disclosure of medical record claims.

Recently, due to entry into the field by major software
companies,1 personal health records, or PHRs, have received
a great deal of attention. One major limitation of exist-
ing PHR repositories is that there is no way for health care
providers to export medical record information to a patient’s
PHR repository and then for the patient to disclose that in-
formation to third parties in a selective and verifiable man-
ner. By verifiable, we mean that the third party should
be able to verify that the information came from a particu-
lar health care provider and that it has not been modified.
By selective, we mean that the patient should control ex-
actly which claims are released from the overall record to
a particular third party. In this paper, and as part of our
MedVault project, we propose to use redactable signatures
as an efficient way to permit health care providers to export
signed medical record information to PHRs, while allowing
the patient to selectively disclose the claims in the record.

1See Microsoft HealthVault [8] and Google Health [3]



As described so far, a standard redactable signature scheme
would suffice for a verifiable PHR repository. Health care
providers would sign medical records using a single redactable
signature and patients would disclose arbitrary subsets of
the medical claims to third parties. However, it is unlikely
that health care providers would cede complete control of
how the medical claims they produce are disclosed by the
patient. For example, a health care provider might not be
willing to release doctor’s notes containing a medical diag-
nosis unless the test results on which the diagnosis is based
are also released. As a second example, the provider might
not be willing to release an X-ray image without also releas-
ing meta-data about the image such as when it was taken,
which part of the body it corresponds to, and perhaps notes
detailing the provider’s interpretation of the image. For con-
venience in searching and browsing, however, the meta-data
should be available without the image.

The preceding examples introduce dependencies between
claims, which should limit what combinations of claims can
be disclosed. In Section 4, we describe how to handle a cer-
tain class of these disclosure dependencies by generalizing a
hash-tree-based redactable signature scheme. In Section 5,
we discuss the security of our approach. In Section 6, we
evaluate both its worst-case complexity, through analytical
evaluation, and its execution time, through measurement
on an actual implementation. The results show that the ef-
ficiency of simple hash-tree-based redactable signatures can
be maintained while handling a useful category of claim de-
pendencies. Finally, in Section 7, we describe an architec-
ture for use of our mechanism in a source-verifiable selective-
disclosure personal health record repository, which we have
developed as part of our MedVault project.

2. BACKGROUND

2.1 Scenario and Terminology
We consider a scenario with three types of entities: a

prover, a verifier, and a certifier. A prover holds records
that are certified (cryptographically signed) by a certifier.
The prover wants to convince the verifier that the certifier
did indeed certify the records. However, the prover does not
wish to release all of the records, but just some subset of
them. Additionally, the certifier wishes to restrict the man-
ner in which the records can be released. “Released” here
refers only to releasing records with evidence that they are
certified (ie, cryptographic proof). The prover can freely
forge (uncertified) records, so the verifier will accept only
certified documents. We refer to an indivisible piece of a
record as a claim, following our earlier credential work.

2.2 Redactable Signature Schemes
This problem arose out of our previous work on mini-

mal disclosure credentials [1]. In that work, we presented
a credential system based on Merkle hash trees and public-
key infrastructure (PKI) certificates, which allows some at-
tribute values to be hidden on a given use of the credential
and which is essentially equivalent (modulo implementation
details) to the redactable signature scheme of [5]. We also
extended the approach to allow attributes certified by differ-
ent identity providers to be combined into a single creden-
tial, while still allowing the selective disclosure of attributes
in the credential. In this paper, we describe only the basic
scheme; the multiple-authority scenario is not considered.

A Merkle hash tree is a binary tree where each internal
node holds the hash of the concatenated values of its two
children nodes. Ralph Merkle first introduced this structure
as a way to efficiently handle a large number of Lamport
one-time signatures[7].

By the collision-resistance property of a cryptographic
hash function, it should not be possible to find two inputs
that give the same output (under reasonable computational
limits, of course). Therefore, each internal node uniquely
fixes the values of its two children nodes. Extrapolating,
the single root value uniquely fixes the value of all internal
and leaf nodes in the tree. Additionally, it is not necessary
to have all nodes of the tree in order to compute its root
value. Specifically, verifying that a given value for a leaf
node of the tree is correct requires an additional number of
nodes equal to the height of the tree minus one (O(log(n))
with respect to the size of the tree). Having a trusted au-
thority digitally sign the root value of the tree provides the
equivalent of a trusted signature on everything in the tree.
Replacing a simple digital signature with a full PKI certifi-
cate containing a public key and meta-data ties the contents
of the tree to a private key through a trusted signature; in
short, a digital credential. Each leaf node in the tree is a
claim of a particular attribute value, which can be verified
independently of all of the other claims in the tree.

2.3 Motivation for Dependencies
From a basic credential system, we expanded the scope

of our uses for the credential construct to hold arbitrary
records. In doing so, the issue of dependencies between dif-
ferent data items or between different whole records arose.
We wish to provide a way for the certifier of data to pre-
vent data from being disclosed without respecting the re-
lationships between different pieces of data. As mentioned
previously, “disclosed” refers only to releasing the data in a
certified form. In this work, relationships between data are
reduced to dependencies between data items that must be
satisfied for the data to be disclosed.

3. RELATED WORK
While we are not aware of any other attempts to address

this specific problem of dependencies in releasing certified
data, this work is still related to various prior works.

The most closely related works using graphs or circuits
of dependencies involve fulfilling dependencies under a sig-
nificantly different threat model, for example [4]. In our
system, the most difficult threat is the prover and verifier
collaborating to cheat the certifier. And the threshold of
that cheating is low, since the result only has to be trusted
by the verifier, and not by any honest party.

This work can be considered the core of a specialized
redactable signature scheme, although it is meant to be em-
bedded into a separate redactable signature of the hash-tree
type described in the previous section. Redactable signa-
tures were introduced by Johnson, et al., in [5] as one ex-
ample of a larger class of homomorphic signatures. While
the targeted use of the schemes is very different—Johnson,
et al., describe a scenario where the majority of a document
is shown, with a small part redacted, while our work de-
scribes showing a small amount of data and redacting the
majority—the core mechanism is the same.

Privacy preserving trust negotiations associated with the
disclosure of sensitive attributes also have disclosure depen-



dencies among attributes [15, 12, 11, 16]. A user can set
up policies where the other negotiating party has to disclose
some attributes before a particular attribute of the user can
be released. One major difference between trust negotiation
systems and our proposed system is that the trust nego-
tiation systems are online approaches, i.e. they expect the
other party to release credentials online to satisfy the depen-
dencies as opposed to our offline system where the depen-
dencies are enforced cryptographically. Another difference
is that in trust negotiation systems, both parties try to sat-
isfy each other’s policies at run time, whereas in our system
the policies result from natural dependencies in the data set
that must be preserved to release the information in the cor-
rect context. Finally, in trust negotiation, each party trusts
its negotiator to faithfully execute its own policies, whereas
the party releasing information in our approach is not fully
trusted by the source of the information and the releasing
party cannot therefore be relied upon to faithfully execute
the source’s policies.

4. SYSTEM DESCRIPTION
Our redactable signature with dependencies consists of

several parts. The first two parts are the PKI certificate and
Merkle hash tree as used in our prior work and described in
Section 2. The interesting and novel part is the handling of
the dependencies.

4.1 Dependency Graph
Dependencies between data can come in many forms. The

simplest form is a single ”depends upon” relationship, such
as ”claim 1 depends upon claim 2”, which means that ”claim
1” should not be released without also releasing ”claim 2”.
The next simplest form is a chaining of dependencies, such
as ”claim 1 depends upon claim 2, and claim 2 depends upon
claim 3”. These chains can be handled by creating one node
per claim in the chain, with each node containing its corre-
sponding claim and all subsequent claims in the chain. Less
simple is when there are OR options, such as ”claim 1 de-
pends upon either claim 2 or claim 3”. In small numbers,
these OR options can be handled by just enumerating the
possible combinations as if they were chains, but for large
systems, that is extremely inefficient.

We represent simple OR dependencies by a directed acyclic
graph (DAG). To handle these dependencies efficiently, a se-
cure hash function is used to create a path whereby a claim
is proven valid at the same time as the next node in the
graph is proven valid. We call a node that is dependent
upon another node a parent of the latter node. The node
that is depended upon is called the child node. A node is
assigned a ”string”value, which is a hash of the string values
of its parent nodes and its actual data value. Calculating
a node’s string therefore requires having the data for that
node. Just as the node (hash) values in the Merkle hash
tree define a unique set of children, each node’s string value
defines a unique set of parent nodes and its data value. In
order to tie the entire DAG down to a single value, an out-
put value is created, which is simply the set of string values
of all of the leaf nodes of the DAG.

Figure 1 shows the notation that we use, while Figure 2
shows the example described above. The example in Fig-
ure 3 shows that multiple parent nodes are efficiently han-
dled. The hashed value of the node for Claim 4 simply has
two parent strings instead one. In general, the size of the

−→ is used for depends upon
A −→ B is read “A depends upon B”,

and A is called a parent of B
+ indicates concatenation
{} indicates a set of values, concatenated together
S(x) is the string for vertex x, and is defined as
S(x) = H({ parent vertices strings }+ x)

Figure 1: Generic Dependency Form

OR

1

2 3

Claim1 −→ Claim2 or Claim3
S(Claim1) = H(Claim1)
S(Claim2) = H(S(Claim1) + Claim2)
S(Claim3) = H(S(Claim1) + Claim3)
Output = S(Claim2) + S(Claim3)

Figure 2: Simple Dependency Example

node’s value will grow sub-linearly with the number of par-
ents, as the extra parent strings (each just a single hash
value) are amortized by the node’s actual data content.

AND operations are more complex to handle than OR op-
erations. An example including an AND operation is shown
in Figure 4. The AND node has two branches for its two
children. A different string for the AND is given to each
branch, represented by AND1 1 and AND1 2. (The two
AND pieces are shown without the S(x) notation, because
they aren’t actual vertex nodes in the graph.) When the
two branches are XORed together, the result is the actual
value of the AND node. For an n-input AND, this is done
by generating n-1 random values (each the size of the out-
put of the hash function) and using them as the values for
the first n-1 branches. The final branch is the XOR of the
rest of the branches and the AND node’s value. All of the
randomly generated values are included in the string that is
hashed to get the AND node’s value (to prevent any linear
combination attacks against the XOR combination). This
is a simple (n, n) secret sharing scheme, which requires the
strings of all of the AND node’s children to be known to
reconstruct the value of the AND node itself. The example
also shows how the OR nodes disappear, because their value
is equal to their parents’ value.

As an example of requiring combined AND and OR de-
pendencies, imagine a table of claims, with each column con-
taining a different type of claim. Consider the rule that to
access an element of the first column requires also showing
(at least) one element of every other column. Using our
method, this requires a graph containing one node for every
element in the table, a single AND node, and one OR node
for each column but the first two.

Certain dependencies are not handled by our current ap-
proach, including cyclic dependencies, negative dependen-
cies, and operations that cannot be represented as a com-
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1

2 3

45 6

OR OR

Claim1 −→ Claim2 or Claim3
Claim2 −→ Claim4 or Claim5
Claim3 −→ Claim4 or Claim6
S(Claim1) = H(Claim1)
S(Claim2) = H(S(Claim1) + Claim2)
S(Claim3) = H(S(Claim1) + Claim3)
S(Claim4) = H(S(Claim2) + S(Claim3)+

Claim4)
S(Claim5) = H(S(Claim2) + Claim5)
S(Claim6) = H(S(Claim3) + Claim6)
Output = S(Claim4) + S(Claim5) + S(Claim6)

Figure 3: Example Showing Multiple Parents

Claim1 −→ (Claim2 or Claim3) and
(Claim4 or Claim5)

Is transformed into:
Claim1 −→ AND1
AND1 −→ OR1 and OR2
OR1 −→ Claim2 or Claim3
OR2 −→ Claim4 or Claim5
S(Claim1) = H(Claim1)
S(AND1) = H(S(Claim1) + AND1 1)
AND1 1 = Random value, of size |H|
AND1 2 = S(AND1) xor AND1 1
S(OR1) = AND1 1
S(OR2) = AND1 2
S(Claim2) = H(S(OR1) + Claim2)

= H(AND1 1 + Claim2)
S(Claim3) = H(S(OR1) + Claim3)

= H(AND1 1 + Claim3)
S(Claim4) = H(S(OR2) + Claim4)

= H(AND1 2 + Claim4)
S(Claim5) = H(S(OR2) + Claim5)

= H(AND1 2 + Claim5)
Output = S(Claim2) + S(Claim3)+

S(Claim4) + S(Claim5)

Figure 4: Combining AND and OR

Prover provides:
Output = S(Claim2) + S(Claim3)+

S(Claim4) + S(Claim5)
S(Claim2) = H(AND1 1 + Claim2)
S(Claim4) = H(AND1 2 + Claim4)
S(AND1) = H(S(Claim1) + AND1 1)
S(Claim1) = H(Claim1)

Verifier checks:
Output is signed (in the hash tree)
All hash values are correct
S(AND1) = AND1 1 xor AND1 2)

Figure 5: Showing claims 1, 2, and 4

bination of ANDs and ORs. We do not believe that neg-
ative dependencies between released claims is meaningful,
since the prover could always perform multiple, independent
showings of the signed documents. Cycles are prohibited be-
cause it is impossible to calculate the values for the nodes
in the cycle without breaking the hash function used. Our
implementation detects cycles using Tarjan’s algorithm [13]
and combines all nodes in each strongly connected compo-
nent (i.e., all nodes involved in a cycle) into a single node
(per component).

4.2 Protocols for Usage
In general, a set of claims will have some claims with

no dependencies and other groups of claims that are inter-
dependent. To handle this situation, we combine the struc-
tures described in the previous subsection with the hash-
tree-based redactable signature scheme from our prior work.
Each group of inter-dependent claims is represented by a
DAG and a single signed output value is generated for each
such group. Each of these signed output values then be-
comes a node in the overall hash tree, along with each of
the claims that have no dependencies associated with them.
As in the prior approach, the certifier signs the root value
of this hash tree and places it in a PKI certificate.

To show a claim that has dependencies requires showing
more claims to fulfill those dependencies. We refer to a claim
and one set of additional claims that fulfills the dependen-
cies as a chain. The term “chain” is not strictly accurate,
since the chain will have multiple branches if it has any
AND nodes, and those multiple branches may even connect
together (ie, not a tree). There can be no loops, per the
constraint that dependencies must be in the form of a DAG.

As an example, consider the graph of Figure 4 and the
case of showing ”Claim1”, ”Claim2”, and ”Claim4”. The
prover must provide to the verifier the input strings that
were hashed to create the string values of each of the claims
being shown and the AND node on the path, along with the
(signed) output value. The input string for a claim node
includes the actual data of that claim, so the data for the
three claims is included in what is shown. Figure 5 sum-
marizes what the prover shows and what the verifier needs
to verify. The only additional values given to the verifier
that are not used are S(Claim3) and S(Claim5). These are
the string values for the other two leaf nodes, and contain
just the hash output. Under the assumption that the hash
function is secure (can’t be inverted and doesn’t leak data),



then no data is leaked by these extra strings, except for
the knowledge of their existence.

4.3 Relation to prior work
The mechanism for handling dependencies obviously shows

a family relationship to the Merkle hash tree. It in fact looks
like a backward tree, where instead of a root node verifying
the values of many leaf nodes, a set of leaf nodes can verify
the value of a set of root nodes (and all of the intermediate
nodes as well). In most of our examples, the set of leaf nodes
is much larger than the set of root nodes, but that is simply
selection bias of the examples.

5. SECURITY

5.1 Threat model
The primary threat our system is designed to resist is the

prover and verifier collaborating to cheat the certifier, by
violating the dependencies on showing claims. In this case,
security is done on a “can prove” basis, where it doesn’t
matter how the certified data is proven. In particular, the
verifier does not have to follow established protocols or in-
tentions. (Put simply, we do not assume that the verifier is
an honest player in the system.) We refer to the verifier as
suspicious (of the prover), but rule-breaking.

Formal security proofs for the dependency violation attack
as well as for forgery attacks and privacy violation attacks
are contained in [2]. Only informal security arguments are
given herein due to length restrictions.

5.2 Additional details
A secure scheme requires some additional details beyond

those described so far. First and foremost, the claims must
have random padding to prevent a dictionary attack, be-
cause the hash value of unreleased claims is necessarily pro-
vided to a verifier. Second, and related, is that nodes should
be unambiguous about what they contain. Throughout this
paper, the value of nodes is represented by a simple con-
catenation of values. In our actual implementation, we in-
clude additional meta-data identifying the node type and
the length of fields. Additional meta-data might also be re-
quired in specific applications of the approach. For example,
if applied to documents, the order of the claims (words) is
important and this information can be provided in the meta-
data in the form of sequence numbers. If knowing the sizes
of the gaps in the provided text is important, contiguous
sequence numbers are used. Otherwise, random increments
between consecutive sequence numbers can avoid release of
extra information such as the precise number of words that
were redacted from a particular section.

5.3 Forgery
Forgery covers all cases where the verifier is convinced

that a claim is certified by a particular entity, when it was
not. Forgery covers several different problems, depending on
what part of the system is attacked. For example, a forger
can try to attack the hash function to create a bad final or
intermediate value. A secure hash function will prevent this
type of attack.

A forger can try to pass off data as if it were part of the
structure, or vice versa. This style of attack is only possible
if the construction of nodes’ strings is done in a simplistic
manner, such as merely concatenating the values. Because

of the additional meta-data, discussed above, this attack is
not possible.

A forger could also try to fake a valid looking AND node.
The AND node construct of XORed masks is a trivial se-
cret sharing scheme, while having the masks inside of the
hashed string is a constraint on the values of shares that
are accepted. This constraint is necessary to eliminate the
possibility of generalized birthday attacks [14]. The prob-
lem of faking an AND node can be reduced to the prob-
lem of creating a collision in a hash function defined as
H(x + {yi}) = H ′(x + {yi}) xor {yi}, where H ′(x) is a
hash function (assumed to be secure) and {yi} is an arbi-
trarily sized set of values. This construct is easily shown to
be secure when H ′(x) is modeled as a random oracle, and we
believe it to be secure for practical instantiations of H ′(x)

5.4 Loss of Privacy
A loss of privacy occurs when releasing some claims or

data exposes additional claims or data that the holder did
not intend to release. In our system, the most obvious way
for additional data to leak is through hashes of unreleased
data being (necessarily) revealed. Under the assumption of a
secure hash function, no information about the data should
be directly leaked by its hash value. However, if the data
itself is in a guessable form and of low entropy, then a dic-
tionary attack may be performed against the hash. Simply
adding random padding fixes the problem. The padding can
either be independently generated and stored for each data
value, or it can be generated using a pseudorandom function
along with a random seed value.

5.5 Violation of Dependencies
A violation of dependencies occurs when a prover is able

to release certified data to a verifier in a way that the verifier
can determine that it was certified, while not releasing other
data as required by the certifier.

Dependencies are enforced by providing chains, such that
each link in the chain must be fully verifiable in order for the
next link to be verifiable. Additionally, to verify a (data)
link requires the actual data for that node to be known
and used by the verifier. These chains overlap, creating the
DAG. There are two general ways to violate the dependen-
cies: forging a link in the chain and finding a different way
(than following the chain) to prove a claim. The first of
those is covered by the subsection on forgery, discussed pre-
viously. The second is beyond the scope of this paper, as it
covers application-specific side-channels, and is dependent
upon the implementation and use of the system.

5.6 Other
There is an additional class of attacks that are of less con-

cern, namely attacks by the certifier of the data. The only
meaningful attack we can see is the certifier putting a hid-
den channel into the signature, without the knowledge of the
user. As we generally expect the certifier to provide the data,
define the dependencies, and create the actual structures of
the signature, we consider attempting to identity and pre-
vent all possible hidden channels as beyond the scope of this
paper. Since in all applications we can imagine for the ap-
proach, the user has an inherent trust relationship with the
certifier, we do not consider this issue a serious one.



6. PERFORMANCE RESULTS
Good performance for large systems of dependencies was

a primary goal of this work. Two evaluations of the scheme
in meeting that goal are provided. The first evaluation is in
the form of analytical bounds, while the second is based on
experimental results from an implementation of the scheme.

6.1 Analytical Bounds
Our scheme provides clear bounds on space and time com-

plexity. There is exactly one vertex node for each claim, and
the actual data of each claim is stored and hashed only once.
There is a maximum of one vertex for each AND and OR as
well (multiple ANDs and ORs may be combined).

For comparison, consider a brute-force approach to han-
dling dependencies. All possible combinations of claims nec-
essary to satisfy a particular claim’s release policy can be
combined and treated as a single claim. For small graphs,
this can actually be quite efficient. However, consider the
example given before of a table of claims, with the rule that
to access an element of the first column requires also show-
ing (at least) one element of every other column. As noted
before, the number of nodes in the graph of this example is
equal to the number of items in the table plus one (ignoring
the removed OR nodes). Assuming a symmetric table (all
columns have the same number of rows), the approximate
total size of data being hashed in the creation of the graph
is given in Equation 1, where n is the number of rows, k is
the number of columns, |H| is the size of a hash:

(nk + n + k − 3) · |H|+ |all data items| (1)

Therefore, our solution is O(nk) in space and time, both
for dependency graph construction and for claim verifica-
tion. For comparison, enumerating all possible claim com-
binations is Θ(nk) in this example.

Later, we discuss an input graph based on dependencies
between software packages available in the Ubuntu software
repositories. Tests are done on a graph of approximately
45,000 nodes (holding about 25,000 claims). There are more
than six billion possible path combinations of released claims
that would have to be separately calculated and stored under
the brute-force approach.

6.2 Trade-offs
There are a number of trade-offs that can be made be-

tween storage space and speed. For example, separate, smaller
DAGs can be calculated and stored for every claim that
is involved in a dependency calculation, allowing for quick
retrieval and verification of single claims and verification
chains. Alternately, a single large DAG (or a small set of
medium sized DAGs) can be used, which can greatly increase
the amount of data necessary to verify a single claim (and
chain), but which is much more efficient to store and verify
large sets of claims (with overlapping dependency chains).

The discussion so far has assumed a single, monolithic
DAG is used. A single monolithic graph is easier to describe,
program, and analyze. However, a multiple graph approach
can produce better results in a ”best-case”scenario. As such,
both a monolithic version and a multiple graph version were
implemented for experimental performance testing. To pro-
vide the best contrast, the multiple graph version makes and
stores a separate DAG for every claim.

6.3 Experimental Setup

A Java implementation of the dependency handling por-
tion of the system was evaluated. Tests were performed on
a Dell PowerEdge 2900 server with dual Xeon 5150 CPUs
running at 2.66 GHz using Sun’s 64-bit server JVM, version
1.6.0 06. The code was single threaded and the server oth-
erwise idle. The minimum time seen over multiple rounds
was recorded, to avoid artifacts from just-in-time compila-
tion and garbage collection. SHA-256 was used for the hash
function [9].

Two styles of artificial input dependency graphs were used,
both rectangular tables. Using this format, it was easy to
vary the number of rows, number of columns, and size of
data in each claim (constant across all claims in a table to
make the results more consistent). The first style matched
the example analyzed earlier, where a table of claims has the
requirement that to release any claim in the first column re-
quires releasing (at least) one value from each of the other
columns as well. This graph is fast to process, as would
be expected from the earlier bounds discussion and some
simple analysis (most of the nodes in the graph are of low
degree, with the connections concentrated in the AND and
OR nodes).

The second graph is a table where each column is depen-
dent upon the next column, i.e. showing a claim in any
column except the final column requires showing at least
one claim from the next column. (For claims in the first
column of the table, the behavior of this graph style is the
same as for the previous graph style.) This graph is denser
in connections than the first graph, with all nodes being of
degree n or 2n.

One large, real-world dataset was tested. This dataset was
derived from the dependencies between software packages in
the standard Ubuntu Linux repositories. The ”Depends”
and ”Pre-Depends” values were used to determine the de-
pendency graph; other package links (”Recommends”, ”Sug-
gests”, ”Replaces”, etc) and version information was ignored.
A total of 25157 packages were used, representing 21GB of
data. Fake empty files of the correct size for each package
were created, stored as sparse files on an ext3 formated par-
tition. (The file system reports only 820KB of actual disk
space used.) The dependency graph contains 566 cycles con-
taining 2977 nodes, which are condensed down to 566 new
nodes. Timings were taken using both short strings, consist-
ing of the package name plus 18 fixed characters, and the
full length fake package files.

6.4 Experimental Results

6.4.1 Absolute timings
Handling of dependencies is efficient for most cases, as

can be seen in Table 1, which shows timing data for the
first graph style. Most of the operations take at most 10
milliseconds. However, the multiple graph approach can be
inefficient when the number of claims to be verified is very
large. For example, for a 64 × 128 table with 100 bytes
per entry, the multiple graph approach requires 5 seconds to
verify all claims, while the monolithic graph approach only
takes 74 milliseconds for the same case.

The second graph style has the same complexity bound
as the first style, but is much slower in practice due to the
high density of connections. When analyzing this style, we
found that the time to pre-generate all of the chains in the
multiple graph approach makes it impractical. Thus, we



Input Table Size Monolithic Graph Multiple Graph
Rows Columns Data size Verify chain Verify all Verify chain Verify all

Small inputs
4 4 10 360 330 120 450
4 8 10 520 460 200 660
4 16 10 960 890 400 1500
4 32 10 1900 1800 950 3600

Medium inputs
64 16 100 1700 8200 1300 77,000
64 32 100 3400 17,000 4400 280,000
64 64 100 6800 34,000 19,000 1,200,000
64 128 100 15,000 74,000 77,000 5,000,000

Table 1: Timings for first graph style (in µs)
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Figure 6: Verifying a Chain in 2nd Graph Style

report only the monolithic graph results for this case. Fig-
ure 6 shows the time (in milliseconds) for verifying a single
chain in a monolithic graph (compare to the first timing col-
umn in Table 1) using the second graph style. The time
is very small (at most tens of milliseconds), even when the
numbers of rows and columns become large. Figure 7 shows
the time (in milliseconds) for verifying the entire monolithic
graph (compare to the second column in Table 1) using the
same data. This time is also reasonable, being less than one
second even for large cases.

The Ubunutu package dependency graph was only timed
using the monolithic graph approach. The timings are shown
in Table 2. The difference between the short string and full
data versions is just the amount of data in each node that
has to be hashed. As can be seen from comparing the two
lines in the table, the full data version takes approximately
an order of magnitude longer than the short strings version.
The additional time is primarily hashing the data. Thus, for
the full data version, the overhead of graph manipulation is
small compared to the time needed to simply hash the data.

Unlike the two table-based graphs, the length of chains
in the Ubunutu package graph varies considerably. The
measurements were taken by selecting 2000 pseudorandom
chains out of the full graph. The same pseudorandom paths
were used in both the short string and full data cases. The
average path length was 17 nodes, while the median was 8
nodes.
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Figure 7: Verifying Full Graph in 2nd Graph Style

6.4.2 Relative timings
Here, we consider the relative performances of the mono-

lithic and multiple graph approaches. Figure 8 shows the
speedup of the multiple graph approach over the monolithic
approach. (This graph is based on the first graph style and a
data size of 10 bytes.) The multiple graph approach provides
a significant advantage—about 35 times faster for the peak
in the figure—for some parameter values. In particular, it
does best with a large number of rows and a small number
of columns. The area to the right of the first contour line is
where the monolithic graph performs better. Thus, the op-
timum implementation approach is dependent on the nature
of the dependencies. However, from a worst-case standpoint,
the monolithic graph implementation is superior.

7. APPLICATION TO PATIENT MEDICAL
DATA

One of the application areas where these ideas are being
implemented is healthcare, in the Georgia Tech and Chil-
dren’s Healthcare of Atlanta MedVault project [6]. Figure 9
shows the architecture of our prototype service that main-
tains a personal health record (PHR) database by aggregat-
ing a patient’s medical records from various sources. The
patient has a personalized agent to provide authorization
service for the PHR repository. The authorization scheme is
policy based, where the patient can set his disclosure poli-



Input Type Produce Graph Verify Graph Produce Chain Verify Chain
Average Median Average Median

Short strings 13,000,000 16,000,000 178 81 24,000 17,000
Full data 280,000,000 280,000,000 209 83 240,000 180,000

Table 2: Timings for the Ubuntu Package Graph (in µs)
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Figure 8: Relative Time to Verify a Single Depen-
dency Chain

cies. These policies are attribute-based and hence the pa-
tient defines a set of attributes that a requester must hold in
order to access particular records. The repository holds the
PHR which is composed of a number of medical records. The
agent and the repository form a single unit as shown in the
figure. This architecture is loosely based on the health care
use case from [10], which can be considered a specification
for systems that permit patients to access their own health
records and to specify disclosure policies on those records.

Healthcare providers, such as hospitals, clinical labs, on
site emergency care units etc., are entities that generate
medical records about the patient and these records are
added to the repository. These providers are the certifiers in
our terminology and make use of the proposed dependency-
aware redactable signature scheme in order to sign the records
that they provide to the repository. The patient’s personal
medical devices also generate medical records about the pa-
tient and are useful in monitoring the patient’s condition on
a regular basis. The healthcare professionals require these
personal health records to provide medical care to the pa-
tient. This medical care can be emergency, definitive or
general. Healthcare professionals contact the patient’s agent
and request some records. Upon authentication and check-
ing the authorization policies, the agent retrieves the records
from the repository and sends them to the requesting pro-
fessional. Although the medical records are being provided
by the patient himself, the authenticity of the records can be
verified as they are digitally signed by the originating entity.

The patient can set attribute-based authorization policies
in his personalized agent. He specifies verifiable attributes
that the requesting medical professional should possess in
order to access documents from a particular category. We
have implemented a policy engine that checks provided at-
tributes against a set of XACML policies to determine if a

PHR Agent /

Repository

Healthcare Providers

Hospitals
Clinical

Labs

On-site

Emergency

Care

Healthcare

Professionals

Personal Medical

Equipment

Figure 9: Architecture of the PHR service

particular request can be approved. Before doing this check,
the request is modified to include any entries in the record
that must be disclosed, because other items that have been
requested are dependent upon them. In case the modified
request is approved, the agent accesses the requested pieces
of the health record and the additional depended-upon en-
tries, and sends them to the requester along with additional
hash values needed to verify the integrity and authenticity
of the disclosed entries.

At the time of writing this paper, a basic implementa-
tion of the architecture in Figure 9 has been completed and
performance evaluation of the architecture has begun.
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