
MIMO Link Scheduling for Interference Suppression
in Dense Wireless Networks

Luis Miguel Cortés-Peña
Government Communications Systems Division

Harris Corporation
Melbourne, FL 32919

cortes@gatech.edu

Douglas M. Blough
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA 30332-0765

doug.blough@ece.gatech.edu

Abstract—This paper addresses the problem of fair scheduling
of MIMO links in dense wireless network deployments where
interference suppression is carried out via linear MIMO process-
ing to optimize network performance. We formulate and solve
an optimal MIMO link scheduling problem, where the goal is to
maximize aggregate throughput while meeting a specified fairness
criterion. Evaluations in a modified version of ns-3 show that
our MIMO link scheduler more than doubles the performance
of 802.11n, while achieving a fairness index of 90–95%.

I. INTRODUCTION

Interference in dense wireless networks is a major prob-
lem. These environments include unplanned deployments,
e.g. apartment buildings and commercial districts, as well
as planned deployments, e.g. access points of an enterprise
WLAN. Recently, the use of linear MIMO techniques for
interference suppression has been considered to optimize
performance in this setting [11]. In this work, we refer to
linear MIMO techniques for interference suppression as MIMO
interference cancellation, or more succintly MIMO IC.

We address the problem of high-performance and fair
scheduling of MIMO links in dense wireless networks. We
briefly describe methods that allow efficient collection of chan-
nel state information and calculation of beamforming weights
at the transmitters and combining weights at the receivers
(jointly referred to as MIMO weights). We then formulate
a MIMO link scheduling optimization problem, where the
objective is to maximize aggregate throughput while meeting
a specified fairness criterion. We provide an approximately
optimal solution to a single instance of the scheduling problem
and we also provide an adaptive scheduler whose performance
converges to the optimal value over time.

Performance evaluations carried out in a modified ver-
sion of ns-3 show that our time-fair MIMO link scheduling
approach can achieve a fairness index of 90–95% while
simultaneously achieving more than double the performance of
802.11n, which performs spatial multiplexing but not MIMO
IC. Results also show that our time-fair scheduler is within
10% of the performance of a greedy throughput-maximizing
scheduler, which has very poor fairness.

II. NETWORK MODEL

We consider dense deployments of overlapping single-hop
networks assigned to a small number of orthogonal channels.

MIMO IC is applied within each orthogonal channel indepen-
dently. We say that two nodes are within communication range
if one of the nodes can send a single stream of data at the
lowest data rate and the other node can, with high probability,
receive and decode this data in the absence of interference.

Channel state information (CSI) from a given node is
measured by receiving a sounding packet from that node.
A sounding packet is a packet containing training symbols
in its preamble so that the receiver can estimate all channel
dimensions. Therefore, the only interference that can be con-
sidered for MIMO IC at a node is that coming from interferers
within its communication range. When evaluating performance
in Section VI, however, we account for all interference.

We assume that channels do not change rapidly so that
MIMO weights calculated at one time can be reused for
some period of time before they must be recalculated. This is
consistent with the scenarios we consider, in which the access
points (APs) are in fixed locations and cover environments like
an office, a home, or a coffee house, where users are mobile
but often stay in one location for a moderate amount of time
in between movements. Detecting when channel states have
changed sufficiently to necessitate a new round of measure-
ments is beyond the scope of this paper. Herein, we simply
assume that this is done periodically and that measurements
remain valid in between these measurement times.

We assume that APs covering neighboring areas can co-
operate with each other to schedule transmissions and sup-
press interference. With products from companies such as
Aerohive Networks, APs already cooperate to perform tasks
such as channel selection and transmission power control [1].
These technologies could easily be extended to incorporate
the type of cooperation proposed herein. Alternatively, many
enterprise wireless configurations employ centralized network
controllers, which connect to APs through a wired network
and could be used to facilitate AP cooperation. Finally, we
assume that APs are loosely synchronized. There are a variety
of ways in which this can be achieved. For example, [11] had
the APs run NTP for this purpose.

III. MIMO BASICS

The capabilities of MIMO links on which we primarily
focus are spatial multiplexing (SM) and MIMO interference
cancellation (IC). With SM only, a single MIMO link in the
absence of interference with nr antennas at the receiver and nt



antennas at the transmitter can support up to n = min(nr, nt)
streams. With MIMO IC but no SM, the same MIMO link
can support a single stream on its link and cancel interference
from and to other interfering links. When both SM and MIMO
IC are used, the performance improvement can be larger than
when only one of these capabilities is used [15]. However,
there exists a trade-off between these capabilities in that the
number of spatially multiplexed streams plus the number of
interfering streams cancelled cannot exceed the number of
antenna elements on a node.

When considering MIMO IC, it is important to understand
the relationship between MIMO weights and interference.
Interference caused by a transmitter on a node attempting
to receive from a different transmitter is a function of the
beamforming weights at the interfering transmitter, the channel
between the interfering transmitter and the interfered-with
receiver, and the combining weights at the interfered-with
receiver. Therefore, the MIMO weights are interdependent,
complicating their calculation. Additionally, because the in-
terference is a function of the corresponding channel, an
algorithm that computes the MIMO weights to perform MIMO
IC requires CSI between every pair of interfering nodes.

IV. MIMO LINK SCHEDULING FRAMEWORK

To provide some context for our MIMO link scheduling
approach, we describe a framework within which MIMO IC
can be carried out in dense wireless networks. This framework
provides the basis for our ns-3 implementation, which we used
to perform the evaluations described in Section VI.

A. MIMO Weight Computation

We use an iterative algorithm for computing beamforming
and combining weights, but limit the weight computation
overhead by stopping after 10 iterations. It was shown in [6]
that iterative algorithms achieve 70% higher sum rate than
non-iterative methods in high-interference scenarios for 8-link
networks. An assigned AP, called the Worker AP, collects CSI
from the links and computes MIMO weights. The functions
of the Worker AP could instead be assigned to a centralized
network controller if one exists. This approach works well for
scenarios with two to about six APs operating on one channel,
which covers many practical cases. To avoid performing the ex-
pensive MIMO weight computation procedure too frequently,
we reuse link sets for which MIMO weights have already been
computed, as much as possible.

B. CSI Measurement

To optimize performance for a given set of interfering
MIMO links, the nodes must collect all CSI. This includes
the channels between every transmitter and their corresponding
receivers and between every transmitter and all other receivers
with which they interfere. If any combination of links (one
link per AP) is allowed to be selected at a given time,
the channels between every pair of interfering nodes must
be measured. If there are A APs and C clients per AP
and every node is within the communication range of every
other node, then there are A + AC nodes and approximately
(A + AC)2 = A2 + 2AC + (AC)2 measurements to collect.
With A = 5 APs and C = 10 clients per AP, more than 2,500
CSI measurements are needed.

We propose a novel approach, called Consistent AP Ori-
entation with Channel Symmetrization, or CAPOCS, to reduce
the number of channel measurements and CSI communication
overhead. Note that the number of channel measurements is
dominated by the (AC)2 term. The (AC)2 term corresponds to
each client measuring its channel with every other client. Since
channel measurements are only needed on actual links and
between nodes that interfere, which are transmitter-receiver
pairs, we propose to coordinate active APs so that they are
either all transmitting (downlink direction) or all receiving
(uplink direction) in one slot. This prevents one AP from
activating a downlink and another AP from activating an uplink
in the same time slot. In this situation, clients do not interfere
with each other, because they are consistently receivers or
transmitters at one time. As a result, clients do not need to
measure channels with other clients and the dominant term in
the channel measurements expression disappears. Additionally,
APs do not need to measure channels with other APs. What
is left is to measure channels for every AP-client link, which
requires A2C measurements. In the above example, this pro-
duces more than an order of magnitude reduction in channel
measurements, from more than 2,500 down to 250.

C. AP Cooperation

We aggregate as many packets as can fit within a fixed du-
ration τdata and have the receivers simultaneously acknowledge
the packets using a BlockAck. This differs from the aggregate
packet mechanism in 802.11n in that the packets in 802.11n are
aggregated up to a maximum size [3], whereas we aggregate
packets up to a maximum duration. To avoid having to
compute and distribute MIMO weights for communicating the
BlockAcks, we have the destination nodes use the vector that
achieves the highest gain from their combining weights for the
current link set, normalized to maximize the transmit power,
as their beamforming weights for sending the BlockAck.
Similarly, we propose to have the source nodes use the vector
that corresponds to the highest gain from their beamforming
weights for the current link set as their combining weights for
receiving the BlockAcks. This technique of reversing the roles,
but reusing the MIMO weights, is commonly used to aid in
beamforming weight computation ([6], [9], [13], [14]).

D. High-Level Operation of MIMO Framework

The operational flow of the framework is shown in Fig-
ure 1. First, the APs discover each other and choose a Worker
AP. The Worker AP then requests CSI from all APs. During
this step, each AP takes a turn sending sounding packets and
recording CSI for each of its associated clients. After CSI is
collected by all APs, they forward their measurements to the
Worker AP. The Worker AP then constructs and distributes the
first schedule, which has only a single link assigned to each
time slot. Optimal MIMO weights for these individual links
correspond to the singular value decomposition (SVD) of their
channels and can be computed in a single computational round
by the APs of the links. While the network begins using this
first schedule, the Worker AP computes a better schedule with
multiple-link sets and the corresponding MIMO weights based
on all received CSI. These computations are more intensive
than an SVD computation, which is why the single-link link
sets are used while the higher-performing schedule is being



New 
Link Set

Information
to Send?

Compute Schedule

Distribute Link
Set Information

Start

AP Discovery

CSI Measurement

Yes

Compute New Link
Sets in Background

Schedule
Done?

No Yes

Get Next Slot

Data Transmission

ACK Transmission

Distribute Schedule

No

Fig. 1. High-level flow chart of framework.

computed. Details of the scheduling algorithm are given in
Section V.

Once the nodes have the schedule, the transmitters of the
first time slot transmit for a duration τdata. Then, the receivers
wait for a short time before sending their BlockAcks in the
reverse channel. If the total time allocated for the BlockAck
is τack, then the duration of a time slot is τslot = τdata + τack.
This process repeats for every time slot in the schedule.

Upon completion of the last time slot, the Worker AP
regains control and computes a new schedule by considering
all link sets for which MIMO weights have been computed.
The Worker AP then distributes the MIMO weights for all
link sets that were selected in the schedule that have not
already been distributed. Finally, the Worker AP distributes
the desired schedule and all nodes follow the new schedule
until completion, and the process repeats.

V. MIMO LINK SCHEDULING

In this section, we present algorithms for selecting link sets
and for generating a throughput-optimal MIMO link schedule,
subject to a fairness criterion, from those link sets.

We focus on a set of K half-duplex links, composed of
links formed by the APs and their associated clients. Since
each AP can have multiple clients, it is possible that some of
the links share a node. We assume that CAPOCS is used, so
that all links are either downlinks or uplinks. The discussion
in this section applies to each of these cases separately.

A. Generating Candidate Link Sets

We use a variation of the algorithm from [7] to compute
candidate link sets and their corresponding MIMO weights.
Compared to other MIMO weight algorithms, this algorithm
has the advantage of jointly optimizing which subset of links
to activate, how many streams are carried by each link, and
the MIMO weights for all nodes. The algorithm in [7] assumes
a set of links where no two links share a node. We make the
following changes for our problem setting:

• Using the analysis of [5], we generalize the algorithm
from [7] to also consider links that share a node. With
this modification, all K links can serve as input to
the algorithm. Partway through its execution, however,
the algorithm selects only the best performing link
among those links that share a node, so that all link
sets contain at most one link for each AP.

• Using the analysis of [5], [12], we modify the algo-
rithm to maximize a weighted sum rate. We denote υk
as the link weight assigned to link k. We adjust these
link weights to aid in generation of different link sets.

We propose two methods for adjusting the link weights.
The first method, called the At Least Once Method (ALOM),
generates link sets sequentially such that each new link set
contains at least one new link and it stops when all links appear
at least once. ALOM uses the following link weights as input
to the MIMO weight algorithm:

υk =
1

1 + δk
for all k ∈ {1, . . . ,K}, (1)

where δk is the number of times link k has been included in
the link sets previously computed. To ensure that at least one
new link appears in the next link set, we square the values of
υk at each iteration of the MIMO weight algorithm if no new
link has yet been included. ALOM achieves a minimal degree
of fairness by ensuring that no link is completely starved.

To achieve more sophisticated fairness objectives, we pro-
pose a second method, called the compensating method (CM).
CM first runs the ALOM method to completion to compute
an initial set of link sets. Then, the CM procedure tries to aid
the scheduler in achieving certain proportions of bandwidth
by generating extra link sets that compensate for previously
generated link sets. Let b be a vector of K positive elements,
where the kth element bk represents the desired bandwidth
portion to allocate to link k, so that

∑K
k=1 bk = 1. We will

see later that different choices of b can be used to achieve
different fairness objectives. Assume that a total of N link
sets have already been computed. Also, let A be a K × N
matrix, where the element ak,n ≥ 0 at the kth row and nth

column of A contains the data rate of link k in the nth link
set, which is set to zero if link k is not active in link set n.
The CM procedure sets the link weights as follows:

υk = max

(
1−

∑N
n=1 ak,n

bk
∑K
i=1

∑N
n=1 ai,n

, 0

)
(2)

According to (2), links that meet or exceed their bandwidth
proportion from previously computed link sets will have υk =
0 and thus will not be considered for the current link set.

B. Scheduling Problem Formulation

In this subsection, we present a throughput-optimal MIMO
link scheduling problem with fairness constraint.

Let the number of candidate link sets be N . We wish to
find an N × 1 column vector x ≥ 0 that satisfies

1
αAx = b, (3)

where the nth element xn of vector x denotes the number
of times to schedule the nth link set, x ≥ 0 means that
each element xn of x satisfies the inequality xn ≥ 0, and
α =

∑K
k=1

∑N
n=1 ak,n. In (3), we scale A with 1

α to maintain
numerical stability since the elements of A are potentially
large compared to the elements of b. Note that the length of the
schedule given by x is

∑N
k=1 xk. We will attempt to minimize

schedule length subject to the fairness criterion given by b.



Note that (3) can have zero, one, or many solutions,
depending on A. However, because we initialize the available
link sets with the single-link link sets, problem (3) is guar-
anteed to always have at least one solution. When multiple
solutions exist for (3), we choose the solution that minimizes
schedule length. The following linear programming problem
formally defines the minimum scheduling length problem with
fairness contraint:

x∗ = argmin
x

N∑
n=1

xn subject to Ax = b,x ≥ 0 (4)

Theorem 1 shows that the minimum schedule length problem
is equivalent to maximizing aggregate throughput.

Theorem 1: If problem (3) has a solution, then the solution
that minimizes the schedule length in (4) is also the solution
that maximizes the sum of link rates.

Proof: Let c = Ax = αb with elements ck for k ∈
{1, . . . ,K}. The total rate of link set n is given by rn =∑K
k=1 ak,n, and so the relative amount of data that can be

sent throughout the schedule is τslot
∑N
n=1 rnxn. Therefore,

the sum rate is given by

Sum Rate =
τslot

∑N
n=1 rnxn

τslot
∑N
n=1 xn

=

∑K
k=1 ck∑N
n=1 xn

=
α
∑K
k=1 bk∑N
n=1 xn

=
α∑N

n=1 xn
,

since
∑K
k=1 bk = 1. Therefore, minimizing

∑N
n=1 xn also

maximizes sum rate.

C. Scheduling Algorithm

In this subsection, we present our MIMO link scheduling
algorithm, which maximizes aggregate throughput for a given
set of candidate link sets, subject to the fairness constraint.

The vector x that solves (4) defines a relative number
of times to schedule each link set, the values of which are
potentially non-integers. Let s be a vector where the nth

element sn contains the integer number of times that link set
n is to be scheduled. To compute the schedule s using x, we
find a factor β such that

s = Round(βx), (5)

τslot

N∑
n=1

sn ≈ τschedule, (6)

where τschedule is the desired duration of the schedule.

Because the schedule duration is limited, the scaling func-
tion (5) can be non-ideal, causing the actual proportions to
deviate from the desired proportions. To compensate for this,
we define a history-aware version of (4) that accounts for the
history of schedules when computing the new schedule.

Let h be a column vector where the nth element hn
contains the number of times that link set n has been sched-
uled. The history-aware version of (4) can be obtained by
replacing b in (4) with b̂ = b − 1

αAh and setting α so
as to both provide numerical stability and to ensure that all

elements of b̂ are non-negative. In our simulations, we choose
α = 2(

∑K
k=1

∑N
n=1 ak,n)(

∑N
n=1 hn + 1)/min(b). Intuitively,

b̂ represents the desired proportions minus those proportions
that have already been satisfied. Theorem 1 also applies to the
history-aware version of problem (4), and so the solution to
this problem also maximizes the sum rate.

To compute the schedule s for the history-aware objective
function, we set

s = Round
(
(x+ h)β − h

)
+
, (7)

where (·)+ is vector (·) with the negative entries replaced with
zeros, and where β is the smallest factor that either satisfies
(6) or satisfies a fairness constraint within some small value ε.

Figure 2 shows our MIMO link scheduling algorithm.
Unless otherwise specified, we assume that the collection of
link sets, A, which is provided as input to the algorithm is
generated by the CM method. To summarize the algorithm’s
performance, a single execution is approximately optimal
due to inaccuracies introduced by scaling and rounding. The
inaccuracies are compensated over time, so that performance
converges to the optimal value. Optimality means achieving
maximum aggregate throughput, for a given collection of link
sets and subject to the fairness constraint imposed by b. While
there is no guarantee that the collection of link sets generated
by CM is optimal, we increase the likelihood of getting a good
collection by having CM produce a large number of high-
performing link sets. In the simulations reported in the next
section, we generated 2.5K link sets, where K is the number
of links, so that, on average, each link appears in 2.5 different
link sets. By the nature of the algorithm from [7], each chosen
link set is a high-performing one.

Input: (A, b,h, τslot, τschedule)
Output: (s,h)

1: φ = 0; θ = 0;
2: if h 6= 0 then
3: Compute x by solving the history-aware version of (4)

and compute s using (7);
4: φ = s; τschedule = τschedule − τslot

∑N
n=1 sn;

5: Set h = 0 if 1− f(A(s+ h), b) < ε;
6: end if
7: if h == 0 then
8: Compute x by solving (4) and compute s using (5);
9: θ = s;

10: end if
11: s = φ+ θ; h = h+ s;
12: Set h = 0 if 1− f(Ah, b) < ε;
13: return (s,h);

Fig. 2. Pseudocode for MIMO link scheduling algorithm.

D. Achieving Fairness

We show how to define b in order to achieve two fairness
criteria for wireless networks.

1) Time-based fairness: Following the ideas of [4], we
define the time-based proportions of links as the data rate
proportions when each link is allocated an equal number of
interference-free time slots. This is the standard notion of time-
based fairness in wireless networks, except that it eliminates



interference-induced distortions on data rates. The time-based
fairness criterion is achieved by solving problem (4) with
bk = ρk/

∑K
j=1 ρj for all k ∈ {1, . . . ,K}, where ρk is the

data rate for link k in the absence of interference when using
the optimal singular-value decomposition (SVD) weights. We
refer to the instance of our MIMO link scheduling algorithm
that uses this definition of fairness as Algorithm TimeFair.

2) Rate-based fairness: With rate-based fairness, the goal
is to achieve equal average rate across all links. This fairness
criterion can be achieved by solving problem (4) with bk =
1/K for all k ∈ {1, . . . ,K}. We refer to the instance of our
MIMO link scheduling algorithm that uses this definition of
fairness as Algorithm RateFair.

VI. SIMULATION RESULTS

In this section, we present numerical results on our MIMO
link scheduling algorithm. For comparison, we also evaluate
the performance of 802.11n, which performs MIMO spa-
tial multiplexing (SM) only. We also evaluate a scheduling
algorithm, referred to as GreedyMaxRate, that attempts to
maximize throughput using MIMO IC but with only minimal
fairness. This algorithm uses the ALOM candidate link sets,
ensuring that every link is activated at least once per scheduling
period. Finally, we include an algorithm that we refer to as
NoICuplink, which performs MIMO IC on downlinks in the
same manner as GreedyMaxRate but does not perform IC on
uplinks (only SM), similar to the approach of [11].

To evaluate fairness, we use the index proposed in [4]:

f(u, b) =
1

exp

(
1
K

∑K
k=1

∣∣∣∣ln uk

bk
∑K
j=1 uj

∣∣∣∣
) , (8)

where u is actual bandwidth usage, b is desired bandwidth
allocation, and (8) takes values between 0 and 1 with f = 1
indicating perfect fairness.

A. Simulation Setup

All algorithms were implemented in the ns-3 simulator [2].
We made several changes to ns-3 to perform these evaluations,
including adding support for: the matrix-based physical-layer
MIMO model ([7], [9], [13]), the Greenfield preamble, sound-
ing packets, and MIMO SM. In the 802.11n simulations, we
use the SVD weights, which are optimal for a single link with
no interference and we enable the aggregate MAC service data
unit (A-MSDU) support in ns-3, which sends aggregate packets
of up to 7935 bytes and their corresponding BlockAcks [3].

We account for the overhead of computing the MIMO
weights within our simulation by measuring the CPU time
consumed by the MIMO weight computation function and
scaling it so as to estimate the running time of an AP running at
3 GHz. For the simulation of channel measurements necessary
for MIMO link scheduling, we consider the overhead of 30
OFDM subcarriers at all times. Additionally, we assume that
CSI and MIMO weights are transmitted uncompressed when
collecting CSI and when distributing the MIMO weights,
respectively. These assumptions overestimate the overhead of
our approach for exchanging CSI and MIMO weights.

We assume that τschedule = 500 ms initially. Once the
Worker AP finishes computing all link sets and their associated

MIMO weights, we set τschedule = 3 secs. Additionally, we set
the number of link sets generated by the CM procedure to
2.5K, where K is the number of links in the network. Unless
otherwise stated, we set the duration in which packets can be
aggregated to τdata = 10 ms and we set τack = 210 µs. We
assume that all data packets are UDP packets of 1024 bytes.
We also assume: a flat-fading Rayleigh MIMO channel [8],
every wireless node has four antenna elements, and the path-
loss exponent is three. Finally, we set the fraction of downlink
traffic to the total traffic as pdownlink = 0.6.

B. Evaluation of CAPOCS

We compare CSI collection overhead when APs can arbi-
trarily become transmitters or receivers (requiring almost all
CSI) to the overhead when CAPOCS is used. We simulate
four APs in a line at 50 meter intervals, all operating on
the same channel. Each AP has C associated clients that are
uniformly distributed within a radius of 80 meters from the
AP. These parameters were chosen so as to produce substantial
interference among clients and APs across the network.

Figure 3 shows the time to collect CSI as a function of the
number of clients per AP (C). This figure validates the analysis
of Section IV-B, showing a linear time increase for CAPOCS
and a superlinear increase when CAPOCS is not used. When
considering the actual time values required for CSI collection,
we see that, for up to 6 clients per AP, the collection time
with CAPOCS is at most a few hundred milliseconds. Since
in the limited-mobility environments we are considering, we
expect scheduling periods of 10–30 seconds, this demonstrates
that CAPOCS can keep CSI overheads low enough to make
the proposed approach practical. On the other hand, without
CAPOCS, CSI collection times grow to almost two seconds for
4 APs and 6 clients per AP, and this could have a substantial
impact on the performance and practicality of the approach.
We do not show a detailed aggregrate throughput comparison
of CAPOCS’ link sets and arbitrary link sets due to space
limitations, but we have conducted such tests and the results
showed only about a 2% performance loss when limiting link
orientations as prescribed by CAPOCS.

C. Evaluation of Scheduling Approaches
1) Under a Controlled Topology: Here, we consider the

topology of Figure 4 with fixed distance APs and their associ-
ated clients (thereby fixing the signal-to-noise ratio). We vary
interference by adjusting the distance between interfering APs.

Figure 5 shows sum goodput as a function of AP separation
(x) for an client-to-AP distance (y) of 50 meters, averaged
over 100 trials. The results show that the goodput is much
greater for the strategies that perform both IC and SM than
for 802.11n, which performs SM only. The GreedyMaxRate
algorithm achieves a goodput that is approximately three times
the goodput of 802.11n at x = 70. Figure 5 also shows that
GreedyMaxRate achieves a goodput that is almost 35% better
than NoICuplink, highlighting the importance of performing
IC on both uplinks and downlinks. Despite being subject
to significant fairness constraints, Algorithms TimeFair and
RateFair have a goodput that is within 8% of Algorithm
GreedyMaxRate, which achieves only minimal fairness. Time-
Fair and RateFair achieve similar throughputs because the
time-fair and rate-fair proportions are almost equal due to the
symmetry of the simulated topology.



1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

200

400

600

800

1000

1200

1400

1600

1800
Time to Collect Relevant CSI Vs Number of Clients

Ti
m

e
(m

s)

Number of Clients

With CAPOCS

Without C
APOCS

Fig. 3. CSI collection time with/without CAPOCS. Fig. 4. Controlled topology with four APs.

10 20 30 40 50 60 70 80 90
40

60

80

100

120

140

160

Sum Goodput vs x for y=50

G
o

o
d

p
u

t 
(M

b
p

s
)

x (meters)

 

 

GreedyMaxRate

TimeFair

RateFair

NoICuplink

802.11n

Fig. 5. Sum goodput for topology of Figure 4.

10 20 30 40 50 60 70 80 90
0.86

0.88

0.9

0.92

0.94

0.96

0.98

Fairness Index vs x for y=50

F
a

ir
n

e
s
s
 I

n
d

e
x

x (meters)

 

 

TimeFair

RateFair

NoICUplink

GreedyMaxRate

Fig. 6. Avg. fairness index for topology of Fig. 4.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
40

60

80

100

120

140

160

180

Sum(Goodput(vs(Number(of(Clients(per(AP

G
oo

dp
ut

(F
M

bp
sI

Number(of(Clients(per(AP

GreedyMaxRate
TimeFair
RateFair
NoICuplink
802.11n

Fig. 7. Sum goodput for four APs in a line.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.7

0.75

0.8

0.85

0.9

0.95

1
FairnesstIndextvstNumbertoftClientstpertAP

F
ai

rn
es

st
In

de
x

NumbertoftClientstpertAP

TimeFair

RateFair

NoICuplink

GreedyMaxRate

Fig. 8. Avg. fairness index for four APs in a line.

Figure 6 shows the average fairness index for the ex-
periment of Figure 5. Algorithms TimeFair and RateFair
achieve a fairness index that is very close to their goals.
As expected, Algorithm GreedyMaxRate is the most unfair.
Algorithm NoICuplink achieves a higher fairness index than
GreedyMaxRate because the uplink, having only single-link
link sets, achieves almost perfect time-based fairness.

2) With Random Clients: We now return to the scenario
used in the CAPOCS evaluation to evaluate scheduling al-
gorithm performance with randomized clients. As before, we
simulate four APs in a line at 50 meter intervals on the same
channel and we uniformly distribute C clients with a radius
of 80 meters around each AP.

Figure 7 shows the sum goodput versus the number of
clients per AP (C), averaged over 50 trials. Again, Greedy-
MaxRate performs best, achieving a goodput that is as high as
2.8 times that of 802.11n. Algorithm TimeFair has a goodput
as much as 2.5 times that of 802.11n and it outperforms
Algorithm RateFair by 20–30%. This is consistent with the
well known fact that with rate-based fairness, low rate links
dominate air time, which substantially reduces overall perfor-
mance [10]. Figure 8 shows that Algorithm TimeFair achieves
excellent fairness in the randomized scenario also.

VII. CONCLUSIONS

In this paper, we presented a MIMO link scheduling
algorithm for dense wireless networks, which schedules links
that use linear MIMO interference suppression to improve
performance. The scheduling algorithm was shown to achieve
throughput-optimal performance under a specified fairness
constraint for a given set of candidate link sets. Simulation
results showed that the algorithm can achieve more than double
the performance of 802.11n, while simultaneously achieving
a fairness index of 90–95%. Future work could consider
improvements to the selection process for candidate link sets
and consideration of non-linear processing techniques on links.

REFERENCES

[1] HiveOS. http://www.aerohive.com/products/access-
points/products/software-management/hiveos.

[2] The ns-3 network simulator. http://www.nsnam.org.
[3] IEEE std. 802.11-2012. Mar. 2012.
[4] D. Blough, G. Resta, and P. Santi. Interference-aware proportional

fairness for multi-rate wireless networks. In INFOCOM, 2014. pp.
2733–2741.

[5] S. Christensen, R. Agarwal, E. Carvalho, and J. Cioffi. Weighted sum-
rate maximization using weighted MMSE for MIMO-BC beamforming
design. IEEE Trans. Wireless Commun., 7(12):4792–4799, Dec. 2008.

[6] L. Cortés-Peña, J. Barry, and D. Blough. The performance loss of
unilateral interference cancellation. In ICC, 2012. pp. 4181–4186.

[7] L. Cortés-Peña, J. Barry, and D. Blough. Joint optimization of stream
allocation and beamforming and combining weights for the MIMO
interference channel. In GLOBECOM, 2013. pp. 4012–4018.

[8] G. Foschini and M. Gans. On limits of wireless communications in a
fading environment when using multiple antennas. Wireless Personal
Commun., 6(3):311–335, Mar. 1998.

[9] K. Gomadam, V. Cadambe, and S. Jafar. A distributed numerical
approach to interference alignment and applications to wireless interfer-
ence networks. IEEE Trans. Inf. Theory, 57(6):3309–3322, June 2011.

[10] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda. Performance
anomaly of 802.11 b. In INFOCOM, 2003. pp. 836–843.

[11] S. Kumar, D. Cifuentes, S. Gollakota, and D. Katabi. Bringing cross-
layer MIMO to today’s wireless LANs. In SIGCOMM, 2013. pp.
387–398.

[12] F. Negro, S. Shenoy, I. Ghauri, and D. Slock. On the MIMO interference
channel. In Inf. Theory Appl. Workshop, pages 1–9, Feb. 2010.

[13] S. Peters and R. Heath. Cooperative algorithms for MIMO interference
channels. IEEE Trans. Veh. Technol., 60(1):206–218, Jan. 2011.

[14] F. Rashid-Farrokhi, K. Liu, and L. Tassiulas. Transmit beamforming
and power control for cellular wireless systems. IEEE J. Sel. Areas
Commun., 16(8):1437–1450, Oct. 1998.

[15] R. Srinivasan, D. Blough, and P. Santi. Optimal one-shot stream
scheduling for MIMO links in a single collision domain. In Proc. IEEE
SECON, pages 1–9, June 2009.


