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On the Feasibility of Unilateral Interference
Cancellation in MIMO Networks

Douglas M. Blough, Paolo Santi, and Ramya Srinivasan

Abstract—The problem of MIMO feasiblity refers to whether
it is possible to support specified numbers of streams allocated to
the links of a MIMO network while cancelling all interference.
In unilateral interference cancellation, nodes account only for
interfering links that they have been assigned to cancel and ignore
other interfering links. We present several different formulations
of the unilateral MIMO feasibility problem and use these formu-
lations to analyze the problem’s complexity and develop heuristic
feasibility algorithms. We first prove that the general unilateral
feasibility problem is NP-complete. We then identify several
special cases where the problem is solvable in polynomial time.
These include when only receiver-side interference cancellation
is performed, when all nodes have two antenna elements, and
when the maximum degree of the network’s interference graph
is two. Finally, we present several heuristic feasibility algorithms
derived from different problem formulations and we evaluate
their accuracies on randomly generated MIMO networks.

Index Terms—MIMO Networks, Feasibility, Interference Can-
cellation, Boolean Satisfiability

I. INTRODUCTION

Multiple-input, multiple-output, or MIMO, technology has
been one of the most significant advances in wireless com-
munications in recent years. MIMO technology makes use of
antenna arrays, containing multiple antenna elements, at both
ends of a communication link. On a single MIMO link, diver-
sity and array gains can be exploited in order to significantly
increase the link’s capacity. When multiple MIMO links are
used concurrently on the same wireless channel, there is also
the possibility to cancel interference between links. Interfer-
ence cancellation provides increased performance benefits on
top of diversity and multiplexing gains. For example, in [30],
it was shown that, with interference cancellation, the number
of concurrent streams that can be supported when every link
interferes with every other link is twice the number that can
be supported without interference cancellation.

The problem of how to optimally allocate MIMO re-
sources across an arbitrary network configuration is extremely
challenging. While interference cancellation improves spatial
reuse, it also reduces the resources available to maximize the
data rate of each individual link through spatial multiplex-
ing and diversity exploitation. Thus, when approaching the
MIMO resource allocation problem at the network level, there
is a fundamental trade-off between boosting individual link
performance and reducing interference. This tradeoff is called
the diversity-multiplexing-interference cancellation trade-off,
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and achieving optimal performance within this trade-off space
is one of the key open problems in the field [10].

At the core of network-level MIMO resource allocation is
the feasibility problem. Informally, the feasibility problem is
defined as follows (see Section IV for a formal definition):
“given a specific interference network, the available MIMO
resources (antenna array sizes), and a stream allocation vector
(an allocation of streams to network links), can the links in the
network spatially multiplex the allocated streams while can-
celling interference between every pair of interfering links?”.
Given a stream allocation vector for a set of interfering links,
calculating a high-performing set of MIMO beamforming and
combining weights is typically done with iterative numerical
algorithms that are computationally intensive [8], [21], [36].
If feasibility can be determined before calculating weights,
one can avoid running the computation-intensive calculation
unnecessarily on infeasible vectors. This approach was used
successfully in [8] to substantially reduce the overall time
necessary to optimize MIMO networks with up to 10 links.
Feasibility testing can also be useful in MIMO stream-
controlled MAC layers [32] to ensure that poor stream choices
are not made and in joint scheduling and stream assignment
algorithms [37] to validate scheduling assignments.

Feasibility has been considered previously as an algebraic
problem [11], [26], [38]. The algebraic specification of feasi-
bility permits solutions that make use of bilateral interference
cancellation, in which both the transmitter of an interfering
link and the receiver of an interfered-with link consider the
interference when choosing their beamforming or combin-
ing weights. Most MIMO networking research has, instead,
assumed that cancellation of interference from one link to
another is specifically assigned to either the receiver of the
interfered-with link or the transmitter of the interfering link,
but not both. This approach has been referred to as unilateral
interference cancellation [8].

Herein, we consider the problem of feasibility restricted to
unilateral interference cancellation solutions. We thoroughly
investigate, for the first time, the computational complexity
of this unilateral feasibility problem. We begin by specifying
the problem in matrix form. We then show that the matrix
formulation can be recast as a Boolean satisfiability problem
with a specific structure. We also present a graph formulation
of the problem for a special case. We first prove that the
unilateral feasibility problem is NP-complete. We then proceed
to show that the problem can be solved in polynomial time for
several special cases, including 1) when interference cancel-
lation is performed only at receivers but not transmitters (or
vice versa), 2) when each link interferes with and is interfered
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by at most two other links, and 3) when the antenna array size
is two on every node. Finally, we present several polynomial-
time feasibility heuristics that arise from our different problem
formulations and we evaluate their performances on randomly-
generated MIMO networks.

II. RELATED WORK

The general feasibility problem in MIMO networks has been
shown to be equivalent to finding whether a system of mul-
tivariate polynomial (non-linear) equations is solvable [11],
[26], [38]. To be specific, if the set of links is {l1, l2, . . . , lL}
and the number of streams allocated to an arbitrary link lj is
denoted by sj , then the stream allocation is feasible if and only
if the following conditions can be simultaneously satisfied for
every receiver j:

UT
j HjiVi = 0, ∀i 6= j (1)

and
rank

(
UT

j HjjVj

)
= sj

In these conditions, Uj represents the combining weights
at receiver j, Vi represents the beamforming, or precoding,
weights at transmitter i, and Hji represents the channel
coefficients matrix between transmitter i and receiver j. The
first of these conditions states that all interference on receiver j
is in the subspace orthogonal to Uj (meaning all interference
is cancelled at receiver j) and the second condition ensures
that the resulting system matrix on link j has sufficient rank
to multiplex sj streams. Finding an exact or approximate
solution to these conditions has been the subject of extensive
research [11], [14], [16], [18], [19], [24], [25], [27], [28].
Practical solutions often minimize (rather than completely
eliminate) interference in order to try to maximize the sum
data rate across all links. The problem of determining when
these conditions are simultaneously satisfiable (the general
feasibility problem) has been solved only for the case where
every link carries one stream (the single-beam case) [22],
[38] and for specific small networks, e.g. networks with three
links [5].

The general feasibility problem allows bilateral interference
cancellation. In this paper, we restrict solutions to unilateral
interference cancellation. In this case, each transmitter or
receiver has a local system of equations to solve. In one node’s
local system of equations, links for which the node has not
been assigned to perform interference cancellation are ignored.
A related topic is interference alignment [5], [11], [25] in
which multiple transmitters align their interfering signals at a
particular receiver so that the receiver can be made orthogonal
to all interfering signals. In fact, any solution to Equation 1, by
definition, ends up with interference being aligned. Thus, we
do not consider interference alignment as a separate technique
but rather as an end goal that can be arrived at via different
techniques (unilateral vs. bilateral cancellation, for example).

With unilateral interference cancellation, each local system
of equations is linear, assuming that the weights at the other
side are fixed. As long as the number of streams multiplexed
on a node’s link plus the number of streams on interfering
links that the node is assigned to cancel does not exceed the

antenna array size of the node, and assuming a rich scattering
environment, this local system of equations is solvable at every
node [12]. In fact, in general, there are many solutions to each
of these local systems.

Since the local systems solved with unilateral cancellation
are dependent, a relevant question is whether compatible
local solutions exist that simultaneously solve each of these
systems. One approach to this, called order-based interference
cancellation (OBIC) has been studied in [17], [29]. In order-
based interference cancellation, nodes are assigned an order
for local solution and each node must cancel interference with
all nodes that precede it in the order. In this way, the weights
of the preceding nodes are fixed and known at the time of
local solution and each node’s local solution is forced to work
with prior ones. The OBIC approach restricts the feasible
stream allocation space somewhat, because it does not permit
cycles of interference cancellation assignments. However, it
guarantees that local solutions can be pieced together to form
a valid global solution and it is extremely fast because it is
a one-step (non-iterative) approach. In [8], it was shown that,
using iterative solution techniques, piecing local solutions into
a global solution can be done successfully even when cycles
exist in the interference cancellation assignments. Therefore,
we consider a unilateral interference cancellation assignment
to be feasible whenever the local systems of equations are
all solvable. This is, in fact, an implicit assumption that has
been commonly made in work on MIMO by the networking
community, e.g. [4], [12], [23], [30], [31], [35] all use the
unilateral interference cancellation model considered herein.

To our knowledge, the only existing works on computational
complexity of the feasibility problem are [26], [31]. In [26], the
authors prove two complexity results for the general feasibility
problem. First, they show that finding the maximum number
of degrees of freedom (streams) in an arbitrary network is
NP-complete. Second, they prove the stronger result that
the simpler problem of determining whether a given stream
allocation is achievable via linear schemes is NP-complete. It
is interesting to observe that, while the first technical result
of [26] can be readily applied to the unilateral interference
cancellation model considered herein1 the second result of [26]
cannot be extended to unilateral interference cancellation. A
major technical contribution of this paper is proving that the
feasibility problem remains NP-complete also in the unilateral
interference cancellation model, which is a strictly simpler
model than the linear scheme model considered in [26]. We
remark that the extension to the results of [26] presented in
this paper is non-trivial, as it is based on a completely different
construction.

Also for the same problem, [26] proves that feasibility is
solvable in polynomial time when every node has 2 antenna
elements. We proved this same result under the unilateral
interference cancellation model in [31]. In this paper, we
significantly extend our preliminary work in [31] by adding:

1The first result of [26] proves that finding the maximum degrees of freedom
is NP-complete even for the special case where all nodes have one antenna
element, meaning that no interference cancellation is possible, and therefore
it applies independently of how cancellation is carried out in the more general
case.
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• several new formulations of the unilateral MIMO feasibil-
ity problem, including formal specification as a Boolean
satisfiability problem and specification as a graph prob-
lem,

• proof of NP-completeness for unilateral MIMO feasibil-
ity,

• proof that unilateral MIMO feasibility is solvable in
polynomial time when the maximum degree of the con-
flict graph is two (based on the Boolean assignment
formulation), and

• a new unilateral feasibility heuristic for the case where
every node has at most three antenna elements (based on
the graph formulation).

Other works on MIMO networks have considered different
problems, e.g. MAC protocols and/or scheduling [1], [6],
[32], [34], [39], throughput optimization [3], [9], [12], [30],
[35], [37], and routing [13], [33]. While these works did not
explicitly consider the problem of feasibility, most assume
there exists a way to evaluate whether a given stream allocation
is feasible.

III. BACKGROUND

A. Interference Cancellation with MIMO
The availability of channel state information at both trans-

mitters and receivers allows both types of nodes to participate
in interference cancellation. For a given transmitter interfering
with a given receiver, the cancellation is done by setting the
transmitter’s beamforming weights and/or the receiver’s com-
bining weights in such a way as to make the interfering signal
orthogonal to the receiving array [2]. In the communications
literature, it is usually assumed that the interfering transmitter
and interfered-with receiver both account for the interference
while calculating their weights [11], [14], [24], [28]. However,
in the networking literature, it is more commonly assumed that
interference cancellation is assigned to either the transmitter
or the receiver, but not both [3], [4], [17], [23], [29], [30],
[31], [35]. In [8], Cortés–Peña, et al., compared these two ap-
proaches, referring to the former as bilateral interference can-
cellation and the latter as unilateral interference cancellation.
In this paper, we assume unilateral interference cancellation.
As we will show in the next section, one of the advantages
of unilateral cancellation is that feasibility can be viewed as a
combinatorial problem, in contrast with the classical algebraic
formulation [38].

The capability of a node to cancel interference is determined
by the number of antenna elements it possesses and how many
streams are multiplexed on an interfering node’s communi-
cation link. Let the number of streams spatially multiplexed
on any link lj = (tj , rj) be denoted by sj . A transmitter
(or receiver) node i with k antenna elements can spatially
multiplex si streams on its link and cancel interference at the
receivers (or from the transmitters) of a set of links denoted
by Li if and only if:

si +
∑
j∈Li

sj ≤ k (2)

Here, we assume a rich scattering environment, where the full
capabilities of the MIMO antenna array can be exploited.

Equation 2 shows that there is a trade-off between the
number of streams a node can multiplex on its own link
versus the number of interfering streams it can cancel, which
is determined by the size of the node’s antenna array. Thus,
the antenna elements are degrees of freedom that the node can
use either for spatial multiplexing or interference cancellation.
In the networking literature, this model is sometimes referred
to as the DOF (Degrees of Freedom) Model [3], [12], [29],
[31]. In the communications literature, however, “degrees of
freedom” is typically used to mean the total number of streams
that can be simultaneously transmitted across the entire net-
work [5], [15]. So as not to produce confusion between these
concepts, we try to avoid referring to Equation 2 as the DOF
Model. When unavoidable, we use the term “antenna DOFs”
to refer to the degrees of freedom associated with an individual
node, in order to distinguish the term from the total DOFs of
the network.

B. Feasibility Examples

To discuss some concrete examples, we will adopt notation
similar to that from [38]: an (M × N,S)L network is one
where every transmitter has M antenna elements, every re-
ceiver has N antenna elements, there are L links, and every
link carries S streams.

Three link networks have been well studied. Two examples
are a (4×4, 2)3 network with 3 links, 4 antenna elements per
node, and two streams per link, and a (2×2, 1)3 network with
3 links, 2 antenna elements per node, and one stream per link,
which were shown to be feasible in [5] using a cooperating
transmitter solution. Both networks are also feasible with
unilateral interference cancellation. Due to the symmetry of
these networks, each transmitter can cancel its interference on
exactly one receiver and each receiver can cancel interference
from exactly one transmitter. Thus, an interference cancellation
assignment where link 1 cancels all interference with link 2,2

link 2 cancels all interference with link 3, and link 3 cancels
all interference with link 1 satisfies Inequality 2 at every
node and cancels all interference, for both of these networks.
Using numerical solution techniques, (4×4, 2)3 networks were
also empirically shown to be feasible with both unilateral and
bilateral interference cancellation in [8].

Another example is a (2× 3, 1)4 network with one stream
per link, 4 links, two antenna elements per transmitter, and 3
antenna elements per receiver. This network is shown to be
feasible in [38] using algebraic techniques. It is unilaterally
feasible in our model, because if links are arranged in a circle,
each transmitter can cancel interference to the next receiver
and each receiver can cancel interference from the next two
transmitters and all interference is cancelled.

It should also be mentioned that all of the above examples
((4 × 4, 1)3, (2 × 2, 1)3, and (2 × 3, 1)4)) are not feasible
according to the stricter unilateral criterion of [29].

For a final example, consider (5×5, 2)4 networks. Algebraic
techniques in [38] and numerical solution in [11] suggest these
networks are feasible. However, there is no feasible unilateral

2I.e., transmitter 1 nulls at receiver 2 and receiver 1 cancels interference
from transmitter 2.
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interference cancellation assignment for these networks. To see
this, note that each node has only enough antenna elements to
cancel interference from/to one other node but not enough for
two nodes. Thus, the total number of cancellations that can
occur is 8. However, a total of 12 cancellations is necessary
to eliminate all interference (four receivers, each of which is
interfered by 3 transmitters).

C. Network Model

Our results apply to MIMO networks with non-uniform
antenna array sizes. In particular, we consider a MIMO
network with a set of L links3 given by L = {l1 =
(t1, r1), . . . lL = (tL, rL)}, where vectors Kt = [kt

1, . . . k
t
L]

and Kr = [kr
1, . . . k

r
L] are used to denote the number of

antenna elements available at the transmitters and receivers
of the links. For our study, we assume there is an interference
threshold, below which interference can safely be ignored.
Thus, if the received power of an interfering signal is below
the interference threshold, we do not consider it. Interference
relationships between links can, therefore, be described by a
directed conflict graph Gc = (Vc, Ec), where Vc is the set of
links in the network and e = (li, lj) ∈ Ec if and only if the
transmission on link li interferes with the receiver of link lj
(the received power of ti’s signal at rj is above the interference
threshold). With a slight abuse of notation, we denote both the
conflict graph and its adjacency matrix representation by Gc.
Therefore, Gc[i, j] = 1 if e = (li, lj) ∈ Ec, and Gc[i, j] = 0
otherwise. We set the diagonal elements of the adjacency
matrix Gc to 1.

Furthermore, we assume that each node is equipped with
only a single radio. Therefore, a basic constraint on concur-
rency of transmissions is that each node can participate in one
transmission at a time, either as transmitter or as receiver. A
set of links is said to be primary-interference-free if and only
if it satisfies that condition, i.e. that every node in the network
appears as an endpoint of at most one link in the set.

IV. UNILATERAL FEASIBILITY PROBLEM DEFINITION

A. Matrix Formulation

Consider a multi-hop MIMO network defined as in the
previous section. Let the network’s link set be denoted by L,
its conflict graph by Gc, and let S = [s1 . . . sL] be an L × 1
stream allocation vector containing the number of data streams
multiplexed by each link, where L = |L|.

For the stream allocation vector S to be feasible over L,
interference between every pair of links must be cancelled.
However, in cancelling interference with unilateral interference
cancellation, each node is limited by the number of antenna
elements it possesses. For a transmitter ti, this constraint can
be expressed in the following way:

si +
L∑

j=1,j 6=i

at
ijsj ≤ kt

i ∀i ∈ 1 . . . L (3)

3The communications literature on the MIMO interference channel com-
monly refers to communicating entities as “users”, while we prefer the
networking terminology of “links”.

where at
ij is a Boolean variable such that at

ij = 1 if the
transmitter of link i cancels the generated interference at
the receiver of link j, and at

ij = 0 otherwise. If we let
at

ii = 1 ∀i, and at
ij = 0 if Gc[i, j] = 0. Equation (3), across

all transmitters, can be written as:

AtS ≤ Kt , (4)

where At is a Boolean matrix containing the at
ij values.

Similarly, for a receiver ri, we can write:

si +
L∑

j=1,j 6=i

ar
ijsj ≤ kr

i ∀i ∈ 1 . . . L (5)

where ar
ij is a Boolean variable such that ar

ij = 1 if the
receiver of link i cancels the transmission on link j, and
ar

ij = 0 otherwise. As above, we let at
ii = 1 ∀i, and ar

ij = 0
if Gc[j, i] = 0. Equation (5) can then be combined across all
receivers as:

ArS ≤ Kr, (6)

where Ar is the Boolean matrix of ar
ij values.

Without loss of generality, we assume interference cancel-
lation is coordinated such that, for any link li interfering with
another link lj , either the transmitter of li nulls its signal at
the receiver of lj , or the receiver of lj cancels the signal from
the transmitter of li, but not both. Having both transmitter
and receiver cancel the same interference uses unnecessary
resources and any solution to the defined problem having such
a property can be directly transformed into a solution where
only one side cancels the interference by just setting one of
the two variables, at

ij or ar
ji, to zero. With this assumption,

matrices At and Ar are related such that any choice of At

completely determines Ar, and vice-versa, according to the
following equation:

At = Gc + I −AT
r , (7)

where I is the identity matrix.
The matrix formulation of the unilateral feasibility problem

is formally defined below.

Input: A set L = {(t1, r1), . . . , (tL, rL)} of primary-
interference-free links, a stream allocation vector S for L,
antenna element vectors Kt and Kr, and a conflict graph
Gc = (L, Ec).

Output: True if S and L are feasible, and False otherwise.
S and L are defined to be feasible if L is free of primary
interference and there exist matrices At and Ar such that:

1) AtS ≤ Kt,
2) ArS ≤ Kr, and
3) At = Gc + I −AT

r ,
where I is the identity matrix.

The matrix pair (At, Ar) is called an interference cancella-
tion (IC) assignment for the link set L. The stream vector S is
said to be feasible over L if there exists at least one valid IC
assignment (At, Ar) that satisfies Conditions 1–3 above. We
then say that (At, Ar) supports the stream vector S over L,
i.e., all interference between the links in L can be removed
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by using the available MIMO resources. Finally, the feasible
space of the network can be obtained by identifying the set
of all feasible stream allocation vectors.

B. Accuracy of Feasibility Definition

In this section, we prove that the conditions specified in
our unilateral feasibility problem definition are necessary and
locally sufficient for the calculation of beamforming and
combining weights that support the given stream allocation
vector. By local sufficiency, we mean that, for each node, if
the beamforming or combining weights of every other node
are fixed, then there is a solution to the weights of the local
node that cancels all interference to/from nodes it is assigned
and can support the allocated number of streams on its link.

Theorem 1: Existence of interference cancellation assign-
ment matrices At and Ar satisfying Conditions 1–3 in the
feasibility problem definition is necessary and locally sufficient
for a stream vector to be feasible with unilateral interference
cancellation in a rich scattering environment.

Proof:
Necessity:
Consider what happens if there are no matrices At and Ar that
satisfy all of Conditions 1–3. Thus, for every possible way
of performing unilateral cancellation, at least one condition
is violated. If Condition 1 or Condition 2 is violated, then
some node is assigned more interference than it can cancel,
according to its antenna element constraint (Inequality 2 and
(At, Ar) does not support the stream vector. If Condition 3 is
violated, then there is some interference that is not accounted
for and, again, (At, Ar) does not support the stream vector.

Local sufficiency: Assume that there are interference cancel-
lation assignment matrices At and Ar that satisfy Conditions
1–3 in the feasibility definition and that we have a rich
scattering environment.

We show local sufficiency for an arbitrary receiver under the
given assumptions. The analysis for an arbitrary transmitter is
essentially identical. Consider an arbitrary receiver ri with si

streams allocated on ri’s link. Without loss of generality, let
the transmitters that ri is assigned to cancel interference from
in Ar be t1, t2, . . . , tm, where si +

∑m
j=1 sj ≤ kr

i , because
Condition 2 is satisfied. Let the beamforming weights of tj be
Vj and let the interference channel for ri be defined as:

Hint = [H1,iV1|H2,iV2| · · ·Hm,iVm]

The interference channel contains the combined interference
from all transmitters that rj is assigned to cancel. The local
problem is now to calculate combining weights Ui such that:

UT
i Hint = 0 (8)

and
rank(UT

i Hi,iVi) = si

Now, UT
i is of size si× kr

i and Hint is of size kr
i ×

∑m
j=1 sj .

Thus, the right hand side of Equation 8 is a matrix of all 0’s
of size si ×

∑m
j=1 sj . From the preceding dimensionalities,

Equation 8 is a system of si×
∑m

j=1 sj equations with si×kr
i

unknowns. This system has more unknowns than equations,

because kr
i ≥ si +

∑m
j=1 sj >

∑m
j=1 sj . Thus, in a rich

scattering environment, where Hint is full rank, there are
multiple solutions to Equation 8. The difference between the
number of equations and unknowns is, in fact, si, which means
that Equation IV-B is also satisfied.

Some discussion of Theorem 1 is warranted. This is not an
exact characterization of unilateral feasibility, because there
might be some cases where local sufficiency at every node
does not yield an overall solution. In fact, an exact characteri-
zation is not possible since there are always choices of channel
matrices that prevent solution even where MIMO resources
are sufficient everywhere for interference cancellation. This
is true even when working with the direct algebraic system
of Equation 1 as pointed out in [38]. Nevertheless, it is
still important to understand the complexity of applying this
characterization to real systems, since it has been shown to
have good agreement with solutions generated by numerical
techniques, as pointed out in Section III-B, and it has been
widely adopted in the MIMO networking community [4], [12],
[23], [30], [31], [35]. Furthermore, if feasibility algorithms are
used to prune the search space of possible stream allocation
vectors for maximizing throughput, as was done in [8], if one
or two infeasible vectors are evaluated due to an unlucky com-
bination of channels, they will be rejected for low throughput
and result in only a slight increase in execution time. In this
situation, it is preferable to consider too many possibilities
than to have a conservative model, which rejects some feasible
vectors that might result in very high throughput.

C. Unilateral Feasibility as a Boolean Satisfiability Problem

The matrix formulation of unilateral feasibility suggests that
it is related to Boolean satisfiability. The At and Ar matrices
contain sets of Boolean variables that must satisfy certain
constraints (Conditions 1–3 in the matrix formulation). We
call Condition 3 the interference constraint, because it says
that interference between every pair of interfering links must
be cancelled. We call Conditions 1 and 2 the antenna element
constraints, because they limit the number of streams that can
be multiplexed and cancelled by a given node based on the
number of antenna elements of the node.

In a Boolean satisfiability problem, values must be found
for a set of Boolean variables, which simultaneously satisfy a
set of disjunctive clauses. Thus, to formulate feasibility as a
satisfiability problem, Conditions 1–3 must be rewritten as sets
of disjunctive clauses. Condition 3, the interference constraint,
is relatively straightforward. It says that for every edge (i, j)
in the conflict graph, meaning for every link li that interferes
with any other link lj ,

at
ij ∨ ar

ji (9)

This simply states that either the transmitter of li or the
receiver of lj must cancel the interference from li to lj . This
constraint leaves open the possibility that both at

ij and ar
ji

are set to true. However, we reiterate that if there is a feasible
solution with both these variables set to true, then there is also
a feasible solution with only one of them set to true. Taking
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t1

t5t4t3t2

1

1 1 1 1

r1

r5r4r3r2

Fig. 1. Example used to Illustrate Antenna Constraint in Disjunctive Form

Expression 9 over all edges of the conflict graph yields a set
of disjunctive clauses that together are equivalent to Condition
3 of the matrix formulation.

The antenna element constraints are not as straightforward.
The exact set of clauses corresponding to one of these con-
straints, given by Equation 3 or Equation 5, depends on the
conflict graph and the stream allocation vector. Consider a
simple example for one transmitter, depicted in Figure 1. In
this figure, t1 causes interference only on r2, r3, r4, and r5,
but no other receivers. Assume that all links in the figure are
allocated one stream in the stream allocation vector and that
t1 has 3 antenna elements. Then, Equation 3 simplifies to:

5∑
j=2

at
1j ≤ 2

This equation states that at least two of the at
1j variables must

be false (zero). Leaving off the t superscript for simplicity,
we can rewrite this equation as a Boolean expression in the
following way:

a12 a13 ∨ a12 a14 ∨ a12 a15 ∨ a13 a14 ∨ a13 a15 ∨ a14 a15

Applying DeMorgan’s Theorem to this and simplifying yields
the following set of disjunctive clauses that are equivalent to
this expression:

a12 ∨ a13 ∨ a14 ∨ a15 ,

a12 ∨ a13 ∨ a14 ,

a12 ∨ a13 ∨ a15 ,

a12 ∨ a14 ∨ a15 ,

a13 ∨ a14 ∨ a15

The first clause dictates that at least one of the a1j variables
must be false. Setting one of the variables to false makes three
of the remaining clauses true. This leaves the fourth clause to
be satisfied, which requires one of the remaining a1j variables
to be false. Thus, these clauses together ensure that at least
two of the a1j variables are set to false (zero).

Generalizing this example can generate a set of disjunctive
clauses for every transmitter and every receiver in the network.
For an arbitrary transmitter ti, the procedure is given by
Procedure FindAntennaConstraintClauses, as follows:

Procedure FindAntennaConstraintClauses
1) enumerate the minimal combinations of interfered-with

receivers, such that setting those at
ij variables to zero

will allow ti to cancel its interference on the remain-
ing receivers while staying within the antenna element
constraints (this depends on kt

i , si, and the sj’s of the
receivers),

2) use DeMorgan’s Theorem to convert the sum of products
expression from Step 1 into a product of sums expres-
sion,

3) each “sum” term from Step 2 represents one disjunctive
clause in the Boolean satisfiability problem to be solved.

The procedure for a receiver is completely symmetric to this.
The Boolean satisfiability formulation of the unilateral fea-

sibility problem is formally defined below.

Input: A set L = {(t1, r1), . . . , (tL, rL)} of primary-
interference-free links, a stream allocation vector S for L,
antenna element vectors Kt and Kr, and a conflict graph
G = (L, E).

Output: True if S and L are feasible, and False otherwise.
S and L are defined to be feasible if there is an assignment
of values to Boolean variables at

ij and ar
ij , ∀i, j ∈ [1, . . . , L],

that simultaneously satisfies the following Boolean clauses:

at
ij ∨ ar

ji,∀(li, lj) ∈ E

and all clauses generated according to Procedure FindAnten-
naConstraintClauses for each ti and rj that occur in L.

One question to be answered is how many disjunctive
clauses can be produced by Procedure FindAntennaConstraint-
Clauses for an arbitrary node in the worst case? The number
of aij variables to be considered is determined by the degree
of the node in the conflict graph. For conflict graphs with high
degree, say on the order of L, the number of clauses generated
could be exponential in L. However, for conflict graphs with
lower degree, the number is smaller. In particular, if the
conflict graph maximum degree is bounded by a constant, the
number of clauses per node is a constant and, if the conflict
graph maximum degree is O(log L), the number of clauses
per node is linear in L, so that the total number of clauses
generated is polynomial.

D. Restricted Unilateral Feasibility as a Graph Problem

If we add additional restrictions to the unilateral feasibility
problem, it becomes possible to formulate it as a simple
graph problem. For this formulation only, we assume that no
spatial multiplexing is performed, i.e. that every link is either
inactive or carries exactly one stream. We also assume that the
conflict graph is symmetric, i.e. if link li’s transmission causes
interference on the receiver of link lj , then the transmission
of lj also causes interference on the receiver of li. Next,
we assume that every node has the same number of antenna
elements, which we denote by k. Finally, we assume that
interference between two links that have an edge between them
in the conflict graph is completely handled by one link or the
other. By this, we mean that if li handles the interference,
then the transmitter of li nulls its signal on the receiver of lj
and the receiver of li cancels interference coming from the
transmitter of lj . Instead, if lj handles the interference, then
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l1 l2 

l3 

l5 l4 

Fig. 2. Example of a Valid Conflict Graph Orientation for the Restricted
Feasibility Problem with k = 3

the transmitter of lj and the receiver of lj are the two nodes
assigned to do the interference cancellation.

With this restricted version of the problem, we can consider
an IC assignment as an orientation of the conflict graph. In the
example where li and lj have an edge in the conflict graph and
li is assigned to cancel the interference between the two links,
then the edge in the conflict graph is directed from li to lj .
If lj is assigned to cancel the interference, then the opposite
orientation is given to the conflict graph edge. In this manner,
the problem of whether a stream vector of all 1’s is feasible
is equivalent to asking whether there is an orientation of the
conflict graph such that every edge is given a direction and
no vertex in the conflict graph has more than k − 1 outgoing
edges.

The graph formulation of the restricted unilateral feasibility
problem is formally defined below.

Input: A set L = {(t1, r1), . . . , (tL, rL)} of primary-
interference-free active links, a stream allocation vector S =
[1, 1, . . . , 1] for L, an antenna array size k, and an undirected
conflict graph Gc = (L, Ec).

Output: True if S and L are feasible, and False otherwise. S
and L are defined to be feasible if there is an orientation of
Gc, call it Gd, in which each edge of E is assigned a direction
and ∀li ∈ L, dout(li) < k, where dout(li) is the out-degree of
li in Gd.

An example of an orientation showing feasibility of the all
1’s stream allocation vector for a network with 5 active links
where every node has 3 antenna elements is given in Figure 2.
In this example, l1 and l5 do not interfere and l2 and l4 do
not interfere, but all other pairs of links interfere. Note that
no vertex in the graph has more than 2 outgoing edges in the
given orientation, meaning that every node satisfies its antenna
element constraint.

The general unilateral feasibility problem can also be con-
sidered as a type of graph problem, although it is not as simply
and naturally specified as when the restrictions imposed in
this subsection are added. As long as the conflict graph is
symmetric and all work in cancelling interference between
a pair of links is done completely by one link, we can still
view an interference cancellation assignment as an orientation
of the conflict graph. We can weight the directed edges by
the number of streams that must be cancelled and we can
weight each vertex by the number of streams multiplexed on
the corresponding link. The antenna element constraints then
dictate that the weight of a vertex plus the sum of the weights

of all of its outgoing edges does not exceed the number of
antenna elements on the transmitter and receiver of the link.
If the conflict graph is asymmetric, then it is represented as a
directed graph. We can still use a graph model in this situation
but instead of orienting edges, we must think of marking them
in some other way to indicate which link is responsible for
cancelling interference. If we do not assume that all of the
work is done by only one of the links in an interfering pair,
then the conflict graph model is not sufficient.

In the remainder of the paper, we will only use the graph
model when considering the restricted problem as outlined in
this subsection.

V. COMPLEXITY OF UNILATERAL FEASIBILITY

In this section, we evaluate the complexity of checking
the unilateral feasibility of a stream allocation vector in a
MIMO network. Section V-A contains the NP-completeness
result, while the subsections that follow it present special cases
solvable in polynomial time, along with their analyses.

A. General Case

Theorem 2 states that the general unilateral feasibility
problem is NP-complete. The proof of this result can be found
in the Appendices, which are available on-line.

Theorem 2: Evaluating feasibility of a stream allocation
vector S and a link set L over an arbitrary MIMO network is
NP-complete.

B. Receiver-Side Cancellation

When CSI is available only at the receivers and not at the
transmitters, then only receiver side interference cancellation
can be done. Theorem 3 states that, in this special case, the
feasibility problem has polynomial time complexity.

Theorem 3: Evaluating feasibility of a stream allocation
vector S and a link set L over a MIMO network with receiver-
side-cancellation only can be done in polynomial time.

The proof of Theorem 3 can be found in [31] and is not
repeated here. The essence of it is that only having interference
cancellation on one side removes the choice of how to handle a
given interference relationship. Thus, one can simply assign all
interference cancellation to receivers and then check whether
the antenna element constraints are satisfied at every node.
Since this check can easily be done in polynomial time, the
result follows. In a similar fashion, it can be shown that
checking feasibility for the transmitter-side-cancellation only
case also has polynomial time complexity.

C. Conflict Graph Maximum In-Degree and Out-Degree of
Two

In this section, we consider the special case where no link
interferes with, or is interfered by, more than two other links.
This results in a conflict graph with maximum in-degree and
maximum out-degree of two. We use the Boolean satisfiability
problem formulation in analyzing this special case.

Theorem 4: If the conflict graph has maximum in-degree
and maximum out-degree of two, then all clauses in the
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Boolean satisfiability problem formulation of unilateral fea-
sibility have at most two literals.

Proof: It is direct to see from the Boolean satisfiability
formulation, that the clauses resulting from the interference
constraint all contain two literals. It therefore remains to show
that the clauses resulting from the antenna element constraints
contain at most two literals.

Consider an arbitrary transmitter ti. Since the out-degree
of li is at most two, ti interferes with receivers on at most
two other links. In the worst case, assume that ti interferes
with two receivers rj and rk. The choices that exist for the
variables at

ij and at
ik depend on kt

i and the numbers of streams
carried by li, lj , and lk, which are fixed by the given stream
allocation vector S. There are three cases to consider.
Case 1: ti has enough antenna elements to cancel its interfer-
ence at both rj and rk simultaneously

In this case, any combination of values for at
ij and at

ik is
possible and no clauses are generated for the antenna element
constraints.

Case 2: ti cannot cancel interference at one of the two
receivers, regardless of what it does with the other receiver

Without loss of generality, assume that ti cannot cancel
interference at rj , regardless of the value of at

ik. Thus, sj is
greater than kt

i−si, so ti simply does not have enough antenna
elements to multiplex si streams and simultaneously cancel
interference at rj . This adds the clause at

ij with one literal,
which simply says that at

ij must be zero (false), independent of
at

ik. (Similarly, if ti cannot cancel interference at rk, regardless
of at

ij , the clause at
ik is added.)

Case 3: ti cannot cancel interference at either receiver
This is actually Case 2, happening simultaneously at both

rj and rk. Here, we simply have two clauses with one literal
each, at

ij and at
ik.

Case 4: ti can cancel interference at either of the two
receivers individually but not at both simultaneously

In this case, the values of at
ij and at

ik that satisfy the antenna
element constraints are given by the following sum of products
expression:

at
ij at

ik ∨ at
ij at

ik ∨ at
ij at

ik

In other words, the only invalid combination is when both at
ij

and at
ik are true. Using the procedure outlined in Section IV-C,

this is converted to the following product of sums expression:

at
ij ∨ at

ik

Thus, one clause with two literals is added in this case.
In each of the above cases, the number of literals appearing

in the clauses added by the antenna element constraint at each
transmitter is at most two. The exact same argument can be
used to show that the maximum number of literals in a clause
added by the antenna element constraint at each receiver is at
most two. Therefore, every clause in the satisfiability problem
formulation has at most two literals.

Corollary 1: Evaluating feasibility of a stream allocation
vector S and a link set L over a MIMO network, where
the conflict graph has maximum out-degree and maximum in-
degree of two, can be done in polynomial time.

From Theorem 4, feasibility with a conflict graph maxi-
mum degree of two is an instance of the 2SAT problem.
Furthermore, as discussed in Section IV-C, the total number
of clauses in the satisfiability problem is polynomial when
the graph degree is bounded by a constant. Since 2SAT can
be solved in polynomial time when the number of clauses is
polynomial [7], the corollary follows.

D. Antenna Array Size k = 2
Another interesting special case is when every node in

the network has k = 2 antenna elements. For this case,
we also assume that the conflict graph is symmetric and
that all interference cancellation between two interfering links
is handled entirely by one of the two links. Checking the
unilateral feasibility of such a MIMO network can be done in
polynomial time, even when transmitters and receivers are both
capable of performing IC and independent of the maximum
degree of the conflict graph. This result is stated in Theorem 5.
The proof of this theorem uses the graph formulation of the
unilateral feasibility problem.

Theorem 5: Evaluating feasibility of a stream allocation
vector S and a link set L over a MIMO network, where every
node has k = 2 antenna elements and the conflict graph is
symmetric, can be done in polynomial time.

Proof: The proof is constructive, i.e., we describe a
polynomial time algorithm that, given inputs S and L, returns
True if and only if stream allocation vector S is feasible
for link set L and returns False otherwise. The algorithm
first checks whether L is primary-interference-free (as in the
proof of Theorem 3). If L is not primary-interference-free, the
algorithm returns False, otherwise it continues.

Let the conflict graph of the network be Gc = (L, Ec). We
first eliminate links with zero or two streams. Inactive links
(with zero streams) do not impact the problem and can be
omitted from L and Gc. Let L2 = {li ∈ L : si = 2}, i.e. L2

is the set of links that carry two streams. The algorithm checks
whether any link in L2 interferes with any other active link.
If such a link is found in L2, the algorithm returns False.
If, instead, all links in L2 are isolated vertices in Gc, the
algorithm drops all links in L2 from Gc.

Note that, if the algorithm has not returned False at this
point, we are left with an instance of the graph problem
formulation given in Section IV-D. This is because all links
that remain at this point carry exactly one stream and all other
assumptions match those presented in Section IV-D.

Denote the remaining links, all carrying one stream, by L1.
Denote by G1 the subgraph of Gc induced by node set L1,
i.e. the conflict graph made up of only the links carrying one
stream. Let G1, . . . , Gh be the connected components of graph
G1. The algorithm checks whether for each Gi = (Li, Ei),
inequality |Ei| ≤ |Li| is satisfied; if the inequality is not
satisfied for any of the Gi, the algorithm returns False,
otherwise it returns True and terminates.

Clearly the above algorithm has polynomial time complex-
ity. We now prove that, when the algorithm returns False on
input S and L, the stream allocation vector S is infeasible for
L. To prove this, we observe that the algorithm returns False
if only if one of the following conditions hold:
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i) Set L is not primary-interference-free.
ii) L2 contains at least one link, which is not an isolated

vertex in Gc; denote such a link by li, and suppose
it is adjacent to link lj in the conflict graph. Since li
carries two streams and every node has only two antenna
elements, ti and ri cannot perform any interference can-
cellation. Link lj carries at least one stream, and tj and
rj therefore cannot cancel interference with li without
violating their antenna element constraints (since k = 2
for every node). Hence, Condition (3) for feasibility
cannot be satisfied for links li, lj unless Conditions (1)
and (2) are violated. This implies that stream assignment
S is not feasible for link set L.

iii) There exists a connected component Gj of graph G1

such that |Ej | > |Lj |. A simple counting argument can
be used to prove that S is not feasible for L: for each
link l ∈ Lj , one antenna DOF is available both at the
transmitter and at the receiver side. Thus, 2|Lj | antenna
DOFs in total are available to cancel interference within
Gj . On the other hand, cancelling interference between
any two adjacent links li, lj in the conflict graph requires
using 2 antenna DOFs: one for cancelling interference
generated by ti on rj , and one for cancelling interference
generated by tj on ri. Thus, 2|Ej | antenna DOFs in total
are needed to cancel all interference between the |Lj |
links in Gj . Hence, |Ej | > |Lj | implies that not enough
MIMO resources are available within Gj to completely
cancel interference, which proves that stream allocation
vector S is infeasible for L.

The next step is to prove that whenever none of conditions
i), ii), iii) hold on given input S,L, then stream allocation
vector S is feasible for L, which implies correctness of
our feasibility evaluation algorithm, which returns True in
this situation. We prove this by showing a construction (IC
assignment) that makes S feasible for L when none of the
conditions i), ii), iii) are satisfied. This construction uses the
graph model of the feasibility problem and orients edges of
the conflict graph, as discussed in Section IV-D.

If condition iii) is not satisfied, then |Ej | ≤ |Lj | for each
connected component Gj of G1. Observe that IC assignments
for the Gjs can be built independently, since links in different
G1 connected components do not interfere with each other.
Hence, it suffices to show the construction for a single Gj ,
making the overall construction the result of the composition
of IC assignments for the individual connected components.
Given that Gj is connected and |Ej | ≤ |Lj |, the topology
of Gj can take only one of the four following forms: a) a
single vertex, b) a tree, c) a simple cycle, d) a connected
graph containing a single simple cycle.

If Gj is of type a), no interference cancellation is required.
If Gj is a tree (type b)), perform the following procedure:

1. Designate some vertex in Lj to be the root.
2. For every edge (li, lk) ∈ Ej , where lk is deeper in the

tree i.e. li is the parent and lk is the child, direct the
edge from lk to li.

Since every vertex in a tree (except the root) has a single
parent, each non-root node in Gj is assigned one outgoing

edge. Since every edge is given a direction in this procedure
(all interference is covered) and every node has at most k−1 =
1 outgoing edges, the stream allocation is feasible within Gj .

Now consider case c). Here, it is sufficient to give either
clock-wise or counterclock-wise orientation to all edges in Ej .
Again, every edge is oriented and no node has more than one
outgoing edge. Therefore, this construction makes S feasible
(when restricted to Gj).

Finally, consider case d). In this case, there is a single cycle
with one or more tree components hanging off of the cycle. At
each cycle node where a tree component hangs off, the node
has degree greater than 2 in G1 (two cycle edges and one or
more edges into the tree component). We start by designating
every vertex in Lj that is contained in the simple cycle and
has degree higher than 3 as the root of the tree component
it belongs to. Edges are then oriented by combining the
construction for case b) within the trees, with the construction
for case c) along the single simple cycle contained in Gj . It
is clear that all nodes that are not root nodes still have at most
one outgoing edge, as per the part b) and c) constructions.
Note also that since the root nodes do not have parents in
the part b) construction, they are not assigned any outgoing
edges during that construction. Furthermore, each root node
is assigned one outgoing edge in the cycle construction from
part c). Therefore, these nodes also have one outgoing edge
in the final oriented version of Gj . Since, again, all edges are
covered and every node has at most one outgoing edge, the
stream allocation is feasible within Gj .

Since these constructions are applied independently within
each connected component and the components do not have
any edges between them, every node in the overall oriented
version of G1 has at most one outgoing edge and the stream
allocation is feasible overall.

To summarize, a stream allocation for a network with
symmetric conflict graph Gc and with two antenna elements
on every node is feasible if and only if all links carrying two
streams are isolated vertices in Gc and every other connected
component of Gc contains at most one simple cycle (or
equivalently, has an average vertex degree of at most two).

VI. FEASIBILITY HEURISTICS

A. Simple Greedy and Extended Greedy

Given that the general unilateral feasibility problem is NP-
complete, heuristics for checking feasibility are necessary.
Perhaps the most obvious heuristic is to check whether all
interference can be eliminated by greedily allocating MIMO
resources for interference cancellation. One possible imple-
mentation of the algorithm is as follows. Sort the links in order
of non-increasing number of allocated streams. Begin with
the first link and use its antenna DOFs to cancel interference
on the links with which it interferes one by one until all
its resources are used. Then, move on to the next link and
continue until all interference is eliminated or all resources
are exhausted, whichever comes first. If all interference can
be removed with the available resources in the network, the
allocation vector is declared to be feasible. We refer to this
approach as Algorithm Simple Greedy. The time complexity of
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Input: Stream allocation vector S, link set L, Kt, Kr , conflict
graph Gc = (Vc, Ec)
Output: feasible ∈ { true, false}, At, Ar

1: Order S in non-increasing fashion. Permute vertices in Gc

accordingly.
2: At = Ar = IL×L

3: for i = 1 → L
4: if < At(i, 1 : i), S1:i > ≤ Kt

i , distribute 1′s in At(i, Gc(i, i +
1 : L)) greedily, giving equal priority to columns of equal weight
such that < At

i, S > ≤ Kt
i

5: if < Ar(i, 1 : i), S1:i > ≤ Kr
i , distribute 1′s in Ar(i, Gc(i, i+

1 : L)) greedily, giving equal priority to columns of equal weight
such that < Ar

i , S > ≤ Kr
i

6: Ar(m, i) = 1−At(i, m) and At(m, i) = 1−Ar(i, m) ∀m ≥
i + 1 : (i, m) ∈ Ec

7: end for
8: if (AtS ≤ Kt ∧ArS ≤ Kr) then feasible = true, else feasible

= false

Fig. 3. Algorithm Extended Greedy

Algorithm SimpleGreedy is dominated by the time to initially
sort the stream allocation vector and it is therefore O(L log L),
where L is the number of active links.

In experimenting with Algorithm Simple Greedy, we found
that it tends to concentrate resources among small groups
of nodes, rather than more evenly distributing the resources
across links in the network, and this causes it to frequently
label feasible vectors as infeasible. To remedy this problem,
we developed the algorithm in Figure 3, which we refer to as
Algorithm Extended Greedy. This algorithm, when consider-
ing multiple candidate links, all carrying an equal number of
streams, on which to cancel interference, chooses a target link
in a way that tends to produce a better distribution of resources
and outperforms Algorithm Simple Greedy. In Figure 3, note
that the standard notation < V, W > is used to represent the
inner product of vectors V and W and that I is the identity
matrix. The time complexity of Algorithm Extended Greedy
is O(L2), because each operation inside the for loop requires
O(L) time and there are L iterations of the loop.

Both Algorithm Simple Greedy and Algorithm Extended
Greedy are safe, in that they always label infeasible vectors
as infeasible. However, they are non-optimal in that they each
label some feasible vectors as infeasible. The accuracy of the
two heuristics is evaluated in Section VI-D.

B. Distributed Implementation

Algorithms SimpleGreedy and ExtendedGreedy can be im-
plemented fairly simply in a distributed fashion using a token
passing algorithm among the transmitters of the links on
which a stream allocation is being considered. Any node
that initially has the token can select the links on which it
wants to cancel interference according to the SimpleGreedy
or ExtendedGreedy method. When some node, other than the
first, receives the token, it can also apply the greedy technique,
being sure to first cancel interference on all links it has a
conflict with that have already selected their cancellations but
did not choose to cancel with this node’s link. At the end of the
token passing cycle, if all necessary cancellations have been

assigned, the stream allocation vector is feasible. Otherwise,
the last node in the cycle labels it as infeasible.

A problem with token passing is that it serializes feasibility
calculation. Next, we sketch an alternate approach that is
parallel but more complex due to looser coordination between
cancellation assignments of different nodes. Nodes can start
feasibility checking at any point, possibly in parallel with
other nodes. A node that starts the checking greedily constructs
an interference cancellation assignment for itself and sends it
to all of its neighbors, e.g. with a single broadcast message.
After initiation, the algorithm basically proceeds like the token
passing algorithm. By this, we mean that nodes that do can-
cellation assignments factor in all assignments that they have
received from other nodes by that time, which might dictate
that they perform certain cancellations and then they greedily
assign their remaining resources according to SimpleGreedy
or ExtendedGreedy. After choosing an assignment, a node
combines it with all other information it has received about
assignments of other nodes and broadcasts the information to
its neighbors. Nodes also rebroadcast new information they
receive from other nodes so that all cancellation assignments
are eventually disseminated to all nodes.

With this approach, because the cancellation assignments
are only loosely coordinated, it could happen that two links i
and j assign themselves to cancel interference with each other.
Without loss of generality, assume i < j. Once a node that is
part of link j detects that it and link i have chosen to cancel
interference on each other, link j (the higher-numbered link)
will replace its cancellation of i with cancellation of a higher-
numbered link. Since these redundancies are always resolved
by moving resources to higher-numbered links, eventually the
resolution process will end. If all necessary cancellations have
been assigned after a sufficient number of steps has elapsed
for all nodes to do cancellation assignments and resolve
redundancies, then the stream allocation vector is feasible.
Otherwise, any node that detects missing cancellations at that
point can label the vector as infeasible.

C. isFeasibile3 Heuristic for k ≤ 3

Consider a MIMO network where every node has k = 3
antenna elements. In this section, we extend the approach of
Section V-D, which solved the k = 2 case in polynomial time.
For k = 3, this approach does not yield a polynomial-time
exact solution but it does lead to an efficient heuristic. Since
the Section V-D approach uses the graph formulation of the
feasibility problem, we adopt the assumptions of that model in
this section, as well. In particular, we assume the conflict graph
is symmetric. As in the proof of Theorem 5, we include in the
undirected conflict graph G only active links that are not at full
capacity. Thus, we eliminate links with zero or three streams.
For feasibility, all links with three streams must be isolated
vertices in G, which can be easily checked in polynomial time.

We begin by analyzing the case where the active links not
at full capacity all carry one stream. This matches the problem
setting of Section IV-D and, following the formulation in that
section, the problem can be stated as:
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Can the edges of the conflict graph be directed such that every
vertex has at most two outgoing edges?

Theorem 6 states that checking feasibility when k = 3 and
where every link carries exactly one stream, is equivalent to
checking whether the conflict graph G contains a subgraph of
average degree greater than 4.

Theorem 6: Let D1 be the property of a graph G = (V,E),
whereby every vertex induced subgraph of G has an average
degree at most equal to four. D1 is necessary and sufficient
for the edges of G to be directed such that every vertex has
at most two outgoing edges.

Proof: Necessary condition: Assume the edges of G
can be directed such that every vertex has at most two
outgoing edges. We will prove that Property D1 holds, i.e.
that all subgraphs of G have average degree no greater than
4. Consider an arbitrary subgraph G1 with n1 vertices. Since
in some complete labeling of G each vertex has at most two
outgoing edges, the total number of edges in the subgraph can
be at most 2n1. Since each edge is incident on two vertices,
the average degree is at most 2·2n1

n1
= 4.

Sufficient condition: Suppose the given graph G satisfes
D1. We prove the sufficient condition through construction, by
determining a direction for all of G’s edges such that every
vertex has at most two outgoing edges. The construction is
described in Procedure Proc I, which is given after the fol-
lowing definitions. The quantities defined by these definitions
are dynamic, i.e., they are recalculated dynamically as the
construction proceeds.

1) Let the quantity nv denote the number of remaining
edges that can be marked as outgoing from vertex v
in V . Initially, nv = 2 for all vertices v. At any
intermediate point during the construction, this value
equals two minus the number of edges that have already
been marked as outgoing from v. The construction does
not allow more than 2 edges to be marked as outgoing
for any vertex and, therefore, 0 ≤ nv ≤ 2 always holds.
4

2) Define for any subgraph Gsub = (Vsub, Esub) of G the
quantity ED (ED stands for ‘extra DOF’s’). Let Eum ⊆
Esub be the set of edges of Gsub that are not yet marked
with a direction.

ED(Gsub) =
∑

v∈Gsub

nv − |Eum|

Property D1 implies that ED is greater than equal or to
zero for every subgraph, at the beginning of Procedure
Proc 1.

3) Define for any edge (v, v′) in E, the boolean quantity
DO (DO stands for ‘directable outwards’) :

DO(v, v′) =
∧

∀Gsub

(
ED(Gsub) > 0

)
where Gsub is a vertex-induced sub-graph of G/v′ such
that it contains vertex v and

∧
refers to the Boolean

AND operation.

4The “number of remaining edges nv that can be marked as outgoing from
v”, refers to the number of DOF’s that are available for interference suppresion
at the transmitter and at the receiver of link v in the MIMO feasibility problem.

The DO definition is illustrated in Figure 4. If all subgraphs
containing v but not v′ have “extra DOFs”, then it is safe to
direct the edge (v, v′) outwards.

ED1

v'

v

ED2

ED3

ED4

DO(v, v’) = (ED1 > 0) ∧ (ED2 > 0) ∧ (ED3 > 0) ∧ (ED4 > 0)

Fig. 4. Illustration of definition: DO(v, v′)

Keeping the above definitions in mind, apply Procedure Proc
1 to a graph G = (V,E) which satisfies D1. By definition,
every subgraph of G has an ED value greater than equal to
zero at the beginning of the procedure.

Begin Procedure Proc I
Input: G = (V,E) satisfying Property D1

Output: f : E → {0, 1, . . . , n}, where f((ui, uj)) = i indi-
cates that the edge is directed from ui to uj and f((ui, uj)) =
j indicates that the edge is directed from uj to ui

1. Repeat: If any vertex vi in V has all but p edges marked
as incoming, where p ∈ {1, 2}, mark these p edges as
outgoing, i.e., f((vi, vj)) = i for these edges, and set
nvi = nvi − p
Until: No such vertex exists

2. Vn = the set of all vertices with at least one unmarked
edge

3. while there exists a vertex vi in Vn with nvi
= 2 (i.e.

with no outgoing edges assigned)
3a. Let vj , j = 1, 2, 3... be the neighbors of vi connected

by unmarked edges
3b. j = 1
3c. while (nvi

= 2)
if (DO(vj , vi) = TRUE)

Mark (vi, vj) as outgoing, i.e. f(vi, vj) = i
nvi = nvi − 1

else
Mark (vi, vj) as incoming, i.e. f(vi, vj) = j
nvj = nvj − 1

end if
if (vi has only two unmarked edges and nvi = 2)

Mark the remaining two edges incident to vi as
outgoing, i.e. f((vi, vj)) = i for these two edges

nvi = nvi − 2
end if
j = j + 1

end while
3d. Repeat: If any vertex vi in V has all but p ≤ nvi

edges marked as incoming, mark these p edges as
outgoing, i.e. f((vi, vj)) = i for these edges, and set
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nvi = nvi − p
Until: No such vertex exists

3e. end while
4. while there exists a vertex vi in Vn with nvi = 0

mark the remaining unmarked edges incident to v as
incoming, i.e., f(vi, vj) = j for these edges
end while

5. Let G′ = (V ′, E′) be the graph that results from
removing all marked edges from G and removing all
vertices that have every edge marked

6. Direct the edges of G′ according to the procedure used
for the case k = 2.

End Procedure
The analysis of this procedure, including the derivations of

the following results, is presented in the Appendices, which
are available on-line.

Lemma L1: (DO(v, v′) ∨ DO(v′, v)) is always equal to
TRUE at every iteration of Step 3c.

Invariant 1 - ED ≥ 0 for every subgraph of G at every
iteration of Step 3, including after the final iteration.

Lemma L2: At every stage of the procedure, a vertex v ∈ Vn

can have at most nv neighbors that are contained in subgraphs
that exclude v and with ED value equal to zero. Moreover, if
v has exactly nv such neighbors, then it is part of an average-
degree-four-subgraph in the original graph G.

Invariant 2 - nv ≥ 0 for every v ∈ V at every stage of the
procedure.

Lemma L3: If the input graph G satisfies Property D1

then every connected component of the resulting graph G′ =
(V ′, E′) at the end of Step 4 will be a tree or a simple cycle.

We use Procedure Proc I, in the proof of Theorem 6, as a
starting point to build an approximate test for feasibility when
the array size is limited to three antennas. The algorithm is
called isFeasible3 and it works by approximately computing
the value of DO(vj , vi) in step 3c. It also extends the approach
to deal with links that carry either one or two streams.
The pseudo-code for isFeasible3 is omitted due to space
constraints, but it is very similar in structure to Procedure
Proc I. Algorithm isFeasible3 runs in O(d2L) = O(L3) time,
where L is the number of active links and d is the maximum
degree of the conflict graph. The running time is dominated
by the while loop in Step 3 of Procedure Proc I and its inner
while loop in Step 3c. The outer loop runs at most L times.
For each considered link, the inner loop runs once for each
neighbor of the link in the conflict graph (at most d times)
and the procedure to approximate DO(vj , vi) is O(d).

Unfortunately, isFeasible3 appears to be quite centralized
in nature and, at this time, we do not see an efficient way of
implementing it in a distributed manner.

D. Accuracy of Feasibility Heuristics

We begin by comparing the accuracies of Algorithms Sim-
ple Greedy and Extended Greedy. The first set of results
assumes a uniform antenna array size k on every node and
a single collision domain. In a single collision domain, every
link interferes (strongly) with every other link and the conflict
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Single Collision Domain, Array Size Random between 2 and 8

graph is symmetric and complete. In this situation, the maxi-
mum number of active links has been shown to be 2k−1 [30].
We study k = 8 and k = 16. To evaluate the accuracy of the
heuristics, we calculated the entire feasible space for network
sizes up to 15 links for k = 8 and 10 links for k = 16, using
a brute-force algorithm. The results are shown in Figure 5.
Note that the Extended Greedy heuristic is significantly more
accurate than Simple Greedy. With k = 8, Extended Greedy is
inaccurate about 2% of the time for most network sizes with a
peak inaccuracy of 6%. Extended Greedy is inaccurate at most
10% of the time with k = 16, for the network sizes studied
here.

Greedy algorithms do not work as well when antenna array
sizes are highly variable. Figure 6 shows the accuracies of the
two greedy heuristics when antenna array sizes are randomly
chosen between 2 and 8 for every node, where each array size
is equally likely to be any of the 7 possible values. Here, the
inaccuracy of Extended Greedy peaks at about 13%, which is
more than twice the peak value when array sizes are uniform.
However, Extended Greedy is still significantly better than
Simple Greedy, which has a peak inaccuracy of 18%.

Both algorithms perform better when array sizes are non-
uniform but multiples of a base value. In Figure 7, array sizes
are randomly set to either 4 or 8. Here, Extended Greedy’s
peak inaccuracy is less than 2% up to 12 links.
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Next, we consider an antenna array size of 3 so that we can
evaluate Algorithm isFeasible3’s performance. With a single
collision domain, this would only allow us to consider network
sizes up to 5 links, so in this set of results, we relax the single
collision domain assumption. Here, we distributed links in
order to produce conflict graphs with a certain average degree.
We varied the average degree to range from low interference
(small conflict graph degree) to high interference (high conflict
graph degree). Interference is assumed to be symmetric so
that the conflict graph model used by isfeasible3 applies.
In these results, we also considered an improved version of
Extended Greedy, where after every iteration of the for loop,
a round of constraint propagation was performed. In constraint
propagation, any links that have only one remaining interfering
link try to cancel the interference and, if they do not have
sufficient antenna DOFs to do so, cancellation responsibility
is assigned to the other link. In addition, for any links that
have exhausted their antenna DOFs, cancellation responsibility
is assigned to the links that interfere with the exhausted link.
After each iteration, these assignments are propagated as far
as possible before beginning the next iteration.

Results for average conflict graph degrees of 5.5 and 7.5 are
shown in Figures 8a and 8b, which have logarithmic scales on
the y axes. isFeasible3 is inaccurate at most 0.005% of the
time whereas the improved Extended Greedy is inaccurate at
most 7.0% of the time for an average conflict graph degree
of 5.5 at 20 links. These numbers are respectively 0.2% and
13% for an average conflict graph degree of 7.5. Thus, the
graph model for unilateral feasibility yields a very accurate
feasibility test for k = 3. Extending this approach to handle
larger antenna array sizes is a subject for future research.

VII. CONCLUSION

We studied the feasibility problem in MIMO networks with
unilateral interference cancellation. Despite proving that the
unilateral feasibility problem is NP-complete in the general
case, we showed that it has polynomial time complexity for
several important special cases such as single-sided interfer-
ence cancellation, small array sizes, and small conflict graph
degrees. We have also presented two computationally efficient
heuristic algorithms that exhibit good accuracy in testing for
feasibility in more general MIMO networks.
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Appendices
APPENDIX I

This appendix contains the proof of Theorem 2, which
states the NP-completeness of the general unilateral feasibility
problem.

Proof: The problem is clearly in NP, because given an
interference cancellation assignment (At, Ar), it can easily
be verified in polynomial time whether (At, Ar) supports
the stream vector by verifying Conditions 1–3 of the matrix
formulation. Conditions 1 and 2 each require one matrix
multiplication of L×L and L×1 matrices and comparison of
L scalar quantities. Condition 3 requires simply checking that
at

ij = 1 or ar
ji = 1 for each of the at most L(L− 1) edges of

the conflict graph.
To complete the proof, we present a reduction from the

3SAT problem, which was loosely inspired by [20]. We recall
that in the 3SAT problem we are given a set of disjunctive
boolean clauses each having 3 literals, and the problem to
solve is determining whether there exists an assignment of
truth values to literals such that all clauses evaluate to true (sat-
isfying truth assignment). Given an instance I3SAT of 3SAT,
we build an instance IFeas of Feasibility as follows. We recall
that an instance of IFeas is obtained by defining a set of links,
an assignment of radio resources (antenna elements) to each
node (link endpoint), a conflict graph describing interference
relationships between links, and a stream allocation vector S
describing the number of streams to be transmitted on each
link.

Let c1, . . . , cm be the m clauses and x1, . . . , xn the n
variables in I3SAT , respectively. We recall that in 3SAT each
clause is formed by exactly three literals, where a literal is
a variable or its negation. The high level intuition of the
construction is the following. First, we define disjoint sets of
links assigned to clauses and literals in I3SAT , respectively.
We also define another disjoint set of links whose purpose is
to mimic truth values assignment to literals. Finally, we assign
radio resources to link endpoints, define the conflict graph, and
choose a stream allocation vector S in such a way that S is
feasible in Ifeas if and only if the corresponding truth values
assignment is satisfying for I3SAT .

The three sets of node disjoint5 links are defined as follows:

– clause links: a set C of links corresponding to the clauses
in I3SAT (one link per clause, m links in total); with
a slight abuse of notation, we denote by ci the link
corresponding to clause ci in I3SAT .

– literal links: a set Lit of links corresponding to all
possible literals (2 links per variable, 2n links in total);
again slightly abusing notation, we denote by xj the
link corresponding to literal xj , and by x̄j the link
corresponding to literal x̄j ;

– truth assignment links: a set A = A1 ∪ A2 ∪ A3 of
links corresponding to truth assignment values (3 links
per variable, 3n links in total); we denote by aj , a

T
j and

aF
j the links corresponding to variable xj .

5This is to ensure primary interference freeness in IFeas.
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Fig. 9. Link set, resource allocation, and stream allocation corresponding to
the following instance of I3SAT : c1 = (x1∨x2∨x4), c2 = (x̄1∨x3∨ x̄4).
Each node is labeled with the number of available antenna elements. Links
are labeled with the number of streams in the stream allocation vector S.

Thus, the link set of IFeas is L = C ∪ Lit ∪ A, which has
cardinality m + 5n.

The number of antenna elements available at the nodes is
as follows:

– for each link ci, the transmitter has 3 antenna elements,
while the receiver has 1 antenna element;

– for each link corresponding to a literal xj (or x̄j), the
transmitter has 1 antenna element, while the receiver has
` + 1 antenna elements;

– for each link aj , both the transmitter and receiver have
` + 1 antenna elements;

– for each link aT
j and aF

j , the transmitter has `+1 antenna
elements, while the receiver has 1 antenna element.

In the above definitions, ` is a constant defined as follows.
Let ĥj = max{hj , h̄j}, where hj is the number of clauses to
which literal xj belongs, and h̄j is the number of clauses to
which literal x̄j belongs; we let ` be an arbitrary integer larger
than maxj{ĥj}.

The stream allocation vector S allocates one stream on each
link in C ∪ Lit. For links in A, we allocate ` streams on the
aj links, and one stream on the aT

j and aF
j links.

The link set, resource allocation, and stream allocation
vector corresponding to the following instance of 3SAT:
c1 = (x1 ∨ x2 ∨ x4), c2 = (x̄1 ∨ x3 ∨ x̄4), is reported in
Figure 9. Notice that, since maxj{ĥj} = 2 in the instance of
3SAT at hand, we arbitrarily set ` = 3 in the example.

We are now left with the definition of the conflict graph G,
which has a node for each link in L. The edge set is built
as follows. For each clause link ci, we add a directed edge
between ci and the links corresponding to the three literals in
clause ci. Furthermore, we add a directed edge between each
truth assignment link aj and the links xj and x̄j . Finally, we
add a directed edge between each link aT

j and the links xj

and aj , and between each link aF
j and the links x̄j and aj .
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The conflict graph corresponding to the instance of I3SAT

mentioned above is reported in Figure 10.
Notice that in the instance of IFeas at hand only links in

Lit∪A1 are subject to interference, while links in C∪A2∪A3

are not interfered by other links in the network (but they
generate interference to the links in Lit∪A1). Thus, receivers
of links in C ∪ A2 ∪ A3 can always correctly decode the
incoming stream with the available antenna elements. Notice
also that, given the antenna elements available at the nodes,
the interference cancellation task can be undertaken only by
transmitter nodes of links in C, by the receiver nodes of links
in Lit, by the transmitter nodes of links in A2 ∪ A3, and by
both transmitter and receiver nodes of links in A1.

We now show that IFeas is feasible if and only if there
exists a satisfiable truth assignment for I3SAT .

If. Let us consider a satisfying truth assignment for I3SAT .
We assign antenna elements to cancel interference in IFeas

as follows. For each link aj in A, the extra antenna element
available at the transmitter is used to cancel interference at
the receiver of the link corresponding to the True literal in
the satisfying truth assignment (either xj or x̄j), and the extra
antenna element available at the receiver node is used to cancel
interference incoming from either aF

j (if xj is True in the truth
assignment) or aT

j (otherwise). Assume w.l.o.g. that the True
literal is xj . The ` extra antenna elements at the receiver of xj

are used as follows: hj < ` are used to cancel the interference
incoming from the transmitter nodes of the links corresponding
to the clauses ci to which xj belongs, and one DOF is used
to cancel interference incoming from aT

j . The ` extra antenna
elements at the receiver of x̄j (more in general, at the False
literal) are all used to cancel the interference incoming from
aj . The ` extra antenna elements at the transmitter of link aT

j

are used to cancel interference at the receiver of link aj . One

of the ` extra antenna elements at the transmitter of link aF
j is

used to cancel interference at the receiver of link x̄j . Finally,
the 2 extra antenna elements available at the transmitter nodes
of links in C are used as follows: for link ci, the extra antenna
elements are used to cancel interference to the (at most two)
links corresponding to False literals in ci. If less than 2 literals
are False in ci, these extra antenna elements are left unused.
We now show that the above described IC assignment cancels
all the interference, and hence the stream allocation vector
S as defined above is feasible in IFeas. We recall that only
receivers of links in Lit ∪A1 are subject to interference. Let
us first consider links in Lit. Let rj be the receiver of the
link corresponding to an arbitrary literal xj . Receiver rj is
interfered by the transmitter of link aj , by the transmitter of
link aT

j (or aF
j if the literal is negative), and by the transmitters

of all clause links to which xj belongs. In total, there are hj +
` + 1 interfering streams in the network. If the literal is True
in the satisfying truth assignment, then the transmitter of link
aj cancels its interference at rj , and rj can use hj < ` of its
extra antenna elements to cancel interference incoming from
the hj transmitters of the clause links to which xj belongs.
Furthermore, since hj < `, rj is guaranteed to have at least
one antenna element left to cancel the interference incoming
from aT

j . Thus, all the interference at rj can be canceled in this
case. Assume now the literal is False in the satisfying truth
assignment. In this case, rj has to use all its ` extra antenna
elements to cancel interference generated by the transmitter of
link aj . Notice that rj is still subject to interference generated
by the transmitters of the clause links to which xj belongs,
and by transmitter of link aT

j . We first notice that if xj is
False, then the transmitter of link aT

j uses one of its extra
antenna elements to cancel interference at rj . Furthermore, for
each clause ci to which literal xj belongs, it is the transmitter
of link ci that cancels its interference at rj . Notice that the
transmitter at ci is guaranteed to have at least one antenna
element available for that. In fact, each transmitter of a link
in C has two extra antenna elements available for interference
cancellation, and, since the truth assignment is satisfying for
I3SAT , we are guaranteed that at most two literals are false
in any clause. We can then conclude that also in this case all
the interference can be canceled at rj . Let us now consider a
link in A1, say link aj . The receiver raj of link aj is subject
to interference generated by the transmitters of links aT

j and
aF

j . Assume w.l.o.g. that xj is True in the satisfying truth
assignment. In this case, the extra antenna element available at
raj is used to cancel interference incoming from aF

j , while the
interference generated by the transmitter of link aT

j is canceled
at the transmitter side (notice that the transmitter node of link
aT

j has ` extra antenna elements available for that). We can
then conclude that, also in this case, all the interference can
be successfully canceled. This implies that a satisfying truth
assignment for I3SAT results in an IC assignment that supports
stream allocation vector S for IFeas.

Only If. Assume now that there exists a feasible IC as-
signment that support S in IFeas. We first show that, for any
feasible IC assignment, the transmitter of each link aj must
cancel its interference at the receiver of either link xj or link
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x̄j , but not both. We first notice that the transmitter of link aj

cannot simultaneously cancel its interference at the receivers
of both link xj and x̄j , since that would require `+2 antenna
elements at this node, which however has only ` + 1 antenna
elements. We now prove that the transmitter of each link aj

must cancel its interference at the receiver of either link xj

or link x̄j . Suppose otherwise, i.e., that there exists a link aj

whose transmitter does not cancel its interference at any of
the above mentioned receivers (call them rj and r̄j). In this
case, both receivers rj and r̄j must use all their ` extra antenna
elements to cancel interference generated by the transmitter of
link aj . Hence, neither rj nor r̄j can use their antenna elements
to cancel interference generated by link aT

j (at rj) and aF
j (at

r̄j). This implies that both transmitters of links aT
j and aF

j

must use one antenna element to cancel their interference at
rj and r̄j , respectively. These transmitters are then left with
`−1 antenna elements available for canceling interference, and
they hence cannot cancel the interference they generate at the
receiver raj of link aj (which would require using ` antenna
elements). It then follows that raj should cancel interference
incoming from both links aT

j and aF
j , which would require

using 2 antenna elements. However, raj has only 1 antenna
element available, since the other ` antenna elements are
needed to receive the ` streams transmitted on link aj . We can
then conclude that, for any feasible IC assignment for IFeas,
the transmitter of each link aj must cancel its interference at
the receiver of either link xj or link x̄j .
Now, we define the truth assignment for I3SAT as follows:
we set literal xj to True if aj cancels its interference at the
receiver of link xj , and to False otherwise. It is then easy
to prove that the resulting truth assignment is satisfying for
I3SAT . The proof proceeds by contradiction. Assume the truth
assignment is not satisfying for I3SAT , and let ci be a False
clause. Then, all the literals in ci are false. Let r1, r2 and r3 be
the receivers of the respective literal links. Since all the three
literals are False, the transmitters of the corresponding truth
assignment links (call these links a1, a2, and a3) cancel their
interference at the receivers of the corresponding True literals.
It follows that r1, r2, and r3 must cancel the interference
generated by links a1, a2, and a3, respectively. For this, each
of the rj must use all the ` extra antenna elements available.
It follows that, for all receivers r1, r2 and r3, the interference
generated by the transmitter of link ci must be canceled at the
transmitter side. The transmitter of link ci has only 2 extra
antenna elements available for interference cancellation, while
3 antenna elements in total are needed to cancel interference at
receivers r1, r2 and r3, resulting in an unfeasible IC allocation
for S, which is a contradiction.

APPENDIX II
Analysis of Procedure Proc 1:
Since the input graph G is modified during the procedure,

let us assume there is a copy of the input graph, which we
refer to as Gcopy , that is kept unmodified as the procedure
executes.

Step 1: At the start of the procedure, every subgraph of G
has ED ≥ 0. During this step, all edges of degree-one and
degree-two vertices in V are marked.

Step 2: Vn contains only vertices in V with degree > 2.
Step 3: If during the procedure, we determine DO(v, v′)

to be TRUE, that means that every subgraph containing v but
not v′ has ED > 0. The procedure is allowed to direct vertex
v towards v′ if and only if DO(v, v′) = TRUE. Consequently,
after the procedure directs v outwards to v′, every subgraph
containing v but not v′ will have ED ≥ 0. Moreover, all
subgraphs containing v′ as well as all subgraphs with neither
v nor v′ will have an unchanged ED value.

On the other hand, if DO(v, v′) = FALSE and
DO(v′, v) = TRUE then the procedure directs v′ outwards
to v. The procedure is allowed to direct vertex v′ towards v
if and only if DO(v′, v) = TRUE. By the same argument as
above, after doing this, every subgraph containing v′ but not
v will have ED ≥ 0 and other subgraphs will not be affected.

Therefore, if the DO(v, vi) = TRUE condition in Step 3c
is entered or the else condition is entered with DO(vi, v) =
TRUE, then all subgraphs will maintain the property that
ED ≥ 0.

Since the procedure can progress by marking an edge only
when at least one of DO(v, v′) and DO(v′, v) is TRUE (the
cases adressed above), every subgraph of G will have ED ≥ 0,
making this an invariant. This is true at every stage of the
procedure.

Next, we show that at no point during the procedure, can
both DO(v, v′) and DO(v′, v) simultaneously evaluate to
FALSE. This is stated in Lemma L1.

Lemma L1: DO(v, v′)∨DO(v′, v) is always equal to TRUE
at every iteration of Step 3c.
Proof of lemma:

If we were to have DO(v, v′) = FALSE and DO(v′, v) =
FALSE, that would imply that v is contained in some
subgraph G1 = (V1, E1) such that it does not contain v′

and has ED = 0. Also, v′ is contained in some subgraph
G

′

1 = (V
′

1 , E
′

1) such that it does not contain v and has
ED = 0. And since an edge exists between v and v′, the
subgraph induced in G by V1+V ′

1 has ED = −1. Since every
subgraph of the input graph Gcopy has ED ≥ 0, this means
that at some previous point in the procedure, the subgraph
induced in G by V1 + V ′

1 had ED ≥ 0. Consider the point in
the procedure when the value of this ED was exactly equal to
zero. Suppose without loss of generality that G1 had an ED
value equal to 1 and G′

1 had an ED value equal to 0 at this
point (this would make the ED of the subgraph induced in G
by V1 +V ′

1 equal to zero). Now, in order for the ED value of
the subgraph induced in G by V1 +V ′

1 to become −1 from 0,
there must have been some vertex va from G1 = (V1, E1) that
was directed outwards by the procedure to a vertex vb where
vb is not contained in V1

6 and also not contained in V
′

1
7

If va was directed outwards to such a vb, that would imply
that the procedure was applied incorrectly since clearly there

6if vb was in V1, then the ED value of G1 would remain one and the ED
value of the subgraph induced in G by V1 + V ′

1 would still remain zero.
7if vb was in V

′
1 , that would violate the assumption that at this point, the

ED value of the subgraph induced in G by V1 + V ′
1 is zero (because, since

we have said that ED of G1 is one and ED of G
′
1 is zero, the fact that an

edge between v and v′ exists and the fact that an edge between va and vb

exists would make the ED value of this subgraph equal to −1).
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is a subgraph containing va, namely the subgraph induced in
G by V1 + V ′

1 which has an ED value exactly equal to zero,
meaning that we are not allowed to direct va to vb.

This contradicts the fact that the procedure always maintains
a positive value of ED for every subgraph of G. Therefore,
this situation where DO(v, v′) is FALSE and DO(v′, v) is
FALSE can never occur so long as the input graph Gcopy

satisfies D1.
End of Lemma L1 proof.

Note that the final if statement in Step 3c does not cause
any ED to become less than zero, because if vi satisfies the
condition and its last two edges are marked, this can only
increase ED for subgraphs containing vi.

Since DO(v, v′) is true or DO(v′, v) is true at all times
and ED ≥ 0 for every subgraph of G in either of these cases
and the final if condition does not cause the ED condition to
be violated, we have the following invariant:
Invariant 1 - ED ≥ 0 for every subgraph of G at every
iteration of Step 3, including after the final iteration.

Next, we prove another invariant of the procedure. If the
original graph Gcopy satisfies D1, the procedure will never
decrement the value of nv below zero for all v ∈ V . Therefore,
nv ≥ 0 is also an invariant. This follows from Lemma L1 and
Lemma L2, stated next.

Since we started out by having a graph Gcopy with every
subgraph having ED ≥ 0, this means that at some previous
point in the procedure, the subgraph induced in G by V1 +V2

had ED ≥ 0. Consider the point in the procedure when the
value of this ED was exactly equal to zero. Suppose, without
loss of generality that G1 had an ED equal to one and G2 had
an ED equal to zero at this point (this would make the ED
of the subgraph induced in G by V1 +V2 equal to zero). Now
consider some vertex v2 in G1 = (V1, E1). In order for the
ED value of the subgraph induced in G by V1+V2 to become
−1 from 0, the vertex v2 would have to be directed outwards
by the procedure to a vertex va where va is not contained
in G1

8 and also not contained in G
′

1
9 If v2 was directed

outwards to such a va, that would imply that the procedure was
applied incorrectly since clearly there is a subgraph containing
V2, namely the subgraph induced in G by V1 + V2 which has
an ED value exactly equal to zero, meaning that we are not
allowed to direct v2 to va.

Lemma L2: At every stage of the procedure, a vertex v ∈ Vn

can have at most nv neighbors that are contained in subgraphs
that exclude v and with ED value equal to zero. Moreover, if
v has exactly nv such neighbors, then it is part of an average-
degree-four-subgraph in the input graph Gcopy .
Proof of lemma:

Suppose first that nv = 0. Consider a subgraph G1 =
(V1, E1) that contains a neighbor of v, but not v itself. Let the
ED value of G1 be ED1. Therefore, the subgraph induced by

8if va was in G1, then the ED value of G1 would remain one and the
ED value of the subgraph induced in G by V1 +V2 would still remain zero.

9if va was in G
′
1, that would violate the assumption that at this point, the

ED value of the subgraph induced in G by V1 + V2 is zero (because, since
we have said that ED of G1 is one, ED of G

′
1 is zero, the fact that an edge

between v and v′ exists nad the fact that an edge between v2 and va exists
would make the ED value of this subgraph equal to −1)

V1 + v in G will have ED = ED1 − 1. Since by Lemma L1,
the ED value of every subgraph of G is always greater than
equal to zero, we must have ED1 ≥ 1. Therefore, v has nv

(= 0) neighbors that are contained in subgraphs that do not
contain v and with ED=0.

Similarly, for nv > 0, suppose that v has p such neighbors,
contained in subgraphs G1 = (V1, E1), ...Gp = (Vp, Ep). The
subgraph induced by V1 + .. + Vp + v in G will have ED =
ED1 + ...+EDp−p+nv . Since by Lemma L1, ED of every
subgraph of G is greater than equal to zero, we must have
p ≤ nv .
End of Lemma L2 proof.

Note 1 - Lemmas L1 and L2 preclude the following
from occurring at any stage of the procedure: DO(v, vi) =
FALSE and nvi = 0. This is because we must have:
1) DO(v, vi) = TRUE and/or DO(v, vi) = TRUE by
Lemma L1, and 2) vi has nvi = 0 neighbors in subgraphs
with ED = 0 by Lemma L2. This means that if nvi = 0, then
DO(v, vi) = TRUE will always hold and v can be marked
outwards to vi.

This establishes the following invariant.
Invariant 2 - nv ≥ 0 for every v ∈ V at every stage of the

procedure.
Step 4: When Step 3 terminates, every vertex v ∈ Vn has

nv equal to either one or zero. This follows because, at Step
3c, vertex v with nv = 2 will have at least one of its incident
edges marked as outgoing, and hence its nv value will be
decremented by at least one.

During Step 4, every vertex v ∈ Vn with nv = 0 is fully
marked. This is done by marking every incident edge towards
v. After this, all marked vertices and edges are removed.
Therefore, the remaining vertices v all have nv = 1.

Step 4 is justified by the observation that we made in Note
1 above based on Lemmas L1 and L2, that the following
can never occur at any stage of the procedure: DO(v, vi) =
FALSE and nvi = 0. In other words, whenever nv = 0,
DO(v′, v) is always TRUE where v′ is a neighbor of v.
Therefore, we are allowed to mark all edges incident to v
as incoming.

Step 5: Lemma L3: If the input graph G satisfies Property
D1 then every connected component of the resulting graph
G′ = (V ′, E′) at the end of Step 4 will be a tree or a simple
cycle.

To see this, note that the invariant ED ≥ 0 holds true for
every subgraph of G′. Moreover, every vertex v in V ′ has
nv = 1. Let G

′

i = (V
′

i , E
′

i) be the ith connected component
of G. We have ED(G

′

i) =
∑

v∈V
′

i
nv − |E′

i | = |V ′

i | − |E′

i |.
Since by Corollary C1, ED(G

′

i) ≥ 0, we have |V ′

i | ≥ |E′

i |,
making every connected component of G′ a tree or a simple
cycle.

Step 6: When we reach Step 6, every vertex v ∈ V ′ has
nv = 1 and every connected component is a tree or a simple
cycle. In Section V-D, we proved that such a graph can be
directed such that every vertex has at most one outgoing
edge and we provided a procedure to do so. By applying this
procedure to the remaining graph G′, the result is that every
edge of the original graph G is directed such that every vertex
has at most two outgoing edges.


