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Abstract—A low-complexity direction of arrival (DoA) estima-
tion approach based on transmissive intelligent surfaces (TISs) is
proposed for single-target scenarios. The proposed DoA estimator
is composed of one TIS with pre-designed phase shifts and two
receive antennas. The signal from the target transmits through
the TIS before being captured by the two antennas, and the
DoA of the target is estimated solely based on the ratio of power
received at the two antennas. An optimization method is proposed
to design the phase shifts of the TIS and the relative positions of
the two antennas with two primary objectives: (1) enhancing
DoA estimation accuracy, and (2) guaranteeing an analytical
expression of the estimated DoA derived from the power ratio.
To be specific, the power ratio is approximated using a limited
number of Fourier series coefficients, so that the optimization
problem is formulated as a small set of quadratic programming
problems aimed at optimizing these Fourier series coefficients.
Simulation results validate the effectiveness of the proposed TIS-
based DoA estimator and the optimization method. The method
demonstrates comparable or even lower root mean squared error
(RMSE) of DoA estimation in comparison to classic approaches.
Unlike classic approaches that rely on complex-valued received
signals, the proposed method offers reduced hardware com-
plexity, relying solely on power measurements. Additionally, it
involves reduced computational complexity compared to classic
approaches including the multiple signal classification (MUSIC)
algorithm and the discrete Fourier transform (DFT)-based DoA
estimation method.

Index Terms—transmissive intelligent surfaces, direction of
arrival, low-complexity, Fourier series, quadratic programming

I. INTRODUCTION

Reconfigurable intelligent surfaces (RISs) [1] have gained
increasing popularity in the field of wireless communications
due to their capability of shaping the propagation path of
incident electromagnetic (EM) waves. With flexible config-
uration of the phase shift of each RIS element, RISs create
a favorable propagation environment for wireless networks,
whose spectrum and energy efficiency can be significantly
enhanced [2].

As a particular type of RIS, transmissive intelligent surfaces
(TISs) [3] are an emerging and promising option. TISs transmit
any incident EM wave through and can alter its propagation
direction, leading to a broad coverage in wireless networks.
Several previous works have explored the feasibility of ac-
commodating TISs for the purpose of coverage expansion.
In [4], the authors propose a conceptual RIS design which
incorporates TISs, developing three realistic protocols: energy
splitting, mode switching, and time switching. The authors
of [5] implement a millimeter-wave (mmWave) RIS structure

with TISs included, which can be integrated into common
mmWave link discovery protocols.

With their ability to steer incident EM waves and generate
beams of desired directions, TISs can be leveraged to conduct
target detection, such as direction of arrival (DoA) estimation
of a target. For DoA estimation, numerous methods based on
the classic multiple signal classification (MUSIC) algorithm
[6] have been proposed (e.g., [7], [8]). However, these methods
suffer from a large post-processing overhead caused by signal
decoding and demodulation with a need of phase difference
computation. In addition, there is some prior research focused
on TIS-specific DoA estimation methods (e.g., [9]–[11]). As
these methods require a frequent phase shift reconfiguration of
TISs, they are limited by a high hardware complexity. Overall,
the DoA estimation methods discussed above are not suitable
for edge devices with limited and computation resources.

In this paper, we propose a novel low-complexity TIS-
based DoA estimator targeting at edge devices. Specifically,
the proposed method employs the power ratio from two
receive antennas for DoA estimation with a TIS under fixed
phase shifts, resulting in a small post-processing overhead
and a low hardware complexity. To determine the location
of two receive antennas and the fixed phase shifts of the TIS,
we formulate a corresponding optimization problem, which
is transformed into a small set of more tractable quadratic
optimization problems by approximating the power ratio using
a finite number of Fourier series. Furthermore, an analytical
expression of the estimated DoA derived from the power ratio
is guaranteed by using the proposed optimization method.

The remainder of this paper is organized as follows. Sec. II
introduces the system model and problem formulation of the
TIS-based DoA estimator. Sec. III discusses the proposed
optimization approach for optimizing the TIS-based DoA
estimator and the method to estimate DoA from measured
power ratio. Sec. IV demonstrates simulation results of DoA
estimation performance using the proposed method. Finally,
Sec. V concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

The system model of single-target DoA detection is illus-
trated in Fig. 1. The proposed DoA estimator is composed of
a TIS and two receive antennas, and the distances between
the two antennas to the center of the TIS array are the same.
Moreover, it is assumed that both the target and the receive
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antennas are in the far field region of the TIS. The TIS features
two columns of elements, where there are N TIS elements in
each column sharing an identical transmission coefficient and
the spacing between two adjacent TIS elements is d. Moreover,
let γic = ejφic denote the transmission coefficient of elements
in the ic

th column, where φic is the corresponding phase shift
and ic ∈ {1, 2}. Let θk ∈ (−π

2 ,
π
2 ) represent the direction of

the kth antenna, where k ∈ {1, 2} and θ1 = −θ2. Although
the proposed TIS-based DoA estimator can work at various
frequency bands, we focus on mmWave band in this paper as
TIS arrays at mmWave band can be small which are suitable
for edge devices.

It is assumed that the target actively transmits signals with
power Pt. Given the direction of the target as θ ∈ [−π

2 ,
π
2 ],

the signal received from the line-of-sight (LoS) path at the kth

antenna is

yk(θ) =
√
PtgkNx

2∑
ic=1

ejφic e−j 2π
λ (ic−1)d

(
sin(θ)+sin(θk)

)
,

(1)

where λ is the wavelength, x is the symbol transmitted from
the target such that E(∥x∥22) = 1, and gk is the cascaded
channel gain from the target to the TIS and from the TIS
to the kth receive antenna. Then the power received at the kth

antenna is given by

Pk(θ) = 2PtgkN
2
(
1 + cos

(
z sin(θ) + z sin(θk) + ∆φ

))
, (2)

where z = 2π
λ d and ∆φ = φ1 − φ2. Moreover, we have

g1 = g2 since the distances between the two antennas to the
center of the TIS are the same. Then the ratio of the power
received at the two antennas is

α(θ) =
P1(θ)

P2(θ)
=

1 + cos
(
z sin(θ) + f(θ1,∆φ)

)
1 + cos

(
z sin(θ) + f(θ2,∆φ)

) , (3)

where

f(θk,∆φ) = z sin(θk) + ∆φ. (4)

B. Problem Formulation

In this paper, the goal is to design the parameters of the
TIS-based DoA estimator, which are ∆φ and θ1, in order to
estimate the DoA of the target only from the power ratio α(θ).
Therefore, α(θ) : θ → α should be a bijective function when
θ ∈ [−π

2 ,
π
2 ]. For practicality in real-world implementation,

α(θ) can be designed as an either monotonically increasing
or decreasing function for θ ∈ [−π

2 ,
π
2 ]. Without loss of

generality, we opt for α(θ) to monotonically increase within
this range. Additionally, to improve distinguishability among
different θ values, the gradient ∂α

∂θ should be maximized.
Hence, the problem of optimizing parameters of the TIS-based
DoA estimator can be formulated as

max
∆φ,θ1

Eθ∈[−π
2 ,π2 ]

(∂α
∂θ

)
(5a)

s.t.
∂α

∂θ
≥ 0,∀θ ∈ [−π

2
,
π

2
]. (5b)

𝝋𝟏 
𝝋𝟏 
𝝋𝟏 

𝝋𝟐 
𝝋𝟐 
𝝋𝟐 
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𝜃 
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Receive 
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TIS-based 
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Fig. 1. Illustration of the proposed TIS-based DoA estimator.

Furthermore, the optimization should ensure an analytical
expression of θ derived from the power ratio α(θ). After the
DoA estimation device parameters are designed, the phase
shifts φ1 and φ2 for TIS elements remain constant during the
DoA detection stage, which simplifies hardware complexity
compared to reconfigurable TISs.

III. OPTIMIZATION OF TIS-BASED DOA ESTIMATOR

In this section, the optimization problem (5) is transformed
into a set of quadratic programming problems by utilizing
Fourier series, with the aim to improve DoA estimation
accuracy and ensure an analytical expression of estimated
θ from power ratio α(θ). The design of parameters of the
proposed TIS-based DoA estimator is introduced first. Then
the method of estimating the target direction θ from the power
ratio α(θ) is presented.

A. Design of TIS-based DoA Estimator

In this subsection, the transformation of the original opti-
mization problem into a set of quadratic programming prob-
lems is introduced. The key idea is to utilize a finite number
of Fourier series coefficients to approximate the term α(θ).
Then the original problem is transformed into optimizing these
Fourier series coefficients.

1) Expressing α(θ) using Fourier series:

The term 1+ cos
(
z sin(θ) + f(θk,∆φ)

)
can be expressed

using Fourier series in sine-cosine form as

1 + cos
(
z sin(θ) + f(θk,∆φ)

)
=1 + cos

(
z sin(θ)

)
cos

(
f(θk,∆φ)

)
− sin

(
z sin(θ)

)
sin

(
f(θk,∆φ)

)
(a)
=1 + cos

(
f(θk,∆φ)

)(
J0(z) + 2

∞∑
n=1

J2n(z) cos(2nθ)
)

− sin
(
f(θk,∆φ)

)(
2

∞∑
n=1

J2n−1(z) sin
(
(2n− 1)θ

))
, (6)

where (a) comes from Jacobi–Anger expansion [12], and
Jn(z) is the nth Bessel function of the first kind.
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Therefore, 1+cos
(
z sin(θ)+f(θk,∆φ)

)
can be expressed

by Fourier series in exponential form, such that

1 + cos
(
z sin(θ) + f(θk,∆φ)

)
=

∞∑
n=−∞

Ck,ne
jnθ, (7)

where Ck,n is the coefficient of Fourier series in exponential
form and is given by

Ck,n =

 ak,0, if n = 0,
1
2 (ak,n − jbk,n), if n > 0,
1
2 (ak,|n| + jbk,|n|), if n < 0,

(8)

where

ak,n =


1 + cos

(
f(θk,∆φ)

)
J0(z), if n = 0,

0, if n > 0 and n is odd,

2 cos
(
f(θk,∆φ)

)
Jn(z), if n > 0 and n is even,

(9)

bk,n =

{
0, if n ≥ 0 and n is even,

−2 sin
(
f(θk,∆φ)

)
Jn(z), if n > 0 and n is odd.

(10)

Furthermore, given the nature of DoA detection, α(θ)
should show periodicity with respect to θ, with a period of
2π. Thus, α(θ) can be represented using Fourier series in sine-
cosine form as

α(θ) = a3,0 +

∞∑
n=1

(
a3,n cos(nθ) + b3,n sin(nθ)

)
, (11)

where a3,n and b3,n are the Fourier series coefficients.
Then the corresponding coefficient of Fourier series in
exponential form is denoted by C3,n. Let Cm =
[Cm,−∞, . . . , Cm,−1, Cm,0, Cm,1, . . . , Cm,∞] be the vector
containing all the coefficients Cm,n of Fourier series in ex-
ponential form given m, where m ∈ {1, 2, 3}.

In summary, C1, C2, and C3 represent vectors contain-
ing coefficients of Fourier series in exponential form for
1+cos(z sin(θ)+ f(θ1,∆φ)), 1+cos(z sin(θ)+ f(θ2,∆φ)),
and α(θ), respectively. Then given the convolution theorems
of Fourier series and (3), we have

C3 ∗C2 = C1. (12)

For tractability, C1, C2, and C3 will be truncated into vectors
with finite lengths, denoted by Ĉ1, Ĉ2, and Ĉ3, which will
be introduced next.

2) Approximating α(θ) using a small number of Fourier
series coefficients:

• Truncating C1 and C2:
RIS element spacing is typically from λ

8 to λ
2 [13]. There-

fore, given the possible value of z, the value of |Jn(z)|
approaches 0 as |n| → ∞, which indicates that a limited
number of Ck,n where k ∈ {1, 2} can be used to approxi-
mate 1+cos(z sin(θ)+f(θ1,∆φ)) and 1+cos(z sin(θ)+
f(θ2,∆φ)). Considering possible values of z, coefficients
Ck,n for n ∈ {−6,−5, . . . ,−1, 0, 1, . . . , 5, 6} are se-

lected, since
∑6

n=−6 Jn(z)∑∞
n=−∞ Jn(z)

> 0.998 which indicates that
most of the information in Ck,n is kept.

• Truncating C3:
For the Fourier series vector C3, only the Fourier series
coefficients C3,n with n ∈ {−3,−2,−1, 0, 1, 2, 3} are
selected to approximate α(θ). There are two reasons
to support this choice: (1) The number of coefficients
selected for C1,n and C2,n is the same as discussed above,
which reduces the required number of coefficients in C3

in order to approximate C3 ∗C2 = C1. (2) An analytical
inverse function from α(θ) to θ is required for DoA
estimation. However, if C3,n where |n| > 3 is maintained,
the analytical function will become complicated or may
not exist.
Furthermore, to guarantee the existence of an analytical
inverse function from α(θ) to θ, we set a3,1 = b3,2 =
a3,3 = 0. In this case, we have

α(θ) =a3,0 + b3,1 sin(θ) + a3,2 cos(2θ) + b3,3 sin(3θ)

=− 4b3,3 sin
3(θ)− 2a3,2 sin

2(θ)

+ (b3,1 + 3b3,3) sin(θ) + a3,2 + a3,0, (13)

which is a cubic equation with respect to sin(θ), and can
be used to get the inverse function from α(θ) to θ as will
be discussed in Sec. III-B.

In other words, the condition of C3 ∗ C2 = C1 can be
turned into

Ĉ3 ∗ Ĉ2 ≈ Ĉ1, (14)

where

Ĉ1 = [0, 0, 0, C1,−6, C1,−5, . . . , C1,0, . . . , C1,5, C1,6, 0, 0, 0], (15)

Ĉ2 = [C2,−6, C2,−5, . . . , C2,0, . . . , C2,5, C2,6], (16)

Ĉ3 = [j
b3,3

2
,
a3,2

2
, j

b3,1

2
, a3,0,−j

b3,1

2
,
a3,2

2
,−j

b3,3

2
]. (17)

3) Transforming the TIS-based DoA estimator optimiza-
tion problem into a set of quadratic programming problems:

Since ∂α
∂θ = b3,1 cos(θ)−2a3,2 sin(2θ)+3b3,3 cos(3θ) with

approximiation discussed in Sec. III-A2, the objective function
in (5a) can be interpreted as Eθ∈[−π

2 ,π2 ]

(
∂α
∂θ

)
= 2b3,1− 2b3,3.

Moreover, since ∂α
∂θ = cos(θ)(b3,1−4a3,2 sin(θ)+3b3,3(1−

4 sin2(θ))), the constraint of ∂α
∂θ ≥ 0 for θ ∈ [−π

2 ,
π
2 ] can be

interpreted as b3,1 − 4a3,2 sin(θ) + 3b3,3(1 − 4 sin2(θ)) ≥ 0
for θ ∈ [−π

2 ,
π
2 ].

In other words, the optimization problem (5) can be trans-
formed into

max
∆φ,θ1

2b3,1 − 2b3,3 (18a)

s.t. ∥Ĉ3 ∗ Ĉ2 − Ĉ1∥∞ ≤ ϵ, (18b)

if b3,3 ≥ 0 or {b3,3 < 0 and
a3,2

6b3,3
≥ 1} or

{b3,3 < 0 and
a3,2

6b3,3
≤ −1}, then

b3,1 − 9b3,3 ≥ |4a3,2|, (18c)

if b3,3 < 0 and |
a3,2

6b3,3
| < 1, then

b3,1 + 4a3,2(
a3,2

6b3,3
) + 3b3,3(1− 4(

a3,2

6b3,3
)2) ≥ 0, (18d)
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where ϵ is a small positive value, and constraints (18c)
and (18d) are used to ensure that ∂α

∂θ ≥ 0 for θ ∈ [−π
2 ,

π
2 ].

In this case, the parameters of the proposed TIS-based DoA
estimator can be optimized, and meanwhile an analytical
expression from power ratio α(θ) to estimated DoA θ can
be ensured.

Furthermore, the optimization problem (18) can be turned
into finding the solutions of four quadratic programming
problems with the same objective function (18a). The optimal
solution that can offer the minimal value of the objective
function will be selected from these four solutions. The lth

quadratic programming problem where l ∈ {0, 1, 2, 3} is
defined as

min
x

f⊤o x (19a)

s.t. x⊤Hsx+w⊤
s x+ rs ≤ 0, for s ∈ {0, 1, . . . , 19}, (19b)

x⊤Jl,ux+ p⊤
l,ux ≤ 0, (19c)

for u ∈ {0, 1, 2} when l = 0,

and u ∈ {0, 1, 2, 3} when l ∈ {1, 2, 3},
x⊤Gvx+ cv = 0, for v ∈ {0, 1}, (19d)

where fo,ws,pl,u ∈ R8×1, Hs,Jl,u,Gv ∈ R8×8, and rs, cv ∈
R are given in Appendix, and x ∈ R8×1 is determined as

x = [a3,0, b3,1, a3,2, b3,3, cos
(
f(θ1,∆φ)

)
, sin

(
f(θ1,∆φ)

)
,

cos
(
f(−θ1,∆φ)

)
, sin

(
f(−θ1,∆φ)

)
]⊤. (20)

Herein, constraint (19b) ensures that constraint (18b) is sat-
isfied, and constraint (19c) in the four quadratic program-
ming problems ensures that constraints (18c) and (18d) are
satisfied. Moreover, constraint (19d) is used to guarantee that
cos2

(
f(θk,∆φ)

)
+sin2

(
f(θk,∆φ)

)
= 1 where k ∈ {1, 2}.

Let [x]n denote the nth entry in vector x, where n ∈
{0, 1, . . . , 7}. Then the overall algorithm for designing pa-
rameters of the proposed TIS-based DoA estimator is given
in Algorithm 1.

B. Estimation of DoA Based on Power Ratio

After the parameters of TIS-based DoA estimator are
designed using Algorithm 1, the function α(θ) = a3,0 +
b3,1 sin(θ) + a3,2 cos(2θ) + b3,3 sin(3θ) for θ ∈ [−π

2 ,
π
2 ] is

determined. Then the analytical result of the estimated DoA
θ̃ can be acquired from measured power ratio α̃, as the value
of sin(θ̃) can be obtained by solving the cubic equation (13).
The method for DoA estimation based on power ratio is given
in Algorithm 2.

C. Received Power Enhancement

The accuracy of DoA estimation depends on the signal-
to-noise ratio (SNR) at the receive antennas. One approach to
improve SNR is to enhance the received power at the antennas
by expanding TIS dimension N . However, given a fixed
distance between TIS and two receive antennas, increasing
N may result in the two antennas not being located in the far-
field region of the entire TIS array. To mitigate the near-field

Algorithm 1: System design of the proposed TIS-
based DoA estimator
Input: Wavelength λ, TIS element spacing d, error

bound ϵ
Output: Receive antenna direction θ1, TIS phase shift

difference ∆φ, a3,0, b3,1, a3,2, b3,3
Solve the lth quadratic programming problem defined

in (19) to get solution xl where l ∈ {0, 1, 2, 3}
Get x = argminxl

f⊤o xl

a3,0 ← [x]0
b3,1 ← [x]1
a3,2 ← [x]2
b3,3 ← [x]3
Get f1 ∈ [−π, π] from cos(f1) = [x]4 and
sin(f1) = [x]5, where f1 denotes f(θ1,∆φ) in (4)

Get f2 ∈ [−π, π] from cos(f2) = [x]6 and
sin(f2) = [x]7, where f2 denotes f(θ2,∆φ) in (4)

θ1 ← arcsin( (f1−f2)λ
4πd )

∆φ← f1 − 2πd
λ sin(θ1)

Algorithm 2: DoA estimation based on power ratio
Input: a3,0, b3,1, a3,2, b3,3, and the ratio of power

received at two antennas α̃
Output: Estimated DoA (θ̃) of the target
α̃← min(α̃, α(π2 ))
α̃← max(α̃, α(−π

2 ))
Solve
4b3,3x

3+2a3,2x
2−(b3,1+3b3,3)x−a3,0−a3,2+α̃ = 0,

and get the real root x which satisfies x ∈ [−1, 1]
θ̃ = arcsin(x)

effects, an additional phase shift ∆φic,ir is introduced to the
(ic, ir)

th TIS element located at the ith
c column and the ith

r row,
where ic ∈ {1, 2} and ir ∈ {1, 2, . . . , N}. This phase shift
is given by ∆φic,ir = 2π

λ dic,ir , where dic,ir is the distance
between the ith

c receive antenna and the (ic, ir)
th TIS element.

Therefore, the overall phase shift of the (ic, ir)
th TIS element

is φ̂ic,ir = φic +∆φic,ir .

IV. SIMULATION

A. Simulation Settings

An indoor office model from MATLAB [14], which is
illustrated in Fig. 2, is used to generate the mmWave ray
tracing channel between the target and the TIS. The length,
width, and height of the room are 8 m, 5 m, and 3 m,
respectively. The distance between the target and the TIS-
based DoA estimator is set as 1.5 m, and the distance between
the two receive antennas to the center of TIS is 0.05 m. The
maximum transmit power of the target and the noise power
are set as 24 dBm and -100 dBm, respectively. The operating
frequency is set as 28 GHz. The TIS-based DoA estimator
is assumed to be randomly located in the room. Since the
proposed method is designed for the scenario where the LoS
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Fig. 2. An illustration of the indoor simulation scenario.

path between the target and the TIS exists, those random
locations where the LoS path does not exist are discarded.

B. Designing Parameters of the Proposed TIS-Based DoA
Estimator

To validate the proposed method, Algorithm 1 is used to
design θ1 and ∆φ used for the proposed TIS-based DoA
estimator, and a3,0, b3,1, a3,2, and b3,3 used during the DoA
detection stage. Three values of TIS element spacing, d, are
considered: λ

4 , λ
6 , and λ

8 . Note that the error bound ϵ will
influence the design of system parameters. A large ϵ may
yield inaccuracies in approximating the function α(θ), whereas
an excessively small ϵ could result in the absence of feasible
solutions. Herein, ϵ is set to 0.0005, 0.0001, and 0.0001 for
d = λ

4 , d = λ
6 , and d = λ

8 , respectively.
The designed parameters are listed in Table. I. Given the

designed θ1 and ∆φ, the theoretical power ratio function α(θ)
in Eq. (3) and the approximated function as in Eq. (13) are
shown in Fig. 3. According to Fig. 3, there is only a slight gap
between the theoretical and the approximated power ratio func-
tion α(θ), which validates the proposed approximation method
based on a limited number of Fourier series coefficients.

Given the designed parameters, the root mean squared error
(RMSE) of DoA estimation using Algorithm 2 is shown in
Fig. 4. Two scenarios are tested: (1) only the LoS path between
the target and the TIS is considered, and (2) the LoS path and
reflection paths between the target and the TIS are considered.
Case (1) represents an ideal case, which is used to verify the
proposed DoA estimation method based on the approximated
α(θ). Case (2) represents a more realistic case, which provides
insights into performance of the proposed method in a real-
world setting. Herein, the TIS size is set as 2×8. According to
Fig. 4, TIS with d = λ

4 generally shows the lowest RMSE in
both Case (1) and Case (2), while TIS with d = λ

8 generally
demonstrates the highest RMSE. This is because the power
ratio function α(θ) for TIS with d = λ

4 shows the highest
value of Eθ∈[−π

2 ,π2 ]

(
∂α
∂θ

)
according to Fig. 3, indicating better

distinguishability among different DoAs. In both Case (1)
and Case (2), the RMSE is greater when |θ| approaches π

3
compared to when θ = 0. This is also due to the higher value
of |∂α∂θ | near θ = 0 compared to |θ| = π

3 . In Case (1), the
RMSE for TIS with d = λ

4 remains below 2◦, whereas it rises
to the range of [7, 23]◦ in Case (2) due to multipath effects.

TABLE I
DESIGNED DOA ESTIMATION DEVICE PARAMATERS

d θ1 (rad) ∆φ (rad) a3,0 b3,1 a3,2 b3,3
λ
4

-0.2182 -0.9737 0.6732 0.5570 0.0214 -0.0257
λ
6

-0.3471 -1.3338 0.5433 0.3730 0.0219 -0.0068
λ
8

-0.4011 -1.7501 0.4451 0.3017 0.0277 -0.0039

Fig. 3. Designed function α(θ) for different TIS element spacings.

C. Comparison with Classic DoA Estimation Methods

To further evaluate the proposed method, a comparison
is conducted among the proposed method and classic DoA
estimation methods. The case of TIS with d = λ

4 is chosen for
the proposed method, as it demonstrates the best performance
among the three TIS spacing values considered. Moreover,
the TIS size is set as 2 × 8. For the classic methods, three
approaches are selected: the MUSIC algorithm [6], phase-
difference-of-arrival (PDOA) algorithm [15], and a discrete
Fourier transform (DFT)-based DoA estimation method [16].
Given that the proposed method employs two antennas, it is
assumed that the three classic approaches also utilize only
two antennas for the purpose of a fair comparison. For classic
approaches, the distance between the two antennas is set at λ

2 ,

Fig. 4. RMSE of DoA estimation with different TIS element spacings (TIS
size 2× 8).
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with their center positioned at the same location as the center
of the TIS in the proposed method.

Fig. 5 illustrates the DoA estimation performance of both
the proposed method and classic approaches in scenarios
where both the LoS path and reflection paths are taken into
account. It can be observed that the three classic approaches
exhibit similar performances. Particularly, within the range of
θ ∈ [−λ

6 ,
λ
6 ], the RMSE of the proposed method closely aligns

with that of the classic approaches. However, as |θ| gets close
to λ

3 , the RMSE of classic approaches reaches approximately
45◦, while the RMSE of the proposed method remains below
25◦.

The results demonstrate the advantages of the proposed
method in that it shows comparable or even superior per-
formance to classic approaches, alongside lower hardware or
computation complexity. The proposed method only relies on
power measurement, while all the three classic approaches
require complex-valued received signals for DoA estimation,
thereby increasing hardware complexity for signal detection.
Furthermore, MUSIC algorithm and DFT-based DoA estima-
tion have higher computation complexity than PDOA and the
proposed method. The MUSIC algorithm requires singular
value decomposition (SVD) of the correlation matrix of the
received signal across antennas, and calculation of the pseudo-
spectrum using a series of steering vectors where the DoA is
estimated by searching for the peak in the pseudo-spectrum.
In addition to the computational complexity associated with
SVD, the complexity increases when a higher resolution of
the pseudo-spectrum is required. Given that two antennas
are used in the simulation, the computational complexity for
calculating the pseudo-spectrum is O(Nm), where Nm is the
number of steering vectors. The resolution of DoA estimation
in the DFT-based method depends on the number of DFT
points, represented by Nd, with the computational complexity
of DFT being O(N2

d ). Compared to the MUSIC algorithm
and the DFT-based method, both PDOA and the proposed
method have constant computational complexity. Although the
proposed method entails calculating roots of a cubic equation,
resulting in a slightly higher computational complexity than
PDOA, it demonstrates lower hardware complexity and shows
lower RMSE when |θ| increases, as illustrated in Fig. 5.

D. Received Power Enhancement

The performance of the received power enhancement strat-
egy described in Sec. III-C is evaluated. The TIS element
spacing is selected as d = λ

4 , and three TIS sizes are chosen:
2 × 4, 2 × 8, and 2 × 16. Fig. 6 shows the RMSE of DoA
estimation when the ground truth is θ = π

6 . According to
Fig. 6, the TIS with size 2 × 16 shows the lowest RMSE,
while the TIS with size 2× 4 has the highest RMSE, given a
specific transmit power. To achieve an RMSE below 15◦, the
minimum transmit power for TIS with sizes of 2× 16, 2× 8,
and 2 × 4 is approximately 1 dBm, 7 dBm, and 12.5 dBm,
respectively. This observation validates the effectiveness of the
proposed received power enhancement strategy.

Fig. 5. RMSE of DoA estimation for different methods (two receive antennas
for each method, TIS size 2× 8).

Fig. 6. RMSE of DoA estimation for different TIS sizes (TIS element spacing
d = λ

4
, ground truth DoA θ = π

6
).

V. CONCLUSION

A low-complexity TIS-based DoA estimator is introduced
for single-target scenarios. The design of the system pa-
rameters is formulated as a set of quadratic programming
problems, allowing for the analytical estimation of DoA using
the proposed method. This estimator offers the advantage
of reduced hardware complexity, as it only requires power
measurement. Additionally, it has reduced computational com-
plexity compared to classic DoA estimation methods such as
the MUSIC algorithm and DFT-based approach.
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APPENDIX

Let ei ∈ R8×1 represent a vector where all entries are
zero except for the ith entry, which is set to 1, where
i ∈ {0, 1, . . . , 7}. Furthermore, let Ei,j ∈ R8×8 be a matrix
with all entries being zero except for the (i, j)th and (j, i)th
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entries, both of which are set to 1, where i, j ∈ {0, 1, . . . , 7}.
Then fo used in the objective function (19a) is given by

fo = −2e1 + 2e3. (21)

Hs, ws, and rs for s ∈ {0, 1, . . . , 19} used in con-
straint (19b) are given by

Hs =



J6−s(z)−J12−s(z)U(s−6)

4
E3,6+mod(s,2)

+
Js−7(z)U(s−1)+Js−11(z)U(s−5)

4
E2,6+mod(s+1,2)

+
J8−s(z)U(s−2)−J10−s(z)U(s−4)

4
E1,6+mod(s,2)

+
Js−9(z)U(s−3)

2
E0,6+mod(s+1,2),

if s ∈ {0, 1, . . . , 9},
−Hs−10, if s ∈ {10, 11, . . . , 19},

(22)

ws =


0, if s ∈ {0, 1, 2},
1
2
(⌊ s

3
⌋ − 1)e9−s + (−1)sJ9−s(z)e5−mod(s,2),

if s ∈ {3, 4, . . . , 9},
−ws−10, if s ∈ {10, 11, . . . , 19},

(23)

rs =


−ϵ, if s ∈ {0, 1, . . . , 8} ∪ {10, 11, . . . , 18},
−1− ϵ, if s = 9,

1− ϵ, if s = 19,

(24)

where U(x) is a Heaviside step function defined as

U(x) =

{
1, if x ≥ 0,
0, if x < 0.

(25)

Gv and cv for v ∈ {0, 1} used in constraint (19d) are

G0 = E4,4 +E5,5, (26)
G1 = E6,6 +E7,7, (27)
c0 = c1 = −1. (28)

J1,u and p1,u for u ∈ {0, 1, 2} used in constraint (19c)
when solving the 1st quadratic programming problem are

J1,0 = 0, p1,0 = −e3, (29)
J1,1 = 0, p1,1 = −e1 − 4e2 + 9e3, (30)
J1,2 = 0, p1,2 = −e1 + 4e2 + 9e3. (31)

J2,u and p2,u for u ∈ {0, 1, 2, 3} used in constraint (19c)
when solving the 2nd quadratic programming problem are

J2,0 = 0, p2,0 = e3, (32)
J2,1 = 0, p2,1 = −e1 − 4e2 + 9e3, (33)
J2,2 = 0, p2,2 = −e1 + 4e2 + 9e3, (34)
J2,3 = 0, p2,3 = e2 − 6e3. (35)

J3,u and p3,u for u ∈ {0, 1, 2, 3} used in constraint (19c)
when solving the 3rd quadratic programming problem are

J3,0 = 0, p3,0 = e3, (36)
J3,1 = 0, p3,1 = −e1 − 4e2 + 9e3, (37)
J3,2 = 0, p3,2 = −e1 + 4e2 + 9e3, (38)
J3,3 = 0, p3,3 = −e2 − 6e3. (39)

J4,u and p4,u for u ∈ {0, 1, 2, 3} used in constraint (19c)
when solving the 4th quadratic programming problem are

J4,0 = 0, p4,0 = e3, (40)
J4,1 = 0, p4,1 = e2 + 6e3, (41)
J4,2 = 0, p4,2 = −e2 + 6e3, (42)

J4,3 = E2,2 + 9E3,3 +
3

2
E1,3, p4,3 = 0. (43)
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