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Abstract—A novel convolutional layer based on transmissive
intelligent surfaces (TISs), which operates in the radio-frequency
(RF) domain, is introduced for analog over-the-air (OTA) com-
putation in this paper. To be specific, each RF convolutional
layer comprises three TISs placed sequentially to perform a 2-D
convolution operation. A method for designing TIS transmission
coefficients, TIS locations, and TIS element spacing is proposed
to execute the 2-D convolution of I ∗K = O. The transmission
coefficients of the second TIS encapsulate information about
the kernel K, and the output (O) of the third TIS is the
convolutional result of K and the input signal (I), which is
the input to the first TIS. To validate the proposed design, a
simple neural network featuring a single convolutional layer with
one kernel is tested. The simulation results demonstrate that,
with a practical size of the proposed design and adequate signal
power transmitted to the TISs, the neural network incorporating
the proposed TIS-based convolutional layer achieves a good
approximation of performance compared to a neural network
with the classic complex-valued convolutional layer. This validates
the feasibility of the proposed design and the potential for
offloading convolution operations from digital processors to the
RF domain.

Index Terms—over-the-air, analog computation, transmissive
intelligent surface, 2-D convolutional layer, neural networks

I. INTRODUCTION

With the development of machine learning (ML) and the
proliferation of Internet-of-Things (IoT) devices, the demand
for ML processing in edge applications is increasing [1], [2].
Edge AI, which refers to implementing ML models on edge
devices including robots, IoT devices, and cellphones, has
attracted substantial research interest due to the advantages of
enhanced privacy, real-time processing, and lower dependence
on Internet connectivity.

Due to the widespread deployment of wireless networks
including 5G, Wi-Fi, ultra-wideband (UWB), Bluetooth, etc,
IoT devices process a lot of radio-frequency (RF) data for
communication purposes. Furthermore, wireless sensing has
emerged as a technique to enhance sensing capability of IoT
devices. This technique relies on extracting target information
from variations in wireless signals reflected from the target,
where many applications, such as gesture and movement
recognition, rely on ML for precise detection [3], [4]. How-
ever, ML model execution on edge devices faces challenges
including limited memory and computational capability.

Recently, the concept of over-the-air (OTA) computation has
been proposed to offload computation from digital processors
into the RF domain [5]–[7]. The key idea of OTA computation

is to directly manipulate the RF signals that carry sensing or
communication information in the RF domain, such that the
signal propagation emulates specific mathematical operations.
One method of OTA computation, which is explored in this
paper, is to process RF signals using intelligent surfaces. An
intelligent surface consists of an array of low-power, low-
cost electromagnetic elements, each of which can be indepen-
dently configured to manipulate incoming RF signals [8], [9].
These surfaces can be fabricated as either intelligent reflecting
surfaces (IRSs) or transmissive intelligent surfaces (TISs).
With IRSs, signals can only be reflected back off the surface
whereas with TISs, signals can either be reflected off or trans-
mitted through the surface, thereby providing 360◦ of coverage
for the outgoing RF signals [7], [8], [10]. Intelligent surfaces
enable OTA computation by adjusting the transmission or
reflection coefficients to control incoming RF signals and
produce desired outgoing RF signals. OTA computation using
intelligent surfaces has the potential to reduce the memory
and computational demands on edge devices by offloading
computations to separate devices operating in the RF domain.

OTA computation using intelligent surfaces has the follow-
ing benefits: (1) the weights of ML models can be embedded in
pre-designed transmission/reflection coefficients of intelligent
surface elements, potentially reducing memory requirements
on edge devices; (2) computation can be offloaded to the
RF domain, as OTA computation occurs when incoming
RF waves interact with intelligent surface elements; and (3)
intelligent surfaces offer power and cost advantages, as they
are composed of passive electromagnetic elements.

There are a few studies exploring OTA computation for
neural networks using IRSs, albeit research on this topic
remains limited. In [6], a 1-D convolutional layer in the
RF domain based on IRSs is introduced. The design in [6]
uses N transmitters and N IRSs to implement an N-tap finite
impulse response (FIR) filter. However, the proposed system
requires tight synchronization and alignment among multi-
ple transmitters, and higher power consumption and latency
compared to its digital equivalent on a graphics processing
unit (GPU) or field programmable gate array (FPGA), as
reported in [6]. Furthermore, this method is limited to 1-D
convolution, and the exploration of RF-based 2-D convolution
remains unaddressed. Given that 2-D convolution is a funda-
mental operation in widely used convolutional neural networks
(CNNs), this motivates us to explore new ways of achieving
OTA computation that can extend to 2-D convolution while,
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at the same time, reducing the need for tight synchronization.
In this paper, a 2-D convolutional layer in the RF domain

using multiple TISs placed in close proximity is proposed.
TISs, rather than IRSs, are employed here since transmissive
arrays are more suitable for consecutive placement, allowing
for sequential RF signal manipulation. Moreover, multiple
IRSs placed in proximity will cause unwanted interference due
to reflections among IRSs, which makes mathematical analysis
of signals to achieve a specific processing goal intractable. To
be specific, three TISs are placed sequentially to emulate a
2-D convolution operation (I ∗K = O), where I is the input
signal of the first TIS, O is the output signal of the third TIS,
and the second TIS contains the information of the kernel
K. In this paper, we propose and validate the design of 2-D
convolution based on three TISs through theoretical analysis
and simulation. The key insight is that by applying the Fourier
transform to the input signal I and kernel K, the convolution
operation turns into matrix multiplication operations that re-
semble RF signal transmission through several TISs. Although
there are limitations regarding power consumption of the
proposed structure and the acquisition of channel information
between adjacent TISs, which are discussed in detail in Sec. V,
this study represents the first attempt, to the best of the authors’
knowledge, to explore 2-D convolution in the RF domain.
Sec. V also discusses open problems and practical challenges
related to real-world OTA implementation of 2-D convolution.

The rest of the paper is organized as follows. Sec. II
introduces the system model and the overall structure of
the proposed design. Sec. III discusses the design details.
Sec. IV contains simulation results to validate and evaluate
the proposed design. In Sec. V, the takeaways and limitations
of the design are discussed. Finally, Sec. VI concludes.

II. SYSTEM MODEL

A new convolutional layer design using three TISs is
presented for implementing 2-D convolution of I∗K = O with
RF signals. In this section, the system model and a general
overview of the proposed design are introduced.

A. System Model

As shown in Fig. 1, the convolutional layer contains three
square TISs sequentially placed along the z-axis, with the
TISs’ centers aligned along this axis. Without loss of gen-
erality, it is assumed that the center of TIS 1 is placed at
location [0, 0, 0]. It is also assumed that TIS i has Ni × Ni

elements where i ∈ {1, 2, 3}, and the size of each TIS element
is de × de. Let Di be the distance between the centers of
TIS i and TIS i+ 1 where i ∈ {1, 2}, and di be the element
spacing of TIS i. Moreover, let m = [mx,my] ∈ R1×2 denote
the index of an element on an TIS array, where mx,my ∈
{−N−1

2 ,−N−1
2 +1,−N−1

2 +2, · · · , N−1
2 −2, N−1

2 −1, N−1
2 }

if the square TIS has N ×N elements.

B. Transmission Model

The model of signal transmission between two consecutive
TISs is introduced in this section. Let hi

m,n represent the
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Fig. 1. Illustration of 2-D convolution operator with three TISs.

channel between element m on TIS i and element n on TIS
i + 1. According to [11], hi

m,n can be modeled based on
Rayleigh-Sommerfeld diffraction as follows:

hi
m,n = At cos (ϕ

i
m,n)(

1

2πdim,n

− j

λ
)
ej

2πdim,n
λ

dim,n

, (1)

where At = d2e is the size of one TIS element, λ is the
wavelength, dim,n is the distance between element m on TIS i
and element n on TIS i+1, and ϕi

m,n is the angle between the
z-axis and the direction from element m on TIS i to element
n on TIS i+1. Additionally, let γi

m represent the transmission
coefficient of element m on TIS i.

Let Ii ∈ CNi×Ni and Oi ∈ CNi×Ni denote the input and
output signals of TIS i, respectively. Moreover, let Iim and
Oi

m represent the input and output signals of element m on
TIS i, which are the mth entries in Ii and Oi, respectively.
Given the input signal Ii of TIS i, the output signal Oi+1

[nx,ny ]

of element [nx, ny] on TIS i+ 1 is given by

Oi+1
[nx,ny ]

=

Ni−1

2∑
mx=−Ni−1

2

Ni−1

2∑
my=−Ni−1

2

(
Ii[mx,my ]

×

γi
[mx,my ]

hi
[mx,my ],[nx,ny ]

γi+1
[nx,ny ]

)
. (2)

C. A General Overview of TIS-Based Convolutional Layer

As illustrated in Fig. 1, the three TISs function as a 2-
D convolution operator, aiming to have the output of TIS 3,
which is O3, emulate the convolutional results between the
input signal I1 of TIS 1 and a specified K as follows

O3 ∝ I1 ∗K. (3)

Information of the desired kernel K is mapped to TIS 2.
Details of the system design will be introduced in Sec. III.

III. DESIGN OF 2-D CONVOLUTIONAL LAYER BASED ON
TRANSMISSIVE INTELLIGENT SURFACES

In what follows, we target a 2-D convolution operation
of I ∗ K = O where I ∈ CNI×NI , K ∈ CNK×NK , and
O ∈ CNO×NO . Without loss of generality, it is assumed

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 22,2025 at 19:41:46 UTC from IEEE Xplore.  Restrictions apply. 



that NI ≥ NK . Moreover, a 2-D convolution operation
without zero padding to I and K is considered, resulting in
NO = NI −NK + 1.

This section presents the design of the transmission coeffi-
cients for each element on the three TISs. These transmission
coefficients depend on the distance between adjacent TISs and
the spacing of TIS elements. In other words, while the size of
the proposed structure can be adjusted, the 2-D convolution
operation can still be realized, provided the transmission
coefficients of the TIS elements are designed as specified in
this section.

Our design of 2-D convolution in the RF domain is based on
2-D fast Fourier transform (FFT). The design uses the fact that
the convolution of two signals corresponds to the element-wise
product of their Fourier transforms, which will be discussed
in Sec. III-A. Sec. III-B details the 2-D FFT operation using
TISs, and Sec. III-C specifies the 2-D convolution in the RF
domain.

A. 2-D Convolution Based on FFT
As mentioned above, the convolution operation of I∗K = O

can be achieved using the property of 2-D FFT as follows

O′ ∝ FFT2(FFT2(I)FFT2(KI)), (4)

where O′ is the inverted version of O such that O′
[x,y] =

O[−x,−y], KI is the version of K with zero padding applied
to match the dimensions of I, and FFT2(·) represents 2-D
FFT operation as follows

FFT2(X)[x,y] =

Nx−1
2∑

u= 1−Nx
2

Nx−1
2∑

v= 1−Nx
2

X[u,v]e
−j 2π

Nx
(xu+yv). (5)

where X ∈ CNx×Nx . Before presenting the overall convolu-
tional layer design, we present our design to implement a 2-D
FFT using TISs.

B. 2-D FFT Based on TISs
Let k = 2π

λ denote the wavevector. Based on Fresnel
approximation [12], the signal transmission model in (1) can
be approximated as

hi
m,n ≈

Ate
jkDi

jλDi
e
j k
2Di

(
(mxdi−nxdi+1)

2+(mydi−nydi+1)
2

)
,

(6)

when the following condition is satisfied√
(mxdi − nxdi+1)2 + (mydi − nydi+1)2 ≪ Di. (7)

Therefore, the output signal of element n on TIS i+ 1 given
in (2) can be further approximated as follows

Oi+1
[nx,ny ]

=
Ate

jkDi

jλDi

(
e
j
kd2i+1
2Di

(n2
x+n2

y)γi+1
[nx,ny ]

)
×

Ni−1

2∑
mx=−Ni−1

2

Ni−1

2∑
my=−Ni−1

2

Ii[mx,my ]
e
−j

kdidi+1
Di

(mxnx+myny)×

(
e
j

kd2i
2Di

(m2
x+m2

y)γi
[mx,my ]

)
. (8)

By comparing (5) and (8), it can be observed that we have

Oi+1
[nx,ny ]

=
Ate

jkDi

jλDi
FFT2(Ii)[nx,ny ], (9)

if condition (7) and the following conditions are satisfied

γi+1
[nx,ny ]

= e
−j

kd2i+1
2Di

(n2
x+n2

y), (10)

γi
[mx,my ]

= e
−j

kd2i
2Di

(m2
x+m2

y), (11)
kdidi+1

Di
=

2π

Ni
. (12)

Therefore, we propose a 2-D FFT operator using two TISs
with distance D1, each comprising N1 × N1 elements, as
illustrated in Fig. 2. The transmission coefficient of element
[mx,my] on TIS i (i ∈ {1, 2}) is given by γi

[mx,my ]
=

e−j
kd2i
2D1

(m2
x+m2

y). Moreover, the distance between the centers
of the two TISs and the TIS element spacing should meet the
following two conditions

D1 =
kd1d2N1

2π
, (13)

√
2

2
(d1 + d2)(N1 − 1)≪ D1, (14)

where condition (14) comes from (7) to satisfy the condition
of Fresnel approximation. Then, the output of TIS 2, which
is O2, is determined by the 2-D FFT of the input of TIS 1,
which is I1, as shown in (9).

C. 2-D Convolution Based on TISs

1) TIS transmission coefficient design: As shown in
Sec. III-B, the output of TIS 2 forms a 2-D FFT plane of
TIS 1’s input by using the system design in Fig. 2. Therefore,
if three TISs are placed sequentially as in Fig. 1, the inverted
version of output O3 from TIS 3, denoted by O′

3, is given by

O′
3 ∝

Ate
jkD1

jλD1

Ate
jkD2

jλD2
FFT2(FFT2(I1)FFT2(KI1)),

(15)

𝑑2 
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Fig. 2. Illustration of a 2-D FFT operator with two TISs.
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where KI1 is the version of kernel K with zero padding to
match the dimension of I1, and the transmission coefficients
of TIS 1 and TIS 3 are determined by

γ1
[mx,my ]

= e−
jkd21
2D1

(m2
x+m2

y), (16)

γ3
[kx,ky ]

= e−
jkd23
2D2

(k2
x+k2

y). (17)

Furthermore, the transmission coefficient of TIS 2 is deter-
mined by three parts such that

γ2
[nx,ny ]

= γ2,∆1

[nx,ny ]
+ γ2,K

[nx,ny ]
+ γ2,∆2

[nx,ny ]
, (18)

where

γ
2,∆j

[nx,ny ]
= e

− jkd22
2Dj

(n2
x+n2

y), j ∈ {1, 2}, (19)

γ2,K
[nx,ny ]

= FFT2(KI1)[nx,ny ]. (20)

Herein, γ1
[mx,my ]

and γ2,∆1

[nx,ny ]
are used to get the 2-D FFT

of input I1, γ2,K
[nx,ny ]

is used to map FFT2(KI1) to TIS 2,
and γ2,∆2

[nx,ny ]
and γ3

[kx,ky ]
are used to get the 2-D FFT of

FFT2(I1)FFT2(KI1). In other words, the output of TIS 3
is determined by the inverted version of I1 ∗K, such that

O3
[−kx,−ky ]

∝ Ate
jkD1

jλD1

Ate
jkD2

jλD2
(I1 ∗K)[kx,ky ]. (21)

To summarize, the design of the transmission coefficients
for elements [mx,my] on TIS 1, TIS 2, and TIS 3 are provided
in (16), (18), and (17), respectively. These coefficients are
dependent on the distance between adjacent TISs and the
spacing of the TIS elements. Furthermore, the choice of
distance between adjacent TISs and the spacing of the TIS
elements must satisfy conditions (7) and (12). In addition, the
TIS size parameters are set as N1 = N2 = NI and N3 = NO.

2) Validation: To validate the TIS-based 2-D convolution,
the three-TIS system illustrated in Fig. 1 based on the trans-
mission model in (1) is simulated. Herein, the operating
frequency is 60 GHz, D1 and D2 are both set as 1.5 m, and
TIS element spacing parameters are d1 = d3 = 0.02 m and
d2 = 0.046 m. Moreover, the TIS array size parameters are
set as N1 = N2 = 8 and N3 = 5. Input signal I1 ∈ C8×8 and
K ∈ C4×4 with random amplitudes and phases are presented
in Fig. 3(a), Fig.3(b), Fig.3(c) and Fig.3(d). The amplitude
and phase of the ground truth result, I1 ∗ K, are shown in
Fig. 3(e) and Fig. 3(f), and the amplitude and phase of the
output signal O3 from TIS 3 are shown in Fig. 3(g) and
Fig. 3(h). Note that the amplitudes in Fig. 3(e) and Fig. 3(g)
are normalized so that the maximum amplitude is 1. It can be
observed from Fig. 3 that the normalized output signal from
TIS 3 is a good approximation of the inverted version of the
normalized ground truth result.

D. Received Power Improvement

The Fresnel approximation condition, as discussed in
Sec.III-B, may result in TISs being positioned at a distance
which causes significant signal propagation loss. However, the
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Fig. 3. Demonstration of input signal I1, kernel K, and the convolutional
results O3 from TIS-based system compared to the ground truth.

performance of OTA computation relies on a good signal-to-
noise ratio (SNR) at the receiving antennas used to obtain the
OTA results. Therefore, enhancing the power of the output
O3 from TIS 3 is necessary. To improve the power of O3, we
will increase the number of TIS elements of TIS 1 and TIS 2
without changing the convolutional results of O3. Let Ui be
the TIS expansion rate for TIS i, which is defined as the ratio
of the TIS dimension after expansion to its original dimension.
The total number of elements of TIS i with expansion rate Ui

is (UiNi)
2, and the element spacing is changed to d̂i =

di

Ui
.

An illustration of Ui = 3 is shown in Fig. 4. It is noted that the
maximum TIS expansion rate for TIS i is given by Ui = ⌊ di

de
⌋

where i ∈ {1, 2}. The strategy of TIS element expansion for
TIS 1 and TIS 2 is as follows:

• TIS 2: Since the plane where TIS 2 is located represents

𝒅𝒊 

𝒅𝒊 

𝑼𝒊  = 𝟏 𝑼𝒊 = 𝟑 

𝒅 𝒊 

Fig. 4. Illustration of TIS expansion for the purpose of power improvement.
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the Fourier transformation plane according to Sec.III-B,
increasing the number of elements on TIS 2 results in
increased sampling resolution of the Fourier spectrum,
which will not impact the convolutional results. With
TIS expansion U2, the transmission coefficient γ2

[nx,ny ]

for TIS 2, where nx, ny ∈ {−U2N2−1
2 ,−U2N2−1

2 +
1, · · · , U2N2−1

2 − 1, U2N2−1
2 }, remains as given in (18),

but with d2 in (19) replaced by d̂2, and (20) refined as
γ2,K
[nx,ny ]

= FFT2(KI1)[nx
U2

,
ny
U2

].
• TIS 1: Each U1 × U1 element is grouped into a

subarray, with all elements in a subarray receiving
identical inputs as the input to one element before
TIS expansion. This repetition of signals on TIS 1
distorts the 2-D FFT results generated by TIS 2.
To offset this distortion, element [nx, ny] on TIS 2
will have an additional amplitude attenuation, denoted
as γ2,A

[nx,ny ]
= minnx,ny

{s(nx, ny)}/s(nx, ny), where
s(nx, ny) = |FFT2(EU1

)[ nx
U2N2

,
ny

U2N2
]| and EU1 ∈

RU1×U1 is a matrix in which all elements are 1. Moreover,
the transmission coefficient γ1

[mx,my ]
for TIS 1, where

mx,my ∈ {−U1N1−1
2 ,−U1N1−1

2 + 1, · · · , U1N1−1
2 −

1, U1N1−1
2 }, remains as given in (16), but with d1 re-

placed by d̂1.

IV. SIMULATION RESULTS

The TIS-based convolutional layer is implemented in simu-
lation to evaluate the proposed system. We follow a common
practice in the literature for validating new ML architectures
by designing a neural network with our convolutional layer to
perform an image classification task on handwritten digits.

A. Set-up

Without loss of generality, a simple TIS-based convolutional
layer with one kernel implemented with three TISs is consid-
ered. In the preceding mathematical analyses, it was assumed
that the channel between adjacent TISs is deterministic and
known. One way of approximating this in practice would
be to enclose the entire system in RF absorbing material,
thereby eliminating all multipath components. This issue is
discussed in more detail in Section V. To validate the proposed
design, the UCI Digits dataset is used [13], which consists
of 5620 samples of 8 × 8 images of written digits from
0− 9. To feed the input image to the TIS-based convolutional
layer, the combination of a single-antenna transmitter and a
programmable TIS is used. The size of the programmable TIS
is (8U1) × (8U1), and a reconfigurable phase shift γr

[mx,my ]

is used to map the pixel value to the phase of transmission
coefficients of elements on TIS 1, as illustrated in Fig. 5(a).
If TIS expansion is used for TIS 1, all the reconfigurable
phase shifts γr

[mx,my ]
within a U1 × U1 subarray are iden-

tical. The transmitter only transmits a constant unmodulated
signal, and the programmable TIS tunes the phase of γr

[mx,my ]

corresponding to the pixel value of the input image. The RF
signals are then modified by the TIS-based convolutional layer,
before being received by a 4-antenna array at the receiver. The
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(b) Neural network with a classic convolutional layer
Fig. 5. Structure of neural networks with standard convolutional layer and
TIS-based convolutional layer.

received signal is further processed with two complex-valued
fully-connected (FC) layers and a softmax layer implemented
inside the receiver’s processor. The full pipeline is shown in
Fig. 5(a).

A neural network with a classic complex-valued convolu-
tional layer with a 4×4 kernel based on [14], as illustrated in
Fig. 5(b), is trained in PyTorch. The untrainable channel layer
in Fig. 5(b) is used to model signal propagation from TIS
3 to the receive antenna array. After convergence is reached
in training, the trained weights of the kernel are extracted
and then mapped to the transmission coefficients of TIS 2
as detailed in Sec. III.

In what follows, the operating frequency is 60 GHz. The
TIS array size parameters are set as N1 = N2 = 8 and N3 =
5. The distance between TIS 1 and TIS 2, and the distance
between TIS 2 and TIS 3 are assumed to be the same, which
is denoted by D. The element spacing of TIS 1 and TIS 3
are d1 = d3 = 0.02 m. The distances between the transmitter
and the center of TIS 1, and between the center of the receive
antenna array and the center of TIS 3, are both set at 0.1 m.
Additionally, the size of every TIS element is At =

λ
2 × λ

2 .

B. Validating the TIS-Based Convolutional Layer

To show that the proposed TIS-based convolutional layer
has similar behavior as the classic convolutional layer, the per-
formance of the digit classification task is compared between
the TIS-based and the classic designs. Herein, the distance
between adjacent TISs is D = 0.7 m, with element spacing of
TIS 2 as d2 = 0.0218 m according to (12). The TIS expansion
rates for TIS 1 and TIS 2 are chosen as U1 = U2 = 7.
Moreover, the transmit power is set as 15 dBm.

The confusion matrix of the classification results on the
test data is demonstrated in Fig. 6. According to Fig. 6, there
is only a slight gap between the classification accuracy of
the proposed TIS-based design and the classic design, which
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Fig. 6. Confusion matrices.

demonstrates the efficacy of the proposed TIS-based solution
as a good substitute for the classic convolutional layer. This
slight gap between the proposed and classic designs primarily
arises from two aspects:

1) The proposed TIS-based solution is based on the Fresnel
approximation, which requires adherence to the condi-
tion of distance between consecutive TISs as discussed
in Sec. III-B. Considering the size of the proposed
structure, a reasonable selection of the distance between
TISs is used in this simulation, resulting in a slight
variance between the accurate channel and its Fresnel
approximation. If an increased distance between TISs is
allowed, along with a higher transmit power to compen-
sate for the larger path loss caused by this distance, a
more precise Fresnel approximation can be obtained to
improve the classification performance.

2) The training process of classic neural networks has no
consideration of noise at the receive antennas, leading to
an ideal classification performance. Nonetheless, in the
proposed TIS-based system, classification performance
relies on SNR at the receive antennas. Therefore, the
noise has an impact on performance in the proposed
TIS-based system.

C. Classification Accuracy vs. Transmit Power with Adjusted
TIS Expansion Rate

An increase in transmit power can enhance the accuracy
of TIS-based convolutional operations, since the SNR at
the receive antennas is improved. The strategy proposed in
Sec. III-D can improve SNR without increasing transmit power
by increasing the number of TIS elements. In this section,
the relationship between transmit power and the true positive
rate of digit classification task is evaluated using the received
power improvement strategy proposed in Sec. III-D.

According to Fig. 7, when the TIS expansion rate is
U1 = U2 = 1 for the TIS-based system, the true positive rate
remains relatively unchanged as the transmit power increases
from -20 dBm to 20 dBm. This observation is attributed to the
limited number of TIS elements, which constrains the received
power at the antennas. As U1 and U2 increase from 1 to 7,
there is a significant improvement of true positive rate, which
demonstrates the effectiveness of the proposed received power
improvement strategy. When U1 = U2 = 7, the true positive

Fig. 7. True positive rate vs. transmit power for various TIS expansion rates
(D = 0.7 m, d1 = 0.02 m).

rate almost reaches the maximum value provided by the classic
model as the transmit power increases to above 16 dbm. The
results demonstrate a trade-off between transmit power and
hardware complexity. To maintain classification accuracy, the
number of TIS elements can be increased to reduce transmit
power.

D. Classification Accuracy vs. Transmit Power with Adjusted
Distance Between TISs

The distance between two adjacent TISs, which is D, is an
important metric in TIS-based convolutional layer in that:

1) this distance directly influences the sizes of the proposed
design, thereby affecting the feasibility of real-world
implementation, and

2) this distance is related to the Fresnel approximation, as
discussed in Sec. III-B and, therefore, a wider range of
feasible distances between TISs enables a more accurate
approximation between the convolutional results using
the proposed design and the ground truth.

As D changes, the element spacing d2 for TIS 2 needs
adjustment according to (12), which impacts the maximum
TIS expansion rate supported by TIS 2. Herein, it is assumed
that d2 is determined by (12), and the maximum TIS expansion
rate for TIS 2 is utilized as D varies. Fig. 8 shows the true
positive rate for different distances with U1 = 7. According to
Fig. 8, there is hardly any reduction in the true positive rate as
D decreases from 0.7 m to 0.5 m. For D = 0.3 m, there is a
slight decrease in the true positive rate but the proposed design
still achieves approximately 92% of the ideal true positive
rate of the classic model in this case. However, a reduction
to D = 0.2 m leads to a significant performance reduction
when the proposed design is used. This result demonstrates
that slight violations of the Fresnel approximation can still
yield satisfying classification performance, while allowing for
a reduction in the size of the proposed design.

V. DISCUSSION

In this section, we discuss the takeaways, limitations, and
further improvements that can be made in future research.

The key finding in this work is that a 2-D convolutional
layer can be constructed in the RF domain using cascaded
TISs. To the authors’ best knowledge, this is the first work
that enables an OTA 2-D convolutional layer. And compared to
the previous attempt to create an OTA convolutional layer [6],
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Fig. 8. True positive rate vs. transmit power for various distances between
TISs (U1 = 7, d1 = 0.02m).

which uses multiple transmitters and multiple IRSs to create
a reconfigurable multi-tap 1-D convolution directly in the
time domain, our proposed method removes the need for
tight synchronization. In addition, the size of input data and
the convolution kernel size can be easily adjusted by simply
using different numbers of TIS elements, instead of needing
to increase the number of TISs. This could potentially allow
for better flexibility and scalability in practical deployments.

This work has a few limitations: (1) it is assumed that
the whole RF pipeline is enclosed in RF absorbing materials,
which eliminate the undesirable multipath components, and
that the channel information is perfectly known. Designing a
2-D convolutional layer when the measurement of the channel
is imperfect or unavailable remains an open problem. To
address similar problems, other works have adopted discrete
optimization or reinforcement learning approaches [7] to train
the weights in an online fashion. Such approaches are beyond
the scope of this initial work and are an open problem for
future research. (2) The TISs incur added cost and complexity
due to the additional hardware. Recent progress in low-
complexity designs with 1-bit and 2-bit phase shifts, e.g. in
[15], [16], points the way for additional open topics in this
area. Furthermore, if reconfiguration of the ML model is not
required, non-reconfigurable TIS elements can be employed
to reduce hardware complexity, as this eliminates the need
for controlling hardware to adjust TIS transmission coeffi-
cients, which is typically required in most existing studies
on intelligent surfaces. (3) Power consumption of a TIS-
based convolutional layer primarily arises from the transmitter
on the edge device, as the TIS itself offers a low-power
advantage due to its composition of passive electromagnetic
elements. To achieve better performance, there is a trade-
off between transmit power and hardware complexity. As
discussed in Sec. IV-C, an increase in the number of TIS
elements is needed to reduce transmit power while maintaining
classification accuracy. Therefore, a careful consideration of
both power consumption and hardware complexity will be
critical for real-world applications.

VI. CONCLUSION

In this paper, we introduced an RF-based convolutional
layer using three TISs, which represents the first structure
capable of implementing 2-D convolutional operations using
OTA computation. To validate the proposed design, a simple
neural network with a single convolutional layer and one

kernel was trained for a digit classification task. Simulation
results showed that, given properly designed TIS parameters,
the neural network with the proposed TIS-based convolutional
layer achieves a classification accuracy very close to the classic
complex-valued convolutional layer. However, to achieve good
performance, the number of TIS elements and the distance
between TISs must be properly selected, which raises issues
of trade-offs between power consumption and hardware com-
plexity that require further investigation to demonstrate use in
practical real-world applications.
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