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Abstract—This paper introduces a novel over-the-air computa-
tion method that utilizes low-complexity transmissive intelligent
surfaces (TISs) for neural network inference. It is demonstrated
that the signal propagation model through TIS closely resembles
the fully connected layer of neural networks. And through
training, the TIS phase shifts can be determined to perform
a specific computation on radio-frequency (RF) signals. Con-
sidering the practical constraints of TIS designs with continuous
phase shifts in millimeter-wave (mmWave) frequency, we propose
a novel discretized complex-valued neural network structure and
a training method suitable for low-complexity 1-bit and 2-bit
TIS-based neural network layers. It is shown through simulation
that the proposed method achieves high accuracy on an image
classification task even for 1-bit or 2-bit TISs.

Index Terms—over-the-air, transmissive intelligent surface,
fully-connected layer, neural networks, low-complexity

I. INTRODUCTION

In recent years, the demand for machine learning (ML)
applications on Internet-of-Things (IoT) devices has been
growing. This trend emphasizes the need to conduct ML
inference locally on IoT devices, which eliminates the need
for data exchange with a centralized cloud. This demand
arises from concerns about privacy, real-time processing, and
reduced dependence on Internet connectivity. However, IoT
devices, typically featuring limited computational capability
and memory, encounter challenges in executing local ML
inference with constrained resources [1].

IoT devices commonly depend on wireless signals for
communication and sensing purposes. Given the widespread
availability of wireless communications, we introduce the
concept of over-the-air (OTA) computation to support local
ML inference, with the aim to reduce the computational burden
on IoT devices. OTA computation is used to modify RF signals
in order to simulate mathematical operations, enabling analog
computation in the radio-frequency (RF) domain and thereby
reducing the computational load on digital processors [2].

Recent studies have proposed transmissive intelligent sur-
faces (TISs), which are arrays of transmissive electromagnetic
elements capable of manipulating transmission coefficients,
for wireless communication applications [3], [4]. TISs offer
advantages of cost-effectiveness and low power consumption

⋆These authors contributed equally to this work and should be considered
co-first authors.

as the electromagnetic elements are passive. Due to the simi-
larity between one TIS and one fully connected (FC) layer in
a neural network, we utilize multiple TISs positioned closely
in sequence to emulate multiple classic FC layers. The input
of the multi-TIS structure contains necessary information for
processing, which is then processed by the multi-TIS structure
akin to passing through several classic FC layers. In other
words, the processing of FC layers can be shifted from digital
processors to the RF domain, offering the potential to decrease
the computational burden for ML inference on IoT devices.

There has been limited exploration into implementing FC
layers using OTA computation. In [5], a novel method is
proposed where a trained FC layer can be transformed into
the RF domain using a multiple input single output (MISO)
system. Here, the input symbol of the FC layer is transmitted
through multiple transmit antennas, and a pre-equalization
term at the transmitter is utilized to apply the trained weights
within the FC layer. At the receiver end, the outputs of
different neurons are implemented on different subcarriers in a
orthogonal frequency-division multiplexing (OFDM) symbol.
Nonetheless, implementation of active antenna arrays poses
challenges for IoT devices due to hardware complexity and
computational delays, especially when dealing with multiple
FC layers and an increased number of neurons. Therefore,
there is a need for a low-complexity and real-time solution
tailored to ML inference in IoT scenarios. In [6], the au-
thors proposed using TISs, originally designed for wireless
communication applications, in the implementation of deep
neural networks. That work proposed a diffractive deep neural
network using multiple transmissive metasurfaces, where each
meta-atom has amplifiers to emulate active neurons and is
capable of joint amplitude and phase configuration. In IoT
scenarios where low complexity and low power are critical
issues, TISs should be kept as simple as possible. Employing
TISs featuring 2-bit or 1-bit discretized phases along with
passive components would be advantageous in such scenarios.

In this paper, we focus on low-complexity TIS-based neural
network layers (TIS-NNLs) for IoT devices. Multiple TISs
are cascaded to mimic FC layers of a neural network. Both
the design and an efficient training algorithm for such TIS-
NNLs are proposed, where 1-bit or 2-bit phase discretization
without amplitude adjustment is assumed for the TISs. The
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Fig. 1. Comparison between classic FC layer and TIS-FC layer.

proposed TIS-NNL and training method for 1-bit and 2-
bit TISs are applicable to TISs across different frequency
bands. In this paper, we focus on TISs at millimeter-wave
(mmWave) band due to their relatively smaller array size,
which makes them more suitable for edge devices. Simulation
results show the effectiveness of 1-bit and 2-bit TIS-NNLs,
despite a performance reduction compared to ideal TIS-NNLs
where both phase and amplitude are continuously adjustable.
This highlights the feasibility of complexity reduction for ML
inference on IoT devices through use of 1-bit and 2-bit TISs.

The rest of the paper is organized as follows. The system
model of TIS-NNLs is discussed in Sec. II. The training
approach proposed for 1-bit and 2-bit TIS-NNLs is introduced
in Sec. III. Sec. IV presents the simulation results. Finally,
Sec. V concludes the paper.

II. SYSTEM DESIGN

The transmission model of TISs is introduced in this section,
followed by an overview of the proposed TIS-NNL.

A. TIS Transmission Model

The system where several TISs are placed one next to
another is considered. Let Ni denote the number of TIS
elements on TIS i. Let γi

k denote the transmission coefficient
of the kth element on TIS i and ∥γi

k∥2 ≤ 1. Moreover, let hi
m,n

denote the channel between the mth element (m ∈ [0, Ni−1])
on TIS i and the nth element (n ∈ [0, Ni+1 − 1]) on TIS
i + 1. Based on Rayleigh-Sommerfeld diffraction, hi

m,n can
be modeled as follows [7]

hi
m,n = At cos (ϕ

i
m,n)(

1

2πdim,n

− j

λ
)
e

j2πdim,n
λ

dim,n

, (1)

where At is the aperture size of one TIS element, λ is the
wavelength, dim,n is the distance between the mth element on
TIS i and the nth element on TIS i+1, and ϕi

m,n is the angle
between the z-axis and signal transmission direction from the
mth element on TIS i to the nth element on TIS i+1. Note that
it is assumed all TISs are enclosed by RF absorbing materials
such that all multipaths are eliminated.

Let Ii ∈ CNi×1 denote the output signal vector of TIS i
with the nth entry being the output signal to the nth element
on TIS i. Moreover, let Hi be the channel matrix between TIS
i and TIS i + 1, where the (m,n)th entry is hi

m,n. Then the
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Fig. 2. Illustration of TIS-NNL.

signal propagation from TIS i to TIS i + 1 can be described
by

Ii+1 = γi+1 ⊙ (HiIi), (2)

where ⊙ represent element-wise multiplication, and γi+1 ∈
CNi×1 represents the transmission coefficient vector of TIS
i+ 1 with γi+1

n being the nth entry.

B. Overview of the Proposed TIS-NNL Structure

A fundamental building block of the neural network struc-
ture is the FC layer as illustrated in Fig. 1(a), where the output
y is calculated by the weighted sum of the input vector x
offset by some bias b, then followed by a non-linear activation
function σ(·):

y = σ(Wx+ b). (3)

Multiple FC layers are often stacked into a deep neural
network (DNN) to perform complex tasks such as image
classification. The weights W and the bias b can be trained
in a supervised fashion with gradient descent techniques.
However, the DNN typically requires storage of a large number
of trained weights in the memory, and the computational and
memory complexity can be especially high for inputs with
large dimensions such as images, making it prohibitive to
implement on resource-constrained IoT devices. The main
question we address in this paper is: Is it possible to offload
the memory and computation requirements of DNN inference
to a different place while maintaining the locality of the
computation?

Interestingly, if we view Ii and Ii+1 as the input and output
of a function, the TIS model in (2) is similar to an FC
layer without bias and activation function, in which the γi+1

contain the trainable weights. Herein, we define TIS-based
fully connected layer, referred to as TIS-FC, as one TIS with
trainable transmission coefficients as illustrated in Fig. 1(b).
The layer-to-layer operation is defined in (2). Furthermore,
multiple TISs can be cascaded to mimic a multi-layer DNN
architecture, and by carefully tuning the TIS elements through
training, the TISs can also be used to perform computational
tasks in inference.

Based on this observation, we propose a system where
the low-cost resource-constrained IoT devices offload their
inference tasks to a dedicated TIS-NNL structure, in which
several TISs are placed between a transmitter and a receiver,
and the ML inference takes place in the RF domain directly
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as the wireless signals pass through the TISs, as illustrated
in Fig. 2. To inject the input into the TIS-NNL structure, a
transmitter broadcasts a continuous unmodulated signal, which
impinges on a programmable TIS whose elements are tuned
according to each entry of the input such that the outgoing
signal carries the spatial information of the input. The wireless
signals are then modified while passing through the TISs,
before reaching the receiver. This way, the computational
burden and the storage of the network weights can be offloaded
to the TIS-NNL structure from the individual IoT devices.

It should be noted that an important reason why neural
networks excel in many tasks is their ability to model complex
non-linear functions. Since adding non-linearity to passive TIS
is still an open problem, in this work, we assume the TIS-
NNL only contains linear operations. The non-linear activation
functions are applied at the output side of the TIS-NNL, i.e. to
the received signal at the receiver. And since the linear layers
benefit little from a deep network architecture, we consider a
compact TIS-NNL composed of just 2 TIS-FC layers.

III. QUANTIZATION-AWARE TRAINING FOR
LOW-COMPLEXITY TIS-NNL

There are several further considerations to be made. First,
since in the RF domain, the input, the wireless channel, and
the TIS transmission coefficients are complex numbers, the
proposed TIS-NNL mimics a special type of DNN, namely the
complex-valued neural network (CVNN) [8]. In this section,
we will first introduce the training of the complex valued TIS-
NNL. Second, the reconfigurability of each TIS element is
achieved by introducing a tunable phase shift between the
input and the output signal. While continuous phase shift
designs do exist, they usually incur larger insertion loss,
higher costs, and more complicated designs for mmWave [3].
Therefore, we propose a novel method for training a discrete-
weight TIS-NNL suitable for the low-complexity TIS designs
that use 1-bit or 2-bit phase shift.

A. Complex-Valued Neural Network for TIS-NNLs

In the TIS-FC layer described by (2), the output signal
vector Ii, channel matrix Hi, transmission coefficient vector
γi and the output signal vector Ii+1 all take on complex
values. Each TIS-FC layer has two weight matrices, γi

re and
γi
im, which represent the real part and the imaginary part of

the transmission coefficient γi of TIS i, respectively. Then the
output of TIS-FC layer i is represented by:

Ii+1 = γi+1
re ⊙ℜ(HiIi)− γi+1

im ⊙ℑ(HiIi)+

j
(
γi+1
re ⊙ℑ(HiIi) + γi+1

im ⊙ℜ(HiIi)
)
. (4)

Equation (4) can be used to combine the results into the
final complex output. Consequently, the gradient can also be
calculated separately for both parts during back-propagation.
This method is often referred to as split-CVNN approach,
which is commonly adopted in related works [5], [9].

B. Phase Discretization for TIS-NNLs

In terms of the phase reconfigurability, the existing TIS
designs fall under two categories: the continuous phase shift
design, or the discrete phase shift design. Continuous shift
designs can be achieved with analog components such as
varactor diodes. However, they usually introduce a higher
insertion loss. Furthermore, for mmWave frequencies, the cost
and the design complexity of continuous phase shift can be
much higher than discrete phase shift. Therefore for practical
reasons, many designs adopt a discrete phase shift with only 1-
bit or 2-bit phase reconfigurability. Next, we will discuss the
design of TIS-NNLs in the context of low-complexity TISs
that have only 1-bit or 2-bit phase reconfigurability.

Considering the low-complexity TIS architecture with dis-
crete phase shift, the transmission coefficient γ of one TIS
element can be represented by ejϕq , where ϕq is the phase
shift of the TIS element. For an Nq-bit phase shift design,

ϕq ∈ {0, 2π

2Nq
, ...,

2π

2Nq
× (2Nq − 1)}.

In light of the TIS-NNL design, this means γ can only take
on discrete values from the set {1,−1} for a 1-bit TIS, and
{1, j,−1,−j} for a 2-bit TIS.

Next, we propose a quantization-aware training method for
low-complexity TISs. Since in Section III-A, the complex
coefficient γ is split into the real part γre and imaginary pars
γim, we also discretize γre and γim individually.

For a 1-bit TIS, since γ is chosen from the discrete set
{1,−1}, only γre is trainable and γim is 0. The 1-bit weight
discretization function q1(·) can be simply expressed as the
binarization function based on the real part of γ:

d1(γ) = bin (γre) =

{
1, γre ≥ 0,

−1, γre < 0.
(5)

For a 2-bit TIS, both γre and γim are trainable. Then γre
and γim seperately pass through the binarization function as
follows

√
2

2

(
bin (γre) + j × bin (γim)

)
, (6)

where the factor of
√
2
2 is multiplied to normalize the amplitude

to 1. This process discretizes the weight γ to the discrete
set {ejπ/4, ej3π/4, e−j3π/4, e−jπ/4}, corresponding to phase
shifts of {45o, 135o, 225o, 315o}. However, in many existing
2-bit TIS designs [3], the phase shift is also a function of
the operating frequency, causing a common constant phase
offset θ across all switching states. Therefore, the actual dis-
crete TIS weights for a particular operating configuration can
be {ejθejπ/4, ejθej3π/4, ejθe−j3π/4, ejθe−jπ/4}. Therefore, in
general, the 2-bit TIS weight discretization function d2(·) can
be expressed as:

d2(γ) =

√
2

2
ejθ

(
bin (γre) + j × bin (γim)

)
. (7)
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Since the constant phase offset θ depends on the specific TIS
design and the operating configurations, without loss of gen-
erality, in this work we use θ = −π

4 so that the 2-bit discrete
weights are chosen from the set {1, ejπ/2, ejπ, ej3π/2}.

During training, each TIS-FC layer keeps full-precision
γre and γim, and applies weight discretization function d1(·)
or d2(·) to get discrete weights during forward propagation.
However, since the discretization function is a step function
with zero gradient everywhere, the gradient calculation cannot
back propagate to the previous layers during training. To solve
this problem, we adopt the straight-through estimator (STE)
approach, which simply bypasses the zero-gradient layers
when computing backpropagation through the discretization
function. This is a method commonly used in the hardware-
constrained machine learning literature [10], [11].

IV. EVALUATION

A basic TIS-NNL is simulated to validate the proposed
training method, using a digit classification task for perfor-
mance evaluation. The simulation setup is introduced first,
followed by a comparison of three TIS-NNL structures us-
ing continuous phase and amplitude adjustment, 2-bit phase
adjustment, and 1-bit phase adjustment, respectively.
A. Simulation Settings

To validate the proposed training approach, the TIS-NNL
illustrated in Fig. 2 is trained to conduct a digit classifica-
tion task using the UCI Digits dataset [12], which includes
handwritten digits from 0 to 9. The TIS-NNL structure has
one input layer and two TIS-FC layers (referred to as TIS-
FC1 and TIS-FC2 in Fig. 3). The RF signal transmitted from
TIS-FC2 is received by a uniform planar array of receive
antennas at the edge device. To simplify complexity of the
edge device, it is assumed that only four receive antennas are
used. The received signal is then passed to digital complex-
valued fully connected layers with activation function in the
edge device to increase dimensionality for digit classification.
In what follows, the TIS dimensions in TIS-FC1 and TIS-FC2
are selected as 16 × 16 and 8 × 8, respectively. The number
of neurons in the two complex-valued FC layers are 6 and
10, respectively. The distance between the transmitter and the
center of the input layer, the distance between centers of the
two TIS-FC layers, and the distance between the center of
TIS-FC2 and the center of the receive antenna array are all
set as 0.05 m, which is chosen based on existing stacked TIS
designs [7]. It is assumed that the operating frequency is 28
GHz, the noise power is −100 dBm, and the receive antenna
spacing and the TIS element spacing for each TIS are both λ

2 .
It is assumed that the reconfigurable input layer in the TIS-

NNL has 2-bit phase quantization, where each pixel’s value
is quantized into 4 discrete phases within the transmission
coefficients of TIS elements on the input layer. The 2-bit
input layer works well for the selected dataset which will be
demonstrated in the following sections. However, for more
complex datasets, finer quantization at the input layer may be
required to capture more information of the input data. The
neural networks used in the simulation are defined as follows.
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Fig. 3. Illustration of TIS-NNL.

• WeightC: This TIS-NNL features continuous amplitude
and phase adjustment for the two TIS-FC layers. This
TIS-NNL represents an ideal case, with the trainable
weights in TIS-FCs offering maximum flexibility.

• Weight2: The two TIS-FC layers feature 2-bit phase
quantization and no amplitude adjustment.

• Weight1: The transmission coefficients in the two TIS-FC
layers have 1-bit phase quantization. This case represents
the minimal hardware complexity but limited flexibility
for trainable weights in TIS-FC layers.

• NoTisFc: For the purpose of ablation study on the impact
of TIS-FC layers, a case without the two TIS-FC layers is
tested. Herein, the input layer maintains 2-bit phase quan-
tization, but no TIS-FC layers are utilized. Additionally,
the positions of the transmitter, input layer, and receive
antenna array on the edge device remain consistent with
other cases.

B. Validation of 1-bit and 2-bit TIS-FC Layers
To validate the proposed training method for 1-bit and 2-

bit TIS-NNLs, WeightC, Weight2, and Weight1 are trained
for the digit classification task given that the transmit power is
10 dBm. The confusion matrices for the three cases are shown
in Fig. 4. The true positive rates for WeightC, Weight2, and
Weight1 are 93.96%, 87.10%, and 79.86%, respectively.

According to Fig. 4, WeightC shows the highest clas-
sification performance, followed by Weight2 and Weight1.
This highlights the advantage of continuous adjustment of
amplitude and phase when higher complexity is allowed for
the TIS. Additionally, despite a roughly 7% decrease in the
overall true positive rate compared to WeightC, Weight2 still
achieves a rate close over 87%. Furthermore, when utilizing
Weight1, the reduction in true positive rate is approximately
7% compared to Weight2. This validates the proposed train-
ing approach for 1-bit and 2-bit TISs, further highlighting
the efficacy of employing low-complexity TIS-NNLs while
preserving satisfactory performance.

C. Effect of Transmit Power
To provide a more thorough analysis, the effect of transmit

power on digit classification accuracy is evaluated across all
four types of neural networks discussed in Sec. IV-A. The
simulation results are shown in Fig. 5. The insights derived
from this figure are summarized below:

• When comparing the performance between the baseline
case of NoTisFc and all the other cases, it is observed
that there is a significant improvement by adding TIS-
FC layers. This highlights the importance of the TIS-
FC layers in the classification task, and shows that
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Fig. 4. Confusion matrix.

Fig. 5. Transmit power vs. true positive rate for different neural networks.

classification does not solely rely on the classic FC-layers
within the edge device.

• The classification accuracy relies on the signal-to-noise
ratio (SNR) at the receive antennas of the edge device.
Despite mmWave signals suffering from high path loss
compared to other frequency bands, closely placing TIS-
FC layers together reduces the impact of path loss on the
accuracy. Additionally, an appropriately sized TIS array
can enhance SNR. As shown in Fig. 5, with the chosen
system settings, a robust true positive rate is maintained
when transmit power is above -30 dBm.

• When transmit power does not exceed -30 dBm, the true
positive rate gap between WeightC and Weight2 remains
under 8%, and the gap between Weight2 and Weight1
stays within 10%. This demonstrates the robustness and
effectiveness of the proposed 2-bit and 1-bit TIS-NNLs
for complexity reduction with varied SNR conditions.

V. CONCLUSION

In this work, we presented an OTA neural network archi-
tecture based on low-complexity TISs. We first showed that
one of the building blocks of DNNs, the fully connected
layer, can be modeled by cascaded TISs, where the TIS
phase shifts can be trained to perform specific operations on
RF signals. Considering practical constraints of TIS design
in mmWave frequencies, e.g. signal attenuation, cost and
complexity, we proposed a novel discretized complex-valued
neural network structure, the TIS-NNL, and training method
that are suitable for 1-bit and 2-bit TIS designs. In simulation,
it is demonstrated that a trained TIS-NNL is able to achieve
high accuracy on a benchmark image classification task, even
when using 1-bit or 2-bit TISs.
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