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Abstract—In this paper, we analyze the critical transmitting range for connectivity in wireless ad hoc networks. More specifically, we

consider the following problem: Assume n nodes, each capable of communicating with nodes within a radius of r, are randomly and

uniformly distributed in a d-dimensional region with a side of length l; how large must the transmitting range r be to ensure that the

resulting network is connected with high probability? First, we consider this problem for stationary networks, and we provide tight upper

and lower bounds on the critical transmitting range for one-dimensional networks and nontight bounds for two and three-dimensional

networks. Due to the presence of the geometric parameter l in the model, our results can be applied to dense as well as sparse ad hoc

networks, contrary to existing theoretical results that apply only to dense networks. We also investigate several related questions

through extensive simulations. First, we evaluate the relationship between the critical transmitting range and the minimum transmitting

range that ensures formation of a connected component containing a large fraction (e.g., 90 percent) of the nodes. Then, we consider

the mobile version of the problem, in which nodes are allowed to move during a time interval and the value of r ensuring

connectedness for a given fraction of the interval must be determined. These results yield insight into how mobility affects connectivity

and they also reveal useful trade offs between communication capability and energy consumption.

Index Terms—Wireless ad hoc networks, sparse ad hoc networks, sensor networks, energy consumption, topology control, critical

transmitting range.

æ

1 INTRODUCTION

WIRELESS ad hoc networks are networks where multiple
nodes, each possessing a wireless transceiver, form a

network among themselves via peer-to-peer communica-
tion. An ad hoc network can be used to exchange
information between the nodes and to allow nodes to
communicate with remote sites that they otherwise would
not have the capability to reach. Wireless ad hoc networks
are usually multihop networks because, as opposed to
wireless LAN environments, messages typically require
multiple hops before reaching a gateway into the wired
network infrastructure.

Sensor networks are a particular class of wireless ad hoc

networks in which there are many nodes, each containing

application-specific sensors, a wireless transceiver, and a

simple processor. Potential applications of sensor networks

abound, e.g., monitoring of ocean temperature to enable

more accurate weather prediction, detection of forest fires

occurring in remote areas, and rapid propagation of traffic

information from vehicle to vehicle, just to name a few [10],

[27], [32], [34], [35].
While the results in this paper apply to wireless ad hoc

networks in general, certain aspects of the formulation are

specifically targeted to sensor networks. For example, we

assume that the initial placement of nodes is random, which

could result when sensors are distributed over a region

from a moving vehicle such as an airplane. We are also
concerned, in part, with minimizing energy consumption,
which, although being an important issue in wireless ad hoc
networks in general, is vital in sensor networks. Sensor
nodes are typically battery-powered and, because replacing
or recharging batteries is often very difficult or impossible,
reducing energy consumption is the only way to extend
network lifetime.

Due to the relatively recent emergence of ad hoc
networks, many fundamental questions remain unan-
swered. We address one of those questions, namely: What
are the conditions that must hold to ensure that a deployed
network is connected initially and remains connected as
nodes migrate? We address this question, and a number of
related ones, in probabilistic terms, i.e., we evaluate the
probabilities of various events related to network connect-
edness. More specifically, we assume that n nodes are
independently and uniformly distributed in a deployment
region R ¼ ½0; l�d, with d¼1; 2; 3, and that all the nodes have
the same transmitting range r. The goal is to determine the
critical transmitting range for connectivity, i.e., the minimum
value of r, which generates communication graphs that are
connected with high probability (w.h.p.).1 Determining the
critical transmitting range for connectivity is essential to
minimize energy consumption since transmitting power is
proportional to the square (or, depending on environmental
conditions, to a higher power) of the transmitting range.

The question of how many nodes are necessary to ensure
connectedness w.h.p. for a given transmitting range (which
is the reverse of the question above) is very important for
the planning and design of sensor networks. In fact, in

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2003 25

. P. Santi is with Istituto di Informatica e Telematica del CNR, Via G.
Moruzzi 1, 56124, Pisa (Italy). E-mail: paolo.santi@iit.cnr.it.

. D.M. Blough is with the School of Electrical and Computer Engineering,
Georgia Institute of Technology, 801 Atlantic Dr., Atlanta, GA 30332-
0250. E-mail: doug.blough@ece.gatech.edu.

Manuscript received 13 Sept. 2002; revised 2 Jan. 2003; accepted 3 Jan. 2003.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number 9-092002.

1. A formal definition of the term with high probability will be given in
Section 4.
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sensor networks, the individual unit should cost as little as
possible, and inexpensive transceivers, which might not
allow the transmitting range to be adjusted, are likely to be
used [28].

Overall, the results presented in this paper are useful
guidelines in the design of wireless ad hoc and sensor
networks: Given the value of l (which is known, at least
with a certain approximation, to the network designer) and
n (or r), we can set the transmitting range r to the minimum
value (or, disperse the minimum number n of nodes) that
ensures connectedness w.h.p.

In many applications of wireless ad hoc networks, the
nodes are mobile. This complicates analysis of network
characteristics because the network topology is constantly
changing in this situation. In this work, we consider
networks both with and without mobility. We present
analytical results that apply to networks without mobility
and confine ourselves to simulation results for networks
with mobility, due to the intractability of analysis with
existing mathematical methods.

The first analytical result in this paper concerns one-
dimensional networks (i.e., nodes are placed along a line of
length l). We show that the communication graph that
results when all the nodes have the same transmitting range
r is connected w.h.p. if rn�2l ln l, while it is not connected
w.h.p. if rn<ð1ÿ �Þl ln l, for some constant 0<�<1. This
closes a gap between lower and upper bounds on the
product rn that were established in earlier versions of the
paper [30], [31]. Next, we consider two and three-dimen-
sional networks. We generalize the sufficient condition for
connectedness w.h.p. to the two and three-dimensional
case, while we give a necessary condition for connectedness
w.h.p. that is weaker than in the one-dimensional case.

Besides analytical results, in this paper, we present a
considerable body of simulation results. These results
demonstrate convincingly that significant reductions of
transmitting range (and, therefore, significant reductions in
energy consumption as well) can be achieved by either
connecting a large percentage (but not all) of the nodes for
stationary networks or allowing temporary disconnections
for mobile networks. The results also show that mobility
comes with a cost in terms of transmitting range and energy
consumption, i.e., the transmitting range required to
maintain connectedness continuously during a long simula-
tion in a highly mobile network is approximately 10 percent
higher than that required to achieve connectedness in a
stationary network of the same size and having the same
number of nodes. However, simulations in which different
mobility parameters were varied demonstrate that, for
surprisingly large ranges of some parameter values, mobile
networks are effectively stationary as far as the connected-
ness property is concerned, meaning that the transmitting
range necessary for continuous connectedness is essentially
identical to that necessary for connectedness in a similar
stationary network.

2 RELATED WORK

Until recently, only a few papers considered the probabil-
istic modeling of the communication graph properties of
wireless ad hoc networks.

The main difficulty that arises in this context is that the
well-established model of random graph theory [3], [20]
cannot be used. In fact, a fundamental assumption in this
model is that the probability of edge occurrences in the
graph are independent, which is not the case in wireless ad
hoc networks. As an example, consider three nodes u; v; w
such that �ðu; vÞ<�ðu;wÞ, where �ðx; yÞ denotes the distance
between x and y. With common wireless technologies that
use omni-directional antennas, if u has a link to w, then it
has also a link to v. Hence, the occurrences of edges ðu; vÞ
and ðu;wÞ are correlated.

A more recent theory, which is still in development, is
the theory of geometric random graphs (GRG). In the theory of
GRG, a set of n points is distributed according to some
density in a d-dimensional region R, and some property of
the resulting node placement is investigated. For example,
the longest nearest-neighbor link, the longest edge of the
Euclidean Minimum Spanning Tree (MST), and the total
cost of the MST have been investigated. For a survey of
GRG, the reader is referred to [8].

Some of these GRG results can be applied in the study of
connectivity in ad hoc networks. For example, consider a set
N of points distributed in the deployment region. It is
known that the longest edge of the MST built on N equals
the critical transmitting range for connectivity [23]. Hence,
results concerning the asymptotic distribution of the longest
MST edge [22], [23] can be used to characterize the critical
transmitting range, as has been done in [21].

Another notable result of the theory of GRG is that,
under the assumption of uniformly distributed points, the
longest nearest-neighbor link and the longest MST edge
have the same value (asymptotically as n!1). In terms of
the resulting communication graph, this means that con-
nectivity occurs (asymptotically) when the last isolated
node disappears from the graph. This observation can be
generalized to the case of k-connectivity: When the
minimum node degree becomes k, the graph becomes
k-connected [24]. This result, which has been used in [1] to
characterize the k-connectivity of dense ad hoc networks,
reveals an interesting analogy with nongeometric random
graphs, which display the same behavior.

Although interesting, the theory of GRG can be used

only to derive results concerning dense ad hoc networks. In

fact, a standard assumption in this theory is that the

deployment region R is fixed, and the asymptotic behavior

of r as n grows to infinity is investigated, i.e., the node

density is assumed to grow to infinity. A similar limitation

applies to the model of Gupta and Kumar [12]. In their case,

R is the disk of unit area, and the authors show that, if the

units’ transmitting range is set to r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lognþcðnÞ

�n

q
, then the

resulting network is connected w.h.p. if and only if

cðnÞ!1. This result is obtained making use of the theory

of continuum percolation [19], which is also used in [9] to

investigate the connectivity of hybrid ad hoc networks.

Given the discussion above, the applicability of existing

theoretical results concerning connectivity in ad hoc net-

works to realistic scenarios could be impaired. In fact, it is

26 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2003



known that real wireless networks cannot be too dense, due

to the problem of spatial reuse: When a node is transmit-

ting, all the nodes within its transmitting range must be

silent, in order not to corrupt the transmission. If the node

density is very high, many nodes must remain silent when a

node is transmitting, and the overall network capacity is

compromised [13].
In order to circumvent this problem, we add the size

of the deployment region as a parameter of the model,
and characterize the critical transmitting range as the size
goes to infinity. The critical coverage range,2 which is
closely related to the critical transmitting range, has been
investigated in [25] for the case of nodes distributed in a
square with a side of length l according to a Poisson
process of fixed density. The critical transmitting range
for Poisson distributed points in a line of length l is
derived in [26]. However, these results are also difficult to
apply in real scenarios since, in a Poisson process, the
actual number of deployed nodes is a random variable
itself. Hence, only the expected number of deployed nodes
can be controlled.

In this paper, we consider a model similar to that of [25],
[26], but under the assumption that a fixed number n of
nodes are uniformly distributed in the deployment region
R ¼ ½0; l�d. Furthermore, we consider also the case of a
three-dimensional deployment region. In our analysis, the
node density n

ld
might either converge to 0, or to a constant

c>0, or diverge as the size of the deployment region grows
to infinity, depending on the relative values of r, n, and l.
Thus, our results can be applied both to dense, as well as
sparse, ad hoc networks.

To conclude this section, we mention a more general
connectivity problem for ad hoc networks, called the
range assignment problem. In this version of the problem,
nodes are not all forced to have the same transmitting
range, and the goal is to find a range assignment that
generates a (strongly) connected communication graph
while minimizing some measure of energy consumption.
The solution of the range assignment problem can be
seen as the optimal result of the execution of a topology
control protocol.3 Thus, the investigation of the range
assignment problem gives hints on the best possible
energy savings achievable by any topology control
protocol. It has been shown that determining an optimal
range assignment is solvable in polynomial time in the
one-dimensional case, while it is NP-hard (i.e., computa-
tionally infeasible) in the two and three-dimensional cases
[5], [15]. A constrained version of this problem has been
investigated in [2], [4].

3 PRELIMINARIES

A d-dimensional mobile wireless ad hoc network is
represented by a pair Md¼ðN;P Þ, where N is the set of

nodes, with jNj ¼ n, and P :N � T ! ½0; l�d, for some l>0, is
the placement function. The placement function assigns to
every element of N and to any time t2T a set of coordinates
in the d-dimensional cube of side l, representing the node’s
physical position at time t. The choice of limiting the
admissible physical placement of nodes to a bounded
region of IRd of the form ½0; l�d, for some l>0, is realistic and
will ease the probabilistic analysis of Section 4. If the
physical node placement does not vary with time, the
network is said to be stationary, and function P can be
represented simply as P :N ! ½0; l�d.

A range assignment for a d-dimensional network Md¼
ðN;P Þ is a function RA :N!ð0; rmax� that assigns to every
element of N a value in ð0; rmax�, representing its transmit-
ting range. Parameter rmax is called the maximum transmit-
ting range of the nodes in the network and depends on the
features of the radio transceivers equipping the mobile
nodes. We assume that all the nodes are equipped with
transceivers having the same features; hence, we have a
single value of rmax for all the nodes in the network.

In this paper, we are mostly concerned with range
assignments in which all the nodes have the same transmit-
ting range r, called homogeneous range assignments. With
this assumption, the communication graph of Md induced at
time t, denoted GMðtÞ, is defined as GMðtÞ ¼ðN;EðtÞÞ, where
the edge ðu; vÞ2EðtÞ if and only if v is at distance at most r
from u at time t. If ðu; vÞ2EðtÞ, node v is said to be a neighbor
of u at time t. GMðtÞ corresponds to a point graph as defined
in [33]. Although quite simplistic, the point graph model is
widely used in the analysis of ad hoc networks. If the radio
coverage area is not regular, as it is likely to be the case in
real-life scenarios, the results presented in this paper are still
useful since the transmitting range can be thought of as the
radius of the largest circular subarea of the actual area of
coverage. In this case, there could exist nodes that are
connected in reality that would not be connected consider-
ing the circular region; thus, the actual probability of
connectedness could be higher compared to our results.

In the next section, we consider probabilistic solutions to
the following problem for stationary ad hoc networks:

Definition 1 (Minimum Transmitting Range (MTR)).
Suppose n nodes are placed in R ¼ ½0; l�d; what is the
minimum value of r such that the resulting communication
graph is connected?

Observe that, when dealing with the magnitude of l, the
choice of unit is important. In the following, we assume that
r and l are measured using the same arbitrary unit, which is
therefore canceled out when discussing the relative sizes of
r and l.

Given the number of nodes, minimizing r while
maintaining a connected network is of primary importance
if energy consumption is to be reduced. In fact, the energy
consumed by a node for communication is directly
dependent on its transmitting range. Furthermore, a small
value of r reduces the interferences between node transmis-
sions, thus increasing the network capacity [13]. Observe
that we could just as easily have stated the problem as one
of finding the minimum number of nodes to ensure
connectedness given a fixed transmitting range. In fact,
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e.g., connectedness, while reducing energy consumption.



our solutions typically specify requirements on the product

of n and rd that ensures connectedness. These solutions can,

therefore, be used to solve either MTR, as specified above,

or the alternate formulation where the number of nodes is

the primary concern.
It should be observed that the solution to MTR depends

on the information we have about the physical node

placement. If the node placement is known in advance,

the minimum value of r ensuring connectedness can be

easily determined (it is the longest edge of the MST).

Unfortunately, in many realistic scenarios of ad hoc net-

works, the node placement cannot be known in advance, for

example, because nodes are spread from a moving vehicle

(airplane, ship, or spacecraft). If nodes’ positions are not

known, the minimum value of r ensuring connectedness in

all possible cases is r � l
ffiffiffi
d
p

, which accounts for the fact that

nodes could be concentrated at opposite corners of the

placement region. However, this scenario is very unlikely in

most realistic situations. For this reason, we study MTR

under the assumption that nodes are distributed indepen-

dently and uniformly at random in the placement region.
In the following, we will use the standard notation

regarding the asymptotic behavior of functions, which we

recall. Let f and g be functions of the same parameter x. We

have:

1. fðxÞ¼OðgðxÞÞ if there exist constants C and x0 such
that fðxÞ�C � gðxÞ for any x�x0;

2. fðxÞ¼
ðgðxÞÞ if gðxÞ¼OðfðxÞÞ;
3. fðxÞ¼�ðgðxÞÞ if fðxÞ¼OðgðxÞÞ and fðxÞ¼
ðgðxÞÞ;
4. fðxÞ¼oðgðxÞÞ if fðxÞ

gðxÞ ! 0 as x!1;

5. fðxÞ�gðxÞ or gðxÞ�fðxÞ if fðxÞ¼oðgðxÞÞ.
In the next section, we will improve the results of [30],

[31] for the one-dimensional case by means of a more

accurate analysis of the conditions leading to disconnected

communication graphs. The analysis will use some results

of the occupancy theory [16], which are presented next.
The occupancy problem can be described as follows:

Assume we have C cells and n balls to be thrown

independently in the cells. The allocation of balls into cells

can be characterized by means of random variables

describing some property of the cells. The occupancy

theory is aimed at determining the probability distribution

of such variables as n and C grow to infinity (i.e., the limit

distribution). The most studied random variable is the

number of empty cells after all the balls have been thrown,

which will be denoted �ðn;CÞ in the following.
Under the assumption that the probability for any

particular ball to fall into the ith cell is 1=C for i ¼
1; . . . ; C (uniform allocation), the following results have been

proven:4

1. P ð�ðn;CÞ ¼ 0Þ ¼
PC

i¼0
C
i

ÿ �
ðÿ1Þi 1ÿ i

C

ÿ �n
,

2. E½�ðn; CÞ� ¼ C 1ÿ 1
C

ÿ �n
, and

3.

V ar½�ðn;CÞ� ¼ CðC ÿ 1Þ 1ÿ 2

C

� �n
þC 1ÿ 1

C

� �n
ÿ C2 1ÿ 1

C

� �2n

;

where E½�ðn;CÞ� and V ar½�ðn; CÞ� denote the expected
value and the variance of �ðn; CÞ, respectively. The
asymptotic behaviors of P ð�ðn;CÞ ¼ kÞ, E½�ðn;CÞ�, and
V ar½�ðn;CÞ� depend on the relative magnitudes of n and C

as they grow to infinity. The following theorems have been
proven.

Theorem 1. For every n and C, E½�ðn;CÞ��Ceÿ�, where
� ¼ n=C. Furthermore, if n;C!1 in such a way that
�¼oðCÞ, then:

. E½�ðn;CÞ�¼Ceÿ� ÿ �
2 e
ÿ� þO �ð�þ1Þeÿ�

C

� �
and

.

V ar½�ðn;CÞ� ¼Ceÿ� 1ÿ ð1þ �Þeÿ�ð Þ

þO �ð1þ �Þeÿ� eÿ� þ 1

C

� �� �
:

Theorem 2. If n¼�ðC logCÞ, the limit distribution of the
random variable �ðn;CÞ is the Poisson distribution of
parameter �, where �¼ limn;C!1E½�ðn;CÞ�.

4 THE CRITICAL TRANSMITTING RANGE IN

STATIONARY NETWORKS

Consider the probability space ð
l;F l; PlÞ, where 
l ¼ ½0; l�d,
with d¼1; 2; 3, F l is the family of all closed subsets of 
l,
and Pl is a probability distribution on 
l. In this paper, we
assume that Pl is the uniform distribution on 
l. Under this
setting, nodes in N can be modeled as independent random
variables taking value (according to the uniform distribu-
tion) in ½0; l�d, which will be denoted as Z1; . . . ; Zn.

We say that an event Vk, describing a property of a
random structure depending on a parameter k, holds
w.h.p., if P ðVkÞ!1 as k!1. In the following, we consider
the asymptotic behavior of the event CONNl on the random
structures ð
l;F l; PlÞ as l!1. Informally speaking, event
CONNl corresponds to all the values of the random
variables Z1; . . . ; Zn for which the communication graph is
connected.

4.1 The One-Dimensional Case

The following upper and lower bounds on the magnitude of
rn ensuring connectedness w.h.p. have been derived in [31].

Theorem 3. Suppose n nodes are placed in R¼½0; l� according to
the uniform distribution. If rn2�ðl log lÞ, then the commu-
nication graph is connected w.h.p., while it is not connected
w.h.p. if rn2OðlÞ.

Observe that the gap between the upper and lower
bounds provided by Theorem 3 is considerable (in the order
of log l). Furthermore, Theorem 3 gives only asymptotic
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results, and gives no clue, for instance, on the actual
multiplicative factor needed to ensure connectedness w.h.p.
Thus, its usefulness in a realistic setting is limited. In this
section, we derive a more precise characterization of the
critical transmitting range in one-dimensional networks,
providing explicit values to the multiplicative constants.

We start with the following theorem, which gives a more
precise sufficient condition for connectedness w.h.p. than
that provided by Theorem 3.

Theorem 4. Assume that n nodes, each with transmitting range
r, are distributed uniformly and independently at random in
R¼½0; l� and assume that rn¼kl ln l for some constant k>0.
Further, assume that r¼rðlÞ� l and n¼nðlÞ�1. If k>2, or
k¼2 and r¼rðlÞ�1, then liml!1 P ðCONNlÞ¼1.

Proof. See Appendix. tu

Observe that the conditions on the magnitude of r¼rðlÞ
and n¼nðlÞ in the statement of Theorem 4 are not
restrictive. In fact, if r¼
ðlÞ, then every node is able to
transmit directly to most of the other nodes, and connect-
edness is ensured independently of n. The condition n¼
nðlÞ � 1 is a straightforward consequence of the first
condition since otherwise the probability of connectedness
would be negligible.

Note that the value of k established in Theorem 4 is the
same as that obtained in [26] when nodes are distributed
with Poisson density �, where � ¼ n=l. Hence, the sufficient
conditions for connectivity w.h.p. in the cases of Poisson
and uniformly distributed nodes are the same.

Let us now consider the necessary condition for
connectedness w.h.p. The bound of Theorem 3 is obtained
by analyzing the probability of existence of an isolated
node. In fact, the existence of an isolated node implies that
the resulting communication graph (which is a point graph
[33]) is disconnected. However, the class of disconnected
point graphs is much larger than the class of point graphs
containing at least one isolated node. For this reason, the
bounds established in [31] are not tight. In [31], it is
conjectured that the upper bound stated in Theorem 3 is
actually tight. In what follows, we prove that this conjecture
is true. The result derives from a more accurate approxima-
tion of the class of disconnected point graphs, which is
based on occupancy theory.

In order to derive the lower bound, we consider the
following subdivision of the placement region into cells. We
assume that a line of length l is subdivided into C¼ l=r
segments of equal length r. With this subdivision, if there
exists an empty cell ci separating two cells ciÿ1; ciþ1 that
each contains at least one node, then the nodes in ciÿ1 are
unable to communicate to those in ciþ1, and the resulting
communication graph is disconnected (see Fig. 1). The
following lemma, whose immediate proof is omitted,
establishes a sufficient condition for the communication
graph to be disconnected.

Lemma 1. Assume that n nodes are placed in ½0; l�, and that the
line is divided into C¼ l=r segments of equal length r. Assign

to every cell ci, for i¼0; . . . ; C ÿ 1, a bit bi, denoting the
presence of at least one node in the cell. Without loss of
generality, assume bi¼0 if ci is empty, and bi¼1 otherwise.

Let B¼ fb0 . . . bCÿ1g be the string obtained by concatenating
the bits bi, for i¼0; . . . ; C ÿ 1. If B contains a substring of the
form f10�1g, where 0� denotes that one or more 0s may occur,

then the resulting communication graph is disconnected.

Observe that the condition stated in Lemma 1 is
sufficient, but not necessary to produce a disconnected
graph. In fact, there exist node placements such that B does
not contain any substring of the form f10�1g, but the
resulting communication graph is disconnected.

Let us denote with DISCONNl and E10�1
l the events

corresponding to all the values of the random variables
Z1; . . . ; Zn such that the resulting communication graph is
disconnected, or a substring of the form f10�1g occurs in B,
respectively. The subscript l indicates that we are consider-
ing these events in the case that the length of the line is l.
Since CONNl ¼ 
l ÿDISCONNl and E10�1

l � DISCONNl,
it is immediate that a necessary condition for connectedness
w.h.p. is that liml!1 P ðE10�1

l Þ¼0.
In order to evaluate liml!1 P ðE10�1

l Þ, we decompose the
event E10�1

l by conditioning on the disjoint events
f�ðn;CÞ¼hg, for h¼0; . . . ; C, i.e.,

P E10�1
l

ÿ �
¼
XC
h¼0

P E10�1
l jf�ðn;CÞ ¼ hg

ÿ �
� P ð�ðn;CÞ ¼ hÞ:

Observe that, when l grows to infinity, P ðE10�1
l Þ is defined

as the sum of an infinite number of nonnegative terms

t1; t2; . . . . Clearly, if there exists at least one term t�hh such that

liml!1 t�hh¼�>0, then liml!1 P ðE10�1
l Þ��>0. In what fol-

lows, we prove that, if rn¼ð1ÿ �Þl ln l and r¼�ðl�Þ, for some

0<�<1, then liml!1 t�hh¼�>0, where �hh¼dE½�ðn;CÞ�e. Thus,

in these conditions, the communication graph is not

connected w.h.p.
We start with a lemma that characterizes the asymptotic

behavior of P E10�1
l jf�ðn;CÞ ¼ hg

ÿ �
as l goes to infinity.

Lemma 2. If 0<h�C and r¼rðlÞ� l, then

lim
l!1

P E10�1
l jf�ðn;CÞ ¼ hg

ÿ �
¼1:

Proof. See Appendix. tu

Let us set �hh¼dE½�ðn;CÞ�e. By Lemma 2, if 0< �hh�C and
liml!1 P ð�ðn;CÞ ¼ �hhÞ¼�>0, then the communication
graph is not connected w.h.p. The following lemma
establishes the asymptotic value of P ð�ðn;CÞ ¼ �hhÞ in the
hypothesis that rn¼ð1ÿ �Þl ln l and r¼�ðl�Þ, for some
0<�<1.

Lemma 3. Assume that n nodes, each with a transmitting range
of r, are distributed uniformly and independently at random in

R ¼ ½0; l�, and assume that rn¼ð1ÿ �Þl ln l and r¼�ðl�Þ, for
some 0<�<1. Then, liml!1 P ð�ðn;CÞ ¼ �hhÞ¼�>0.

Proof. See Appendix. tu
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Fig. 1. Node placement generating a disconnected communication

graph.



We are now ready to state the necessary condition for
connectedness w.h.p.

Theorem 5. Assume that n nodes, each with a transmitting
range of r, are distributed uniformly and independently at
random in R ¼ ½0; l�, and assume that rn¼ð1ÿ �Þl ln l for
some 0<�<1. If r¼rðlÞ2�ðl�Þ, then the communication
graph is not connected w.h.p.

Proof. The proof follows immediately by Lemmas 2 and 3,
and by observing that in the hypotheses of the theorem,
we have

�hh¼dE½�ðn;CÞ�e� l
�

r
�C;

r� l�� l, and n¼nðlÞ�1. tu
Observe that Theorem 5 holds only when r¼rðlÞ is �ðl�Þ,

for some 0<�<1. Although this expression covers a wide
range of functions for r, many other interesting functions
(for instance, functions including logarithmic terms) are not
considered. When r is not of the form �ðl�Þ, the following
weaker result holds [30].

Theorem 6. Assume that n nodes, each with a transmitting
range of r, are distributed uniformly and independently at
random in R¼½0; l� and assume that r¼rðlÞ� l and
n¼nðlÞ�1. If rn� l ln l, then the communication graph is
not connected w.h.p.

We summarize the analysis above in the following
theorem, which is the main result of this section.

Theorem 7. Assume that n nodes, each with a transmitting range
of r, are distributed uniformly and independently at random in
R¼½0; l� and assume that rn¼kl ln l for some constant k>0.
Further, assume that r¼rðlÞ� l and n¼nðlÞ�1. If k>2, or
k¼2 and r¼rðlÞ�1, then the communication graph is
connected w.h.p. If k�ð1ÿ �Þ and r¼rðlÞ2�ðl�Þ for some
0<�<1, then the communication graph is not connected w.h.p.
If r is not of the form �ðl�Þ, but rn� l ln l, then the
communication graph is not connected w.h.p.

In words, Theorem 7 states that setting k � 2 guarantees
connectedness w.h.p., while a value of k smaller than 1
implies that the communication graph is not connected
w.h.p. Hence, the asymptotic behavior of P ðCONNlÞ for
1�k<2 is not known. This result is somewhat weaker than
that presented in [26] for the case of Poisson distributed
nodes, where it is shown that, if k < 2, the graph is
disconnected w.h.p. This more accurate result is derived
from the nature of the Poisson distribution, whose
asymptotic behavior can be analyzed more easily with
respect to the case of uniformly distributed nodes.

The result stated in Theorem 7, for random distribu-
tion of nodes, can be compared to the transmitting
ranges necessary with worst-case and best-case place-
ments. Consider the case where the number of nodes is
linear with the length of the line, l. In the worst case,
nodes are clustered at either end of the line and the
transmitting range must be 
ðlÞ for the network to be
connected. In the best-case placement, nodes are equally
spaced at intervals of l=n, meaning that a constant
transmitting range is sufficient. Theorem 7’s result yields
a transmitting range of 
ðlog lÞ with random placement.

Thus, there is a substantial reduction in transmitting
range from the worst case, but also a significant increase
compared to the best-case.

4.2 The Two and Three-Dimensional Cases

In this section, we provide necessary and sufficient
conditions for connectedness w.h.p. in the cases of two
and three-dimensional networks.

We start with the following theorem, which is a direct
generalization of Theorem 4.

Theorem 8. Assume that n nodes, each with a transmitting
range of r, are distributed uniformly and independently at
random in R ¼ ½0; l�d, for d¼2; 3, and assume that rdn¼
kld ln l for some constant k>0, with r¼rðlÞ� l and
n¼nðlÞ�1. If k> d� kd, or k¼d � kd and r¼rðlÞ�1, then
the communication graph is connected w.h.p., where
kd ¼ 2ddd=2.

Proof. The proof is similar to that of Theorem 4. In this case,
the deployment region R is subdivided into nonoverlap-
ping d-dimensional cells of side r

2
ffiffi
d
p . tu

Unfortunately, generalizing the necessary condition of
Theorem 5 to the two and three-dimensional case is not
straightforward. In fact, in these cases, the conditions for the
graph to be disconnected are more difficult to analyze. For
instance, a “hole” in one dimension (as in the case of the
E10�1
l event of the previous section) is not sufficient to cause

disconnectedness because there could exist paths that “go
around the hole” using other dimensions, thereby main-
taining connectivity. Thus, we are only able to state the
following weaker necessary condition for connectedness,
which is obtained by analyzing the probability of an
isolated node.

Theorem 9. Suppose n nodes are placed in R¼½0; l�d, with
d¼2; 3, according to the uniform distribution. Further,
assume that r¼rðlÞ� l and n¼nðlÞ�1. If rdn2OðldÞ, then
the communication graph is not connected w.h.p.

Proof. See Appendix. tu

5 SIMULATION RESULTS FOR STATIONARY

NETWORKS

In this section, we present results of the simulation of
stationary ad hoc networks. The goals of the simulations
were:

. to validate the quality of the analytical results of the
previous section;

. to investigate stronger necessary conditions for
connectedness w.h.p. in the two and three-dimen-
sional cases; and

. to investigate the relationship between the critical
transmitting range and the minimum transmitting
range, which ensures (w.h.p.) the formation of a
connected component that includes a large fraction
(e.g., 90 percent) of the nodes.

The simulator distributes n nodes in ½0; l�d according to
the uniform distribution, then generates the communication
graph assuming that all nodes have the same transmitting
range r. Parameters n, l, d, and r are given as input to the
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simulator, along with the number ]iter of iterations to run.
The simulator returns the percentage of connected graphs
generated and the average number of neighbors of a node
(i.e., the average degree of the communication graph). The
average is evaluated over all iterations, including those that
yielded a disconnected graph.

5.1 Validating the Theoretical Analysis

The first set of simulations was aimed at validating the
theoretical results of Section 4.

In the case of one-dimensional networks, Theorem 7
states that, if rn¼kl ln l, then the communication graph is
connected w.h.p. if k�2, and it is not connected w.h.p. if
k�ð1ÿ �Þ, for some 0<�<1, where r¼rðlÞ2�ðl�Þ. In order
to validate this result, we have performed several simula-
tions. In each simulation, we set r¼ l� for �¼0:5; 0:75, and
0.9, and we varied l from 256 to 16,777,216 (16M).

First, we have verified the sufficient condition for
connectedness, setting n to 2lð1ÿ�Þ ln l, and performing
experiments for increasing values of l. For every value of
l, the percentage of connected networks generated was
always 100 percent. To verify the necessary condition, we
set n to ð1ÿ �Þlð1ÿ�Þ ln l and repeated the simulations. The
results are shown in Fig. 2. Also, in this case, the “quality”
of Theorem 7 was confirmed: For every value of �, the
percentage of connected graphs decreases as l increases.

It should be emphasized that the necessary condition of
Theorem 7 holds for very different “regimes” of r and n,
depending on the value of �: When � is close to 0, r grows
very slowly and n grows very fast as l increases; when � is

close to 1, the situation is reversed. Table 1 illustrates some
of these regimes by showing the values of r, n, and l for
Fig. 2, which was generated using medium to high values of
�. Due to limitations on the size of n in the simulator, we
were able to validate the theorem only for � � 0:5.

For two and three-dimensional networks, we first
verified the “quality” of Theorem 9, which states that, if
the order of magnitude of the product rdn is at most ld, then
the communication graph is not connected w.h.p. To this
end, we have simulated several “disconnected scenarios”
for increasing values of l. Namely, we considered values of l
ranging from 256 to 1,048,576 (1M) and, for every value of l,
we chose r and n in such a way that rdn ¼ ld and we ran
250 simulations. Two choices for n were considered: n¼

ffiffi
l
p

and n¼ l=ðlog2 lÞ2, thus obtaining values of n ranging from
16 to 1,024 and from 4 to 2,621, respectively.5

The results of these simulations fully agreed with the
theoretical result of Theorem 9: The percentages of con-
nected graphs generated were always quite low, and tend to
decrease as l increases. These results are not shown because
the percentage of connected graphs was quite close to 0 for
all simulation runs. We have also considered the impact of a
multiplicative factor to the product rdn on the percentages
of connected graphs generated. In particular, we set n¼

ffiffi
l
p

and r¼2l3=4 for d¼2 (thus, r2n¼4l2), and n¼
ffiffi
l
p

and r¼
1:5l5=6 for d¼3 (thus, r3n¼3:375l3). Although showing
higher percentages of connected graphs with respect to
the previous simulations, the asymptotic behavior was
confirmed: As l increases, the percentage of connected
graphs decreases (see Fig. 3).

In the second experiment, we have investigated whether
better lower bounds on the critical transmitting range can
be experimentally achieved. We ran simulations for values
of l ranging from 256 to 4,194,304 (4M), with values of n
ranging from 16 to 2,048 and from 4 to 8,666. The larger
value of l (and, consequently, of n) was needed in order to
better investigate the asymptotic behavior. For every
simulation, we set r in such a way that rdn¼ ld log2 l. With
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Fig. 2. Percentage of connected graphs for increasing values of l.

Parameters r and n were set to l� and ð1ÿ �Þlð1ÿ�Þ ln l, respectively.

TABLE 1
Values of r and n for Increasing Values of l

Fig. 3. Percentage of connected graphs for increasing values of l.

Parameter n was set to
ffiffi
l
p

. Parameter r was set to 2l3=4 for d ¼ 2 and

1:5l5=6 for d ¼ 3.

5. In the latter case, the simulation for n¼4 was not considered, due to its
scarce significance.



these values, 100 percent of the graphs were connected for

all simulation runs. We also set the transmitting range to

r0 ¼kr, for values of k ranging from 0.5 to 0.9 in steps of 0.1.

As shown in Figs. 4 and 5, the results showed that a ld log2 l

bound is sufficient to ensure increasing percentages of

connected graphs. Note that, for d¼3 (Fig. 5), when the

multiplicative constant on r gets small (k¼0:5), the

percentages of connected graphs are low but the asymptotic

trend is still increasing.
Our results provide precise values of the product of n and

rd that will generate connected graphs w.h.p. Among other

uses, a network designer can employ this information to

determine how large a transmitting range or how many nodes

are required for a specific application. Table 2 reports, for

d ¼ 2 and fixed l, the specific values of n and r that yield a

percentage of connected graphs above 99 percent (the value of

the transmitting range is expressed as a fraction of l). These

data can be directly applied in the network design process

and can give a feel for the relative magnitude of transmitting

range necessary for different values of n.

It is also useful to give a feeling for how large is the gap

between transmitting ranges that provide connectedness

w.h.p. and those that do not. For example, when d¼2,

l¼65; 536, and n¼256, we have that a value of the

transmitting range equal to 2l3=4¼8; 192 is not sufficient to

generate graphs which are connected w.h.p.: Only 89 per-

cent of the graphs generated are connected (see Fig. 3).

Conversely, a value of r equal to 0:6l3=4
ffiffiffiffiffiffiffiffiffiffiffi
log2 l

p
¼9; 830

provides 99 percent of connected graphs, and, by

Theorem 8, guarantees connectedness w.h.p.
To summarize, the results of our simulations of two

and three-dimensional networks provide strong evidence

to support the conjecture that a value of rdn in the order

of ld log l is necessary and sufficient to provide connect-
edness w.h.p.

5.2 Connectedness vs. Energy Cost

In this set of simulations, we investigated the minimum

transmitting range that, w.h.p., ensures either a connected

communication graph or the formation of a connected
component that includes a large fraction (e.g., 90 percent) of

the nodes. The rationale for this investigation is to see

whether weaker requirements on graph connectedness may

achieve considerable reductions of the transmitting range
(i.e., of the energy cost).

32 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2003

Fig. 4. Percentage of connected graphs for increasing values of l in two-

dimensional networks. Parameters n and r were set to
ffiffi
l
p

and

kl3=4
ffiffiffiffiffiffiffiffiffiffiffi
log2 l

p
, respectively.

Fig. 5. Percentage of connected graphs for increasing values of l in

three-dimensional networks. Parameters n and r were set to
ffiffi
l
p

and

kl5=6
ffiffiffiffiffiffiffiffiffiffiffi
log2 l

3
p

, respectively.

TABLE 2
Values of the Transmitting Range r

(Expressed as a Fraction of l) Ensuring Connectedness W.H.P.

Fig. 6. Average size of the largest connected component expressed as a

fraction of the total number of nodes. The x-axis reports the ratio r=�rr.
Parameters in this experiment were l ¼ 16; 384, n ¼

ffiffi
l
p
¼ 128, �rr ¼ 1; 430

for d ¼ 1, 3,800 for d ¼ 2, and 6,500 for d ¼ 3.



We ran 250 iterations for every simulation. First, we set
l¼16; 384, n¼

ffiffi
l
p
¼128, and, for every dimension, we

experimentally determined the minimum value �rr of the
transmitting range yielding 100 percent of connected
graphs. These values are 1,430 for d¼1, 3,800 for d¼2,
and 6,500 for d¼3. Starting from �rr, we decreased the value
of the transmitting range r until r¼�rr=2, and we evaluated
the average size of the largest connected component. The
result of this experiment is shown in Fig. 6. A similar
experiment, which confirmed the behavior displayed in
Fig. 6, was conducted setting l¼1; 048; 576 and n¼1; 024. As
can be seen, in two and three-dimensional networks,
connectedness can be traded off with energy cost: As r

decreases, the size of the largest connected component
decreases smoothly. When r¼�rr=2, the average size of the
largest component in two-dimensional networks is 0:81n
when l¼16; 384 and 0:94n when l¼1; 048; 576, while, in
three-dimensional networks, we have 0:67n and 0:87n,
respectively. Two and three-dimensional networks display
similar behaviors for values of r as low as 0:6�rr, while a
somewhat higher connectedness for two-dimensional net-
works arises for lower values of r. This tradeoff has
potential primarily in two and three-dimensional networks
because most disconnections in the d¼1 case split the
network into at least two moderately-sized components,
thereby eliminating the possibility of having a single
component with a very large fraction of the nodes. For this
reason, we confine our results in this section to d¼2; 3.

The phenomenon outlined by our experimental analysis
is coherent with a theoretical result from the theory of GRG
(which, we recall, can be applied only to dense ad hoc
networks) concerning two and three-dimensional networks,
namely, that connectivity occurs (asymptotically) when the
last isolated node disappears from the graph [24]. The
results of our simulations clearly show that when the graph
is disconnected, but r is close to �rr, there exists a very large
connected component (the giant component in random graph
terminology); thus, in this regime, disconnection is caused
by few isolated nodes. This seems to indicate that, also in
case of sparse two and three-dimensional networks, con-
nectivity occurs (asymptotically) when the last isolated
node disappears from the communication graph.

We also evaluated the ratio between �rr and the minimum
value r0 of the transmitting range such that the average size
of the largest connected component is at least 0:9n, for
values of l ranging from 256 to 1,048,576 (1M). The number
of nodes was set to

ffiffi
l
p

. The result of this experiment is
shown in Fig. 7. Two and three-dimensional networks
display similar behaviors: As l increases, the ratio r0=�rr tends
to “converge” to 0.5. The figure also displays the fraction of
connected graphs when r¼r0. As can be seen, this fraction
drops to zero as l increases. Thus, for a large value of l,
halving �rr produces disconnected graphs w.h.p., but the
average size of the largest connected component is
approximately 0:9n. This means that considerable energy
savings can be achieved if connecting 90 percent of the
nodes is acceptable. For many applications, substantially
increasing the energy in order to connect the remaining
10 percent of the nodes is not worthwhile.

6 THE CRITICAL TRANSMITTING RANGE IN MOBILE

NETWORKS

In this section, we consider the mobile version of MTR,
which can be formulated as follows:

Definition 2 (Minimum Transmitting Range Mobile

(MTRM)). Suppose n nodes are placed in R¼½0; l�d and
assume that nodes are allowed to move during a time interval
½0; T �. What is the minimum value of r such that the resulting
communication graph is connected during some fraction, f , of
the interval?

A formal analysis of MTRM is much more complicated
than that of MTR and is beyond the scope of this paper. In
this section, we study MTRM by means of extensive
simulations. The goal is to study the relationship between
the value of r ensuring connected graphs in the stationary
case (denoted rstationary) and the values of the transmitting
range ensuring connected graphs during some fraction of
the operational time.

In this paper, we focus on the transmitting ranges
needed to ensure connectedness during 100 percent,
90 percent, and 10 percent of the simulation time (denoted
r100, r90, and r10, respectively). These values are chosen as
indicative of three different dependability scenarios that the
ad hoc network must satisfy. In the first case, the network is
used for safety-critical or life-critical applications (e.g.,
systems to detect physical intrusions in a home or business).
In the second case, temporary network disconnections can
be tolerated, especially if this is counterbalanced by a
significant decrease of the energy consumption with respect
to the case of continuous connectedness. In the latter case,
the network stays disconnected most of the time, but
temporary connection periods can be used to exchange data
among nodes. This could be the case of wireless sensor
networks used for environmental monitoring.

We also consider the value of the transmitting range
ensuring that the average size of the largest connected
component is a given fraction of the total number of nodes
in the network. Table 3 summarizes the values of the
transmitting range considered in our simulations. The
rationale for this investigation is that the network designer
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Fig. 7. Value of ratio r0=�rr (y-axis) for increasing values l. Also shown is the

fraction of connected graphs when the transmitting range was set to r0.



could be interested in maintaining only a certain fraction of
the nodes connected, if this would result in significant
energy savings. Further, considering that, in many scenarios
(e.g., wireless sensor networks), the cost of a node is very
low, it could also be the case that dispersing twice as many
nodes as needed and setting the transmitting ranges in such
a way that half of the nodes remain connected is a feasible
and cost-effective solution.

In all the simulations reported herein, we set d¼2, as the
two-dimensional setting is an appropriate model for many
applications of wireless ad hoc networks.

6.1 Mobility Models

To generate the results of this section, we extended the
simulator used in the previous section for the stationary
case by implementing two mobility models. The initial
communication graph is generated as in the stationary case.
Then, the nodes start moving according to the selected
mobility model (all the nodes use the same mobility model).
For each mobility step, the simulator checks for graph
connectedness and, in case the graph is not connected,
evaluates the size of the largest connected component. At
the end of the simulation, the percentage of connected
graphs, the minimum, and the average size of the largest
connected component (averaged over the runs that yield a
disconnected graph) are reported.

The first mobility model implemented in the simulator is
the classical random waypoint model [14], and is used to
model intentional movement: Every node chooses uni-
formly at random a destination in ½0; l�2, and moves toward
it along a straight line with a velocity chosen uniformly at
random in the interval ½vmin; vmax�. When it reaches the
destination, it remains stationary for a predefined pause
time tpause, and then it starts moving again according to the
same rule. In the simulator, tpause is expressed as the
number of mobility steps for which the node must remain
stationary, and velocity is normalized with respect to the
mobility step. We have also included a further parameter in
the model, namely, the probability pstationary that a node
remains stationary during the entire simulation time.
Hence, only ð1ÿ pstationaryÞn nodes (on the average) will
move. Introducing pstationary in the model accounts for those
situations in which some nodes are not able to move. For
example, this could be the case when sensors are spread
from a moving vehicle and some of them remain entangled,
say, in a bush or tree. This can also model a situation where
two types of nodes are used, one type that is stationary and
another type that is mobile.

The second mobility model resembles Brownian (i.e.,
nonintentional) motion. Mobility is modeled using para-
meters pstationary, ppause, andm. Parameter pstationary is defined
as above. Parameter ppause is the probability that a node
remains stationary at a given step. This parameter accounts
for heterogeneous mobility patterns, in which nodes may
move at different times. Intuitively, the higher the value of
ppause, the more heterogeneous the mobility pattern is.
However, values of ppause close to 1 result in an almost
stationary network. If a node is moving at step i, its position
in step iþ 1 is chosen uniformly at random in the square of
side m centered at the current node location. If the chosen
position is out of the boundaries of the deployment region, a
new position is generated until a location inside R is found.
Parameter m models, to a certain extent, the velocity of the
nodes: The largerm is, the more likely it is that a node moves
far away from its position in the previous step.

6.2 Simulation Results for Increasing System Size

In the first set of simulations, we have investigated the
value of the ratio of r100 (respectively, of r90 and r10) to
rstationary for values of l ranging from 256 to 16,384. We also
considered the largest value r0 of the transmitting range
that yields no connected graphs. In both mobility models, n
was set to

ffiffi
l
p

. The value of rstationary is obtained from the
simulation results for the stationary case of the previous
section, while those for r100, r90, r10, and r0 are averaged
over 50 simulations of 10,000 steps of mobility each.

First, we considered the random waypoint model,
with parameters set as follows: pstationary¼0, vmin¼0:1,
vmax¼0:01l, and tpause¼2; 000. This setting models a
homogeneous mobility scenario in which all nodes are
moving. The values of the ratios are reported in Fig. 8.
Fig. 9 reports the same graphic obtained for the
Brownian-like model, with pstationary¼0:1, ppause¼0:3,
and m¼0:01l. This is a more heterogeneous mobility
scenario in which a small percentage of the nodes remain
stationary.

The graphics show the same qualitative behavior: As l
increases, the ratio of the different transmitting ranges for
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TABLE 3
Values of the Transmitting Range

Considered in Our Simulations

Fig. 8. Values of the ratio rx=rstationary (y-axis) for increasing values l in
the random waypoint model.



mobility to rstationary tends to increase, and this increasing
behavior is more pronounced for the case of r100. However,
even when l is large, a modest increase to rstationary (about
21 percent in the random waypoint and about 25 percent in
the Brownian-like model) is sufficient to ensure connected-
ness during the entire simulation time. Comparing the
results for the two mobility models, we can see somewhat
higher values of the ratios for the Brownian-like model,
especially for the case of r100. This seems to indicate that
more homogeneous mobility patterns help in maintaining
connectedness. However, it is surprising that the results for
the two mobility models are so similar. This indicates that it
is more the existence of mobility rather than the precise
details of how nodes move that is significant, at least as far
as network connectedness is concerned.

The graphics reported in Figs. 8 and 9 also show that r90

is far smaller than r100 (about 35-40 percent smaller) in both
mobility models, independently of the system size. Hence,
substantial energy savings can be achieved under both
models if temporary disconnections can be tolerated. When
the requirement for connectedness is only 10 percent of the
operational time, the decrease in the transmitting range is
about 55-60 percent, enabling further energy savings.
However, if r is reduced to about 25 percent to 40 percent
of rstationary, the network becomes disconnected during the
entire simulation time.

We have also investigated the average size of the largest
connected component when the transmitting range is set to
r90, r10, and r0. Once again, the results of the simulations
were almost independent of the mobility model used. For
this reason, we only report the results obtained with the
random waypoint model (Fig. 10). The graphic shows that
the ratio of the average size of the largest connected
component to n increases as l increases. When the
transmitting range is set to r90 and l is sufficiently large,
this ratio is very close to 1 (about 0.98 in both mobility
models). This means that during the short time in which the
network is disconnected, a vast majority of its nodes forms a
large connected component. Hence, on the average, dis-
connection is caused by only a few isolated nodes (as it was

in the stationary case). This fact is confirmed by the plot for
r10: Even when the network is disconnected most of the
time, a large connected component (of average size about
0:9n for large values of l) still exists. However, if the
transmitting range is further decreased to r0, the size of the
largest connected component drops to about 0:5n.

We also considered the value of the transmitting range
ensuring that the average size of the largest connected
component is at least 0:9n, 0:75n, and 0:5n, respectively,
during the entire simulation. The corresponding values of
the transmitting range are denoted rl90, rl75, and rl50. The
mobility parameters and n were set as above. The rationale
for this investigation is that the network designer could be
interested in maintaining only a certain fraction of the
nodes connected if this would result in significant energy
savings.

The value of the ratio of rl90, rl75, and rl50 to rstationary for
increasing values of l in the random waypoint model is
shown in Fig. 11. Simulation results have shown that, while
rl90=rstationary tends to decrease with increasing values of l,
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Fig. 9. Values of the ratio rx=rstationary (y-axis) for increasing values l

(x-axis) in the Brownian-like model.
Fig. 10. Average size of the largest connected component expressed as

a fraction of n (y-axis) for increasing values of l (x-axis) in the random

waypoint model.

Fig. 11. Values of the ratio of rl90, rl75, and rl50 to rstationary (x-axis) for

increasing values of l (y-axis) in the random waypoint model.



converging to about 0.52, the ratios rl75=rstationary and
rl50=rstationary are almost independent of l. In particular,
rl75=rstationary is about 0.46 and rl50=rstationary is about 0.4.
Further, the relative differences between the three ratios
decrease for an increasing value of l. This indicates that,
while for small networks (few nodes distributed in a
relatively small region), the energy needed to maintain
90 percent of the nodes connected is significantly higher
than that required to connect 50 percent of the nodes (rl50 is
less than half of rl90 for l¼256), for large networks the
savings are not as great if the requirement for connectivity
is only 50 percent of the nodes (rl50 is 20 percent smaller
than rl90 for l¼16; 384).

6.3 Simulation Results for Different Mobility
Parameters

A second set of simulations was done to investigate the
effect of different choices of the mobility parameters on the
value of r100. We considered the random waypoint model
with l¼4; 096 and n¼

ffiffi
l
p
¼64. The default values of the

mobility parameters were set as above, i.e., pstationary¼0,
vmin¼0:1, vmax¼0:01l, and tpause¼2; 000. Then, we varied
the value of one parameter, leaving the others unchanged.

Fig. 12 reports the value of r100 for values of pstationary
ranging from 0 (no stationary nodes) to 1 (corresponding to
the stationary case) in steps of 0.2. Simulation results show a
sharp drop of r100 in the interval 0.4-0.6: For pstationary¼0:4,
r100 is about 10 percent larger than rstationary, while for
pstationary¼0:6 and for larger values of pstationary, we have
r100�rstationary. To investigate this drop more closely, we
performed further simulations by exploring the interval 0.4-
0.6 in steps of 0.02. As shown in Fig. 12, there is a distinct
threshold phenomenon: When the number of stationary
nodes is about n=2 or higher, the network can be regarded
as practically stationary from a connectedness point of
view. This result is very interesting since it seems to
indicate that a certain number (albeit a rather large fraction)
of stationary nodes would significantly increase network
connectedness. With more than n=2 mobile nodes, the
network quickly becomes equivalent to one in which all
nodes are mobile.

The effect of tpause on r100 is shown in Fig. 13. Increasing
values of tpause tend to decrease the value of r100, although
the trend is not as pronounced as in the case of pstationary. A
threshold phenomenon seems to exist in the interval 4,000 -
6,000 in this case also. However, further simulations in this
interval have shown that, although the trend can be
observed, no sharp threshold actually exists. We believe
that the rationale for this is the following: While the value of
pstationary has a direct impact on the “quantity of mobility”
(which can be informally understood as the percentage of
stationary nodes with respect to the total number of nodes),
the effect of the pause time is not so direct. In fact, in the
random waypoint model, the “quantity of mobility”
depends heavily on the node destinations, which are
chosen uniformly at random: Even if the pause time is long
and the velocity is moderate, a node could be “mobile” for a
long time if its destination is very far from its initial
location. So, an increased pause time tends to render the
system more stationary, but in a less direct way than
pstationary.

We have also evaluated the impact of different values of
vmax on the value of r100. The simulation results, which are
not reported, have shown that r100 is almost independent of
the value of vmax: Except for low velocities (vmax below 0:1l),
r100 is slightly above rstationary. This quite surprising result
could be due to the apparently counterintuitive fact that the
“quantity of mobility” is only marginally influenced by the
value of vmax, and a larger value of vmax tends to decrease
the “quantity of mobility.” In fact, the larger vmax is, the
more likely it is that nodes arrive quickly at destination and
remain stationary for tpause¼2; 000 steps.

7 CONCLUSIONS

In this paper, we have analyzed the critical transmitting
range for connectivity in both stationary and mobile
wireless ad hoc networks.

For stationary networks, we have provided both analy-
tical and experimental results. We have proven tight
bounds on the critical transmitting range for the one-
dimensional case, and given less precise bounds in the case
of two and three-dimensional networks. The most notable
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Fig. 12. Values of the ratio r100=rstationary (y-axis) for different values of

pstationary in the random waypint model.

Fig. 13. Values of the ratio r100=rstationary (y-axis) for different values of

tpause in the random waypoint model.



aspect of our analysis is that, contrary to the case of existing
theoretical results, it can be applied to both dense and
sparse ad hoc networks. We have also presented the results
of extensive simulations, which have shown that a stronger
necessary condition for connectedness w.h.p. than that
proved in the paper is likely to hold in two and three-
dimensional networks. Furthermore, we have investigated
the relationship between the critical transmitting range and
the minimum transmitting range that ensures the formation
of a connected component containing a large fraction (e.g.,
90 percent) of the nodes. The results of this investigation
have shown that in two and three-dimensional networks,
network “connectedness” and energy cost can be traded off:
Reducing the transmitting range, we obtain progressively
“less connected” graphs. This behavior is not displayed in
one-dimensional networks, where a modest decrease on the
transmitting range over the minimum required for con-
nectedness w.h.p. can cause the formation of several
connected components of relatively small size.

We have also investigated the critical transmitting range

in two-dimensional mobile networks through extensive

simulations. We have considered two mobility patterns

(random waypoint and Brownian-like) to model both

intentional and nonintentional movements. Simulation

results have shown that considerable energy savings can

be achieved if temporary disconnections can be tolerated or

if connectedness must be ensured only for a large fraction of

the nodes. Regarding the influence of mobility patterns,

simulation results have shown that connectedness is only

marginally influenced by whether motion is intentional or

not, but it is rather related to the “quantity of mobility,”

which can be informally defined as the percentage of

stationary nodes with respect to the total number of nodes.

For example, when about n=2 nodes are static, the network

can be regarded as stationary from a connectivity point of

view. Further investigation in this direction is needed and is

a matter of ongoing research.

APPENDIX

Proof of Theorem 4. Let ½0; l� be subdivided into C¼ 2l
r

nonoverlapping segments (cells) of length r
2 . It is

immediate that, if every segment contains at least one
node, then the resulting communication graph is
connected. Let �ðn;CÞ be the random variable denoting
the number of empty cells. Since �ðn;CÞ is a nonnegative
integer random variable, then

P ð�ðn;CÞ > 0Þ � E½�ðn;CÞ�;

where E½�ðn;CÞ� is the expected value of �ðn;CÞ ([20,
pp. 10-11]). We have [16]:

E½�ðn;CÞ� ¼ C 1ÿ 1

C

� �n
:

We want to investigate the asymptotic value of E½�ðn;CÞ�
as l!1, which, given the hypotheses r¼rðlÞ� l and
n¼nðlÞ�1, is equivalent to the asymptote as C; n!1.
Taking the logarithm, we obtain:

lnE½�ðn;CÞ� ¼ lnC þ n ln 1ÿ 1

C

� �
¼ ln

2l

r
þ n ln 1ÿ r

2l

� �
:

ð1Þ

The Taylor series expansion of the ln part of the second
term of (1) yields:

ln 1ÿ r

2l

� �
¼ ÿ r

2l
ÿ r2

8l2
ÿ r3

24l3
ÿ � � � < ÿ r

2l
:

Thus, we obtain the following upper bound:

lnE½�ðn;CÞ� < ln
2l

r
ÿ nr

2l
: ð2Þ

Substituting the expression rn¼kl ln l into inequality (2),
we obtain:

lnE½�ðn;CÞ� < ln
2l

r
ÿ k ln l

2
¼ ln

2

rlk=2ÿ1
:

If k>2, or if k¼2 and r¼rðlÞ�1, then it is easily seen
from this expression that limn;C!1 lnE½�ðn;CÞ� ¼ ÿ1.
Therefore,

lim
n;C!1

E½�ðn;CÞ� ¼ 0

and liml!1 P ð�ðn;CÞ¼0Þ ¼ 1. It follows that each cell
contains at least one node w.h.p., which implies
liml!1 P ðCONNlÞ ¼ 1. tu

Proof of Lemma 2. Consider the complementary event of
E10�1
l , i.e., E1

l ¼
l ÿ E10�1
l . It can be easily seen that E1

l

corresponds to all the values of the random variables
Z1; . . . ; Zn such that the 1-bits in B are consecutives.
Given the hypothesis of independence of the random
variables Z1; . . . ; Zn, when exactly h cells out of C are
empty (i.e., h bits in B are 0), P E1

l jf�ðn;CÞ ¼ hg
ÿ �

corresponds to the ratio of all configurations of ðC ÿ
hÞ consecutive 1-bits over all possible configurations
of h 0-bits in C positions, i.e.,

P E1
l jf�ðn;CÞ ¼ hg

ÿ �
¼hþ 1

C
h

ÿ � :

Since C ¼ l=r and r� l, we have:

lim
l!1

P E10�1
l jf�ðn; CÞ ¼ hg

ÿ �
¼ 1ÿ lim

l!1
P E1

l jf�ðn;CÞ ¼ hg
ÿ �

¼ 1ÿ lim
C!1

hþ 1
C
h

ÿ � :

We can rewrite the last limit as:

lim
C!1

hþ 1
C
h

ÿ � ¼ lim
C!1

ðhþ 1Þ!
CðC ÿ 1Þ . . . ðC ÿ hþ 1Þ :

Since h�C, we have:

lim
C!1

ðhþ 1Þ!
CðC ÿ 1Þ . . . ðC ÿ hþ 1Þ ¼ lim

C!1

ðhþ 1Þ!
Ch

:

Taking the logarithm, we obtain:

lim
C!1

ln
ðhþ 1Þ!
Ch

¼ lim
C!1

lnðhþ 1Þ!ÿ h lnC

¼ lim
C!1

h lnhÿ h lnC ¼ lim
C!1

hðlnhÿ lnCÞ:
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Since 0<h�C, we conclude that

lim
C!1

hðlnhÿ lnCÞ¼ÿ1;

hence,

lim
C!1

hþ 1
C
h

ÿ � ¼ 0;

and the lemma is proved. tu
Proof of Lemma 3. Proceeding as in the proof of Theorem 4

and observing that rn¼ð1ÿ �Þl ln l and r¼�ðl�Þ implies

n¼nðlÞ�1, we obtain:

lnE½�0ðn; CÞ� � ln
l�

r
;

hence E½�0ðn;CÞ�� l�

r . Given the hypothesis r¼�ðl�Þ, we

have that liml!1E½�0ðn;CÞ�¼c, for some constant c>0.

Since rn¼ð1ÿ �Þl ln l for some 0<�<1, we are in the

hypothesis of Theorem 2, and the limit distribution of the

random variable �ðn;CÞ is the Poisson distribution of

parameter �¼ liml!1E½�0ðn; CÞ�¼c (see Theorem 2).

Hence,

lim
l!1

P ð�ðn;CÞ ¼ �hhÞ¼ c

e

� �c
� 1
c!
>0:

ut

Proof of Theorem 9. We report the proof for the case d¼2.

The proof for the case d¼3 is similar.
Consider the event ISOLATEDi, corresponding to all

the values of the random variables Z1; . . . ; Zn such that
node i is isolated in the communication graph, for
1� i�n. It is immediate that a necessary condition for
connectedness w.h.p. is that liml!1 P ðISOLATEDiÞ¼0.
Considering that node i is isolated if none of the
remaining nÿ 1 nodes is within its transmitting range,
we have:

1ÿ �r
2

l2

� �nÿ1

�P ðISOLATEDiÞ� 1ÿ �r
2

4l2

� �nÿ1

;

where the upper and lower bounds account for the fact

that node i is in the corner or at a distance of at least r

from the border of the deployment region, respectively.

Hence, the asymptotic behavior of P ðISOLATEDiÞ is

given by liml!1 1ÿ cr2

l2

� �n
, for some constant c>0.

Taking the logarithm we have:

lim
l!1

ln 1ÿ cr
2

l2

� �n
¼ lim
l!1

n ln 1ÿ cr
2

l2

� �
:

Considering that r¼rðlÞ� l and using the Taylor expa-

sion, we can rewrite the last term as liml!1ÿ cr2n
l2

. Since

r2n2Oðl2Þ, we have two cases:

. r2n ¼ �ðl2Þ; in this case, we have

lim
l!1
ÿ cr

2n

l2
¼ÿc0;

for some c0>0. It follows that

lim
l!1

P ðISOLATEDiÞ¼ eÿc
0
>0:

. r2n ¼ oðl2Þ; in this case, we have liml!1ÿ cr2n
l2
¼ 0.

It follows that liml!1 P ðISOLATEDiÞ¼ 1. tu
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