
Replica Placement for Route Diversity in
Tree-Based Routing Distributed Hash Tables

Cyrus Harvesf and Douglas M. Blough, Senior Member, IEEE

Abstract—Distributed hash tables (DHTs) share storage and routing responsibility among all nodes in a peer-to-peer network. These

networks have bounded path length unlike unstructured networks. Unfortunately, nodes can deny access to keys or misroute lookups.

We address both of these problems through replica placement. We characterize tree-based routing DHTs and define MAXDISJOINT, a

replica placement that creates route diversity for these DHTs. We prove that this placement creates disjoint routes and find the

replication degree necessary to produce a desired number of disjoint routes. Using simulations of Pastry (a tree-based routing DHT),

we evaluate the impact of MAXDISJOINT on routing robustness compared to other placements when nodes are compromised at

random or in a contiguous run. Furthermore, we consider another route diversity mechanism that we call neighbor set routing and show

that, when used with our replica placement, it can successfully route messages to a correct replica even with a quarter of the nodes in

the system compromised at random. Finally, we demonstrate a family of replica query strategies that can trade off response time and

system load. We present a hybrid query strategy that keeps response time low without producing too high a load.

Index Terms—Distributed systems, peer-to-peer networks, distributed hash tables, routing, replica placement, robustness.

Ç

1 INTRODUCTION

PEER-TO-PEER (p2p) networks are a popular substrate for
building distributed applications because of their effi-

ciency, scalability, resilience to failure, and ability to self-
organize. The p2p architecture relies on the distribution of
responsibility among hundreds of thousands, if not millions,
of nodes in the network. Therefore, if a small set of nodes fail
to serve data objects, properly maintain routing information,
or route messages, the integrity of a very large-scale system
may be compromised.

The efficiency of lookups has become a central focus of
p2p design because many popular applications, like name
resolution, publish-subscribe, and IP communication, rely
on a lookup service as a core functionality. A p2p distributed
hash table (DHT) may be used to provide this functionality.
DHTs [25], [26], [33], [34] structure the network topology in a
way that enables routing algorithms to produce lookup
paths of bounded length (typically OðlogNÞ).

Unfortunately, when deployed over the Internet, DHTs
may be impacted by the failure or compromise of peers in
the overlay and performance guarantees no longer hold. In
fact, it may not be possible to fetch a desired object at all.
Many p2p networks allow nodes to join without prejudice,
leaving the network vulnerable to attack. Furthermore, the
network could face coordinated attacks from competitors or
other groups that have an interest in the failure of the
network. This type of coordinated attack behavior has been

reported, for example, in p2p file sharing systems. DHTs
are inherently less resilient to these attacks than unstruc-
tured networks because unstructured networks typically
broadcast messages, which is a more robust (and much
more expensive) mechanism.

Sit and Morris [31] classify attacks on DHTs into three
categories:

1. storage and retrieval attacks, which target the
manner in which peers manage data items;

2. routing attacks, which target the manner in which
peers route messages; and

3. miscellaneous attacks, which target other aspects of
the system, such as admission control or the under-
lying network routing service.

The first class of attack is commonly addressed with
replication. Objects are replicated at several peers in the
network to increase the likelihood that there will be a
correct replica available. The benefits of replication on load
balancing and overall performance have also been studied.
To our knowledge, ours is the first work that considers how
the placement of replicas affects object reachability through
the routing infrastructure.

Numerous works [2], [3], [32] have relied on route
diversity to mitigate the effects of routing attacks. Srivatsa
and Liu [32] introduced the notion of independent lookup
paths to improve routing robustness. Two paths are said to
be independent if they share no hops other than the source
and destination peers. It is worth noting that route diversity
has benefits in addition to improving routing robustness.
For example, diverse routes can be used to improve load
balance and fairness or to circumnavigate congested areas
of the network.

Our work realizes the benefits of replication and route
diversity in concert through replica placement. In this
paper, we consider a class of DHTs that route messages
using a scheme which we call tree-based routing. We show

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 8, NO. 3, MAY/JUNE 2011 419

. C. Harvesf is with Microsoft Corporation, 1 Microsoft Way, Redmond, WA
98052. E-mail: cyrush@microsoft.com.

. D.M. Blough is with the Department of Electrical and Computer
Engineering, Georgia Institute of Technology, KACB, Room 3356, Atlanta,
GA 30332-0765. E-mail: doug.blough@ece.gatech.edu.

Manuscript received 14 Oct. 2008; revised 24 June 2009; accepted 22 Sept.
2009; published online 4 Dec. 2009.
Recommended for acceptance by A. Schiper.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-2008-10-0158.
Digital Object Identifier no. 10.1109/TDSC.2009.49.

1545-5971/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

that there exists a replica placement, which we call
MAXDISJOINT, that creates disjoint routes in DHTs of this
type. We prescribe the number and placement of replicas
necessary to produce d disjoint routes from any source
node to the replica set. With this scheme, we are able to
tolerate d� 1 malicious peers, whether they are attacking
the storage and retrieval of data items or the routing
infrastructure. Our approach is targeted specifically at
DHT-based (structured) p2p systems with a multilevel
routing structure. So-called “one-hop” DHTs [14], [15] are
discussed in Section 6.

In order for disjoint routes to improve the robustness of
the system, the client must be able to verify the integrity of
data items. This is necessary for the client to detect when a
malicious peer has tampered with the result of a data item
lookup. Therefore, we assume that data in the system are
self-certifying. This assumption is quite common in peer-to-
peer systems [3], [7], [27] and is discussed in more detail in
Section 6.

Using Pastry as an example, we evaluate MAXDISJOINT

through simulation and show that a DHT with typical
configuration parameters can benefit from our replica
placement. Our experiments show that with only eight
replicas and a quarter of nodes compromised at random, a
node can find a route, which consists of only uncompro-
mised nodes, to a correct replica with greater than 97 percent
probability. MAXDISJOINT also tolerates runs of compro-
mised nodes; with 16 replicas and 85 percent of the DHT
compromised in a run, lookups can be resolved with greater
than 96 percent probability. Furthermore, we use a technique
which we call neighbor set routing to increase route diversity
and improve the probability of lookup success. For example,
a lookup performed with neighbor set routing and MAXDIS-

JOINT placement can be resolved successfully with greater
than 97 percent probability with 40 percent of nodes
compromised at random. Finally, we demonstrate that the
strategy used to query replicas can have a significant impact
on performance and we propose a hybrid query strategy that
can be used to trade off response time and system load for the
best performance.

2 RELATED WORK

To place our work in context, we discuss related work on
replica placement, peer-to-peer routing security, and gen-
eral peer-to-peer security issues.

2.1 Replica Placement

Replica placement has long been studied in the realm of
distributed computing. Many studies have compared the
performance of different placement schemes in terms of
quality of service, availability, and time to recovery in
different types of serverless systems [6], [9], [19], [22]. The
first DHT-based replication schemes were only concerned
with availability and thus local replication, i.e., replicas
placed close to the master copy in the ID space, was used
[26], [33]. As detailed herein, such placements have very
little routing robustness.

A very important paper, which proposed the first
deterministic nonlocal replica placement scheme for
DHT-based systems, was that of Ghodsi et al. [12]. This
paper discussed a set of symmetric replica placement schemes
that, for a replication degree of d, divide the ID space into

equivalence classes, each of size d. If an object with its ID in a
particular equivalence class is replicated, replicas are placed
at all IDs in the class. This is a very general definition, which
is completely independent of routing. Thus, for a particular
DHT structure, some such schemes could produce a large
number of disjoint routes while others might produce very
few. To realize benefits of this approach for routing security,
it is therefore necessary to instantiate particular schemes for
different DHTs or classes of DHTs and evaluate their routing
characteristics. This is exactly the problem considered in this
paper. The instantiation of symmetric replication that was
presented in [12] was equally spaced replication. The paper
contained a thorough evaluation, which showed that the
technique reduces the message overhead in node joins and
leaves, provides better load balance, and improves fault
tolerance. However, routing robustness was not considered.
It is worth noting that the MAXDISJOINT placement is
equivalent to equally spaced replication in Chord. In other
DHT implementations, however, MAXDISJOINT provides
added flexibility in terms of tuning routing robustness that
equally spaced replication does not provide.

Our prior work is the first that considers the impact of
replica placement on routing robustness in DHTs. Our initial
work focused on the benefits of equally spaced placement in
Chord [16] and has expanded into the MAXDISJOINT

placement [17], a general solution that gives the benefits of
equally spaced placement in Chord to all DHTs that employ
a tree-based routing scheme.

2.2 Peer-to-Peer Routing Security

A number of works that look to improve routing security
are centered around the notion of route diversity. For
example, Artigas et al. propose Cyclone, an equivalence-
based routing scheme deployed over an existing structured
peer-to-peer overlay [2]. Independent lookup paths are
created by routing across different equivalence classes.
Since the paths are independent and do not differ in the
destination, Cyclone does not naturally mitigate the effects
of storage and retrieval attacks. Furthermore, each peer is
required to maintain additional routing information, which
incurs overhead. In contrast, our replica placement creates
disjoint routes without requiring any additional routing
state or modifying the underlying routing scheme.

Portmann et al. use route diversity to provide message
confidentiality [24]. Messages are split in two, encrypted,
and sent to the destination across diverse paths. Route
diversity is created by routing messages through the
routing table entries that minimize route overlap. The
appropriate entries are chosen using empirical results that
depend on the network size. They show that, in the best
case, this method results in an average path overlap of
15-25 percent between a pair of routes. In other words, at
best, 15 percent of the routes will be common to both
paths. We show analytically that our placement creates
multiple nonoverlapping routes.

Castro et al. combine secure node identifier assignment,
secure routing table maintenance, and secure message
forwarding to create a secure routing primitive [3]. Secure
node identifier assignment ensures that an adversary cannot
take arbitrary identifiers. It also ensures a uniform distribu-
tion of compromised nodes. Secure routing table mainte-
nance ensures that the average fraction of compromised

420 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 8, NO. 3, MAY/JUNE 2011

routing table entries does not exceed the fraction of
compromised nodes in the network.

Secure message forwarding guarantees that a message
sent to a key is delivered to all of its replicas with high
probability. This component most closely resembles our
work. It relies on route diversity to deliver messages to the
neighborhood of destination. Unlike our approach, this
iterative redundant routing scheme requires modification to
the routing infrastructure of the DHT. One such modification
is the forwarding of messages through the neighbors of the
source node, which we call neighbor set routing. We will show
that neighbor set routing is useful in creating route diversity
and can improve on the benefit of our replica placement.

Mickens and Noble develop a framework for diagnosing
broken overlay routes, whether they result from IP-level
link failures or malicious peers in the overlay [21]. Once the
cause of the broken route is detected, the IP-level link is
circumnavigated or the malicious peer is excluded from the
system. Rather than excluding peers that may have been
falsely diagnosed as malicious, we use route diversity to
avoid faulty nodes.

It is worth noting that path disjointedness has been
considered in other contexts as well. Castro et al. propose a
p2p multicast system for high bandwidth content (e.g.,
streaming video) [5]. Content is split into “stripes” such that
the quality of the content improves with the number of
stripes downloaded simultaneously. The stripes are deliv-
ered to subscribers via multicast trees. To ensure that the
failure of a single node does not compromise all stripes, the
trees are constructed to be inner node disjoint. In other
words, no node will be an inner node of more than one
multicast tree. Therefore, if a single node fails, no more than
one stripe is lost as a result. Inner node disjoint trees are
constructed by selecting roots that vary in terms of the node
prefixes. MAXDISJOINT creates disjoint paths in much the
same way in Pastry.

2.3 General Issues in Peer-to-Peer Network Security

Consistent node identity is critical to key placement and
routing. Most structured networks place a key at the node
with identifier “closest” to the key identifier. If nodes do not
maintain a single, consistent identity, key placement can be
compromised. Furthermore, an adversary that can take
multiple identities has the ability to partition the network
[8], [30]. Secure admission control protocols are necessary to
limit the number of identities an entity can obtain [28].
Other works have implemented node identities in a
censorship-resistant, anonymous fashion [10], [29].

Nodes must also be able to store keys fairly in a manner
that allows for verification. A number of works have aimed
to create self-certifying data. CFS [7] uses the cryptographic
hash of a data item as its key. PAST [27] relies on
cryptographic signatures to verify data integrity. An
alternative is to use replication and Byzantine-fault-tolerant
algorithms [4] to maintain data consistency and correctness.
Self-certifying data are discussed in more detail in Section 6.

3 DISTRIBUTED HASH TABLES WITH TREE-BASED

ROUTING

Distributed hash tables are often referenced by their
geometry, i.e., ring (Chord [33]), torus (CAN [25]), tree

(Plaxton [23]), or some hybrid (Pastry [26], Tapestry [34]).
The geometry impacts neighbor and route selection, which
can have an impact on flexibility, resilience, and proximity
performance as studied in [13]. Although we use the term
“tree-based routing,” we are not referring to the geometry,
but the routing algorithm. Tree-based routing algorithms
have specific properties that we define herein.

3.1 Tree-Based Routing DHTs

Consider a DHT with an ordered id space I with size N ¼
jIj and a branching factor B such that logB N is integral. The
branching factor is used by each node to construct its
routing table. The routing table of a node u has the
following properties:

1. The node u partitions the entire id space into
contiguous segments and selects one node from
each id segment to include in its routing table. The
partitioning is performed as follows:

a. The node u partitions the id space into B equal
size contiguous parts.

b. Of the B id segments, u selects the id segment I 0

of which it is a member.
c. Steps 1a and 1b are repeated to repartition I 0 until

parts of size one are created. The part that consists
of the node u is discarded (there is no need for u to
maintain a routing table entry to itself).

d. At the end of the partitioning process, u will
have created ðB� 1Þ logB N contiguous parts of
the id space, with sizes N

B ;
N
B2 ; . . . ; N

BðlogB NÞ�1 ; and 1,
and with B� 1 parts of each size.

2. For each part P , u selects a node v 2 P that covers P
and places it in its routing table. A node is said to
cover a partP if its routing table contains k > 1 entries
that cover the nonempty parts P1; P2; . . . ; Pk and
P ¼ P1 [P2 [� � � [Pk. By definition, a node u is said
to cover the part consisting of its id. This definition,
combined with partitioning ofP into nonempty parts,
ensures that the recursive definition of coverage
terminates.

The partitioning and routing table construction is shown
graphically in Fig. 1.

Note that tree-based routing DHT implementations
differ in the manner in which Property 2 is satisfied. For
example, in Chord [33], since routing is performed in the
clockwise direction, the most counterclockwise node in each
part must be selected because it is the only node that covers
the entire id segment. In prefix-matching routing DHTs, all
of the nodes within a part share a common prefix and cover
the entire id segment; therefore, any node within the part
may be chosen as a routing table entry. This explains the
flexibility in choosing routing table entries in DHTs like
Pastry [26] and Tapestry [34].

Routing is performed by forwarding the message
destined for the id d to the entry that covers the id segment
that contains d. We define a DHT constructed in this
manner to be a tree-based routing DHT. If the paths from any
source node to all possible destinations are aggregated, the
resulting topology is a tree, which is how tree-based routing
gets its name. Note that many popular DHT implementa-
tions [20], [23], [26], [33], [34] exhibit these properties and,

HARVESF AND BLOUGH: REPLICA PLACEMENT FOR ROUTE DIVERSITY IN TREE-BASED ROUTING DISTRIBUTED HASH TABLES 421

therefore, employ a tree-based routing scheme. These DHTs
have a number of useful properties, which we prove below.

First, tree-based routing DHTs are deterministic; that is,
given a message destined for a node d, each node has one
and only one routing table entry through which the
message can be forwarded to d.

Lemma 1 (Determinism). For the routing table of any node in a
tree-based routing DHT, if the entries e1 and e2 cover id
segments I1 and I2, respectively, then I1 \ I2 ¼ ;.

Proof. This follows naturally from the partitioning of the
id space. tu

Routes in tree-based routing DHTs are guaranteed to
converge. This property holds when the DHT is full1; that is,
every possible id is represented by a node.

Lemma 2 (Routing Convergence). Consider the route in a full
tree-based routing DHT from a source node s to a destination d
represented as a series of nodes n1 ¼ s; n2; . . . ; nk�1; nk ¼ d
such that ni is some entry ej from the routing table of node
ni�1 for i > 1. Suppose that n1; n2; n3; . . . ; nk cover the id
segments I1 ¼ I; I2; I3; . . . ; Ik.

2 Then,

Ik ¼ fdg � Ik�1 � Ik�2 � � � � � I2 � I1:

Proof. Consider the hop from nj to njþ1. Since the node nj
covers the id segment Ij, it must partition Ij into B equal
sized id segments. Since njþ1 covers Ijþ1, which is one of
the parts of Ij, then Ijþ1 � Ij. Furthermore, since the
DHT is full, the node nk�1 has a part that contains only
the destination d. tu
Furthermore, it is possible to bound the number of hops

in every route; we state this formally below.

Lemma 3 (Bounded Path Length). Any path in a full tree-
based routing DHT has at most logB N hops.

Proof. Since the id segment covered by each hop must be a
subset of the id segment covered by the previous hop,
the minimum ratio between the size of id segments
covered by consecutive hops is the branching factor B.
Therefore, the longest path repeatedly divides N by B

with each hop until it reaches the destination. This
requires logB N hops. tu

3.2 Creating Disjoint Routes with Tree-Based
Routing

Determinism and routing convergence provide a natural
avenue for creating disjoint routes. Routing convergence
guarantees that once a path enters a segment of the id space,
it will never proceed to a node that is outside of that segment.
If two paths can be created originating in different segments,
then the paths are guaranteed to be disjoint. Furthermore,
the determinism property ensures that any two routing table
entries will route to different segments. Therefore, we can
create disjoint routes simply by routing through different
routing table entries. This is stated formally in the following
lemma.

Lemma 4. In a full tree-based routing DHT, routes originating at
a common source node with different first hops are disjoint.

Proof. Suppose two routes originating at a common source
node n have first hops e1 and e2, such that e1 and e2 are
different routing table entries of n. Using the determin-
ism property, if e1 and e2 cover id segments I1 and I2,
respectively, then I1 \ I2 ¼ ;.

Consider any hops h1 and h2 in the routes beginning
with first hops e1 and e2, respectively. Suppose hops h1

and h2 cover the id segments I 01 and I 02, respectively.
Using the routing convergence property, I 01 � I1 and
I 02 � I2. Since I1 \ I2 ¼ ;, I 01 \ I 02 ¼ ; and, therefore, the
routes are disjoint. tu

The source node can use any of its routing table entries
as the first hop in a route; therefore, we can state the
number of disjoint routes that can be created from any
source node by counting routing table entries.

Lemma 5. In a full distributed hash table that employs tree-based
routing, there are at most d disjoint routes from any source
node, where d ¼ ðB� 1Þ logB N .

Proof. Employing Lemma 4, we can create a disjoint route for
each of the d routing table entries by routing to a
destination in the segment covered by each entry. We
cannot create dþ 1 or more disjoint routes because two or
more routes would share the first hop and overlap. tu

The proof for Lemma 5 alludes to choosing multiple
destinations to create disjoint routes. This lends itself
naturally to a replica placement. In the following section,
we propose a replica placement that creates disjoint routes,
which we call MAXDISJOINT.

4 THE MAXDISJOINT REPLICA PLACEMENT

Using Pastry as an example in the following sections, we
will demonstrate how the properties of tree-based routing
can be used to construct a replica placement that creates

422 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 8, NO. 3, MAY/JUNE 2011

Fig. 1. Pastry routing table structure for the hypothetical node 121
(N ¼ 64; B ¼ 4). The space is partitioned into ðB� 1Þ logB N ¼ 9
segments. The highlighted region marks the segment to which node
121 belongs.

1. Some tree-based routing DHT implementations have to provide an
additional mechanism to ensure routing convergence when the DHT is not
full. Pastry, for example, maintains the neighborhood and leaf sets for this
purpose.

2. Any node can cover the entire id space; therefore, we can state that n1

covers I.

disjoint routes. We begin with an example placement to
provide the reader with some intuition and then move
toward a more formal definition. After defining the
placement, which we call MAXDISJOINT, we will evaluate
the necessary replication degree to create a desired number
of disjoint routes. Then, we will introduce the notion of a
run and provide an expression for the maximum tolerable
run length for a given replication degree. Next, we will
discuss why MAXDISJOINT is a more adaptive and flexible
solution than equally spaced replication. Finally, we
outline the basic elements of an implementation of the
MAXDISJOINT placement.

4.1 Intuition behind MaxDisjoint Placement

To create route diversity in Pastry via replica placement, it
is necessary to place replicas such that a given replica set
will use a diverse set of routing table entries for every
possible source node. We use an example to provide the
necessary intuition. Consider a Pastry ring with id space of
size 64 and prefix matching in base-4 digits. We show the
Pastry routing table structure graphically for a hypothetical
node 121 in Fig. 1.

Suppose we wish to replicate an object with id 101 in this
Pastry ring. Node 121 routes to this object through the
routing table entry marked “10x” in Fig. 1. Suppose we
replicate the object with the id 111 to target the routing table
entry “11x” in the example. This approach creates an
additional disjoint route for any lookups for object 101
originating at node 121. One route is forwarded via the
entry “10x” and the other is forwarded via “11x.” However,
consider another source node 221. This node routes to the
object 101 and 111 through the same entry marked “1xx”
and, therefore, does not gain an additional disjoint route.

To move toward a more effective approach, consider all
the replicas of object 101 that would create an additional
disjoint route for node 121. These are: 001, 111, 120, 122, 123,
131, 201, and 301. Note that there are total of nine possible
disjoint routes3 (including the route to the object 101), which
is the number of routing table entries for node 121. Of these
replicas, there are only three that can create an additional
disjoint route for every possible source node: 001, 201, and
301. These replicas create disjoint routes by targeting entries
in the first row of the routing table. Note that targeting an
entry in the first row of the routing table requires a single
replica whose id differs from that of the master object in the
first digit. To target entries deeper in the routing table, a
larger number of replicas are required.

Suppose we wish to create five disjoint routes for all
possible source nodes. Four routes can be created for every
possible source node using the three replicas we have
already discussed (001, 201, and 301) in addition to the
object 101. To create the fifth route, we must target an entry
deeper in the routing table. In the case of node 121, we may
choose the replica 111. As alluded to before, this replica
only creates a disjoint route for those source nodes whose
ids start with the prefix “1” because these are the only
nodes with an entry for “11x.” Since there are four possible
values for the prefix (B ¼ 4), four replicas are required to

target this routing table entry: 011, 111, 211, and 311. One of
these four replicas will create an additional route for every
possible source node depending on its prefix. The remain-
ing three will be routed through previously used routing
table entries overlapping a previous route. This is shown
graphically in Fig. 2. Five disjoint routes are created for
node 121, one each for the replicas R001 (or R011), R101,
R111, R201 (or R211), and R301 (or R311). In a similar
fashion, we can create a sixth disjoint route using the
replicas 021, 121, 221, and 321; and a seventh using 031, 131,
231, and 331.

This pattern continues until the entire id space is
exhausted. Note that in Pastry each node partitions the
id space using prefixes and, therefore, we place replicas by
varying their prefixes. However, in general, we are simply
spacing replicas such that replicas exist in different parts of
each node’s partitioning of the id space. In the next section,
we provide an algorithm that generates these replica ids.

4.2 Definition of MaxDisjoint Placement

MAXDISJOINT assigns each replica an identifier, which is
used to determine its placement. The placement algorithm
takes as input N , the identifier space size of the DHT; B, the
branching factor; and d, the desired number of disjoint
routes. We will prove that MAXDISJOINT creates the desired
number of disjoint routes in a later section.

Algorithm 1 (MAXDISJOINT Replica Placement). To create
d disjoint routes, replicas are placed in mþ 1 rounds, where
m ¼ bd�1

B�1c. Each round consists of B� 1 steps except for
the final round, which consists of n steps, where
n ¼ ðd� 1Þmod ðB� 1Þ. In the ith round, Bi�1 replicas
are placed at equally spaced locations over the entire
identifier space at each step. In step j of round i, the
replica locations are given by:

Ri;j ¼ fki;j; ki;j þ si; ki;j þ 2si; . . .

. . . ki;j þ ðBi�1 � 1Þsig ðmod NÞ;

where ki;j ¼ kþ j NBi .

Looking at the example in Fig. 2, consider the placement
of an object 101 in a DHT with B ¼ 4 and N ¼ 64. Suppose
we want to create d ¼ 5 disjoint routes. Then, we perform

HARVESF AND BLOUGH: REPLICA PLACEMENT FOR ROUTE DIVERSITY IN TREE-BASED ROUTING DISTRIBUTED HASH TABLES 423

Fig. 2. MAXDISJOINT placement for object 101 to create five disjoint
routes from query node 121 (N ¼ 64; B ¼ 4).

3. There is actually a tenth “zero-hop” path that can be created by
placing a replica at 121.

mþ 1 ¼ 2 rounds of the replica placement algorithm and
n ¼ 1 step in the final round. The replica locations and
the corresponding rounds and steps of the algorithm are
given below:

Round 1; Step 1 : 201
Round 1; Step 2 : 301
Round 1; Step 3 : 001
Round 2; Step 1 : 111; 211; 311; 011

As described in the replica placement algorithm, in each
round replicas are placed starting at the master key and
working in the direction of increasing identifiers. The
algorithm is presented as such for its simplicity. However,
the steps within each round can be performed in any order.
Each step is functionally equivalent to the others in its
round. Therefore, a real implementation may reorder the
steps in each round to distribute the replicas more uniformly
across the identifier space. This will help to provide load
balance and tolerate runs of contiguous failed nodes. For
instance, in the example above, to create two disjoint routes,
we need only the master object (101) and one of the replicas
created in round 1 (001, 201, or 301). Any of these replicas
would create the second disjoint route, but choosing replica
301 creates a more uniformly distributed replica set.

4.3 Evaluation of Disjoint Routes

The desired number of disjoint routes d is one of the tunable
inputs to the MAXDISJOINT algorithm. Controlling the level
of fault tolerance is an important design parameter and,
therefore, d is a very useful input. In this section, we will
formally prove that the algorithm indeed creates d disjoint
routes in support of the intuition provided in earlier
sections.

In our analysis, we assume that routing is performed in
an identifier space of size N with branching factor B. All of
our analytical results are proved within the context of a full
DHT, but we will show, through experimentation, that
these properties hold even in sparsely populated DHTs.

Our principal goal is to prove the following theorem:

Theorem 1. The MAXDISJOINT Algorithm produces d �
ðB� 1Þ logB N disjoint routes from any query node to a
key k in a full tree-based routing DHT.

Proof. Every set Ri;j is a unique set of Bi�1 replicas equally
spaced over the entire id space, which implies an
interreplica spacing of N

Bi�1 . Consider a source node u
and one of its routing table parts P ¼ ½u; uþ N

Bi�1Þ. For
each Ri;j, there exists one replica rk 2 Ri;j such that
rk 2 P . Furthermore, the replicas frkg will be equally
spaced within P , separated by an interreplica spacing of
N
Bi . Regardless of how u chooses to partition P for its
routing table, there exists a replica in each part of P .
Therefore, there is a unique routing table entry for each
replica rk

4 and a disjoint route is created in every step of
the algorithm. Using the definitions of m and n in the
algorithm, it is easy to show that d� 1 steps are
performed. The d� 1 disjoint routes created in the
algorithm are combined with the route to k to create a
total of d disjoint routes. tu

As a corollary, we give the necessary replication degree
to create d disjoint routes.

Corollary 1. To produce d � ðB� 1Þ logB N disjoint routes from
any query node to a key k in a full tree-based routing DHT
with branching factor B > 1, the key k must be replicated at
ðnþ 1ÞBm locations determined by the MAXDISJOINT

Algorithm, where m ¼ bd�1
B�1c and n ¼ ðd� 1Þmod ðB� 1Þ.

Proof. Since we have proved that d disjoint routes are
indeed created by the algorithm, we need to show that
performing the algorithm with input d places a copy of k
at ðnþ 1ÞBm locations in the id space. The key k accounts
for one location and the remaining locations are
determined by the replica placement. Since, Bi�1 replicas
are placed at each step in round i, the total number of
replicas is given by:

keyð Þ þ
replicas in

first m rounds

 !
þ

replicas in

last n steps

 !

¼ 1þ
Xm
i¼1

ðB� 1ÞBi�1 þ nBm

¼ ðnþ 1ÞBm:

ut

We give our replica placement the name MAXDISJOINT

because Corollary 1 prescribes the minimum replication
degree to create the desired number of disjoint routes
using this placement. We state this formally in the
following theorem:

Theorem 2. To produce d disjoint routes from any query node to
a key k in a tree-based routing DHT with B > 1, the key k

must be replicated at no fewer than ðnþ 1ÞBm locations
determined by the MAXDISJOINT Algorithm, where m ¼
bd�1
B�1c and n ¼ ðd� 1Þmod ðB� 1Þ.

Proof. Assume d disjoint routes can be created with ðnþ 1Þ
Bm � 1 locations determined by the MAXDISJOINT

Algorithm, where m ¼ bd�1
B�1c and n ¼ ðd� 1Þ mod

ðB� 1Þ. In other words, d disjoint routes are created
with one fewer replica than prescribed by Theorem 1. Let
r be the missing replica. We will show that there exists a
query node q for which d disjoint routes are not created.
Suppose r 2 Ri;j, then let q be a node in ½r; rþ j NBiÞ. The
replica r is the only replica in Ri;j that can create a
disjoint route for the query node q. Therefore, step j in
round i does not create a disjoint route and we cannot
form d disjoint routes with one fewer replica. tu
It is worth noting that MAXDISJOINT provides these

properties without modifying the underlying routing
mechanism. MAXDISJOINT naturally creates disjoint routes
using the properties of the tree-based routing scheme.

4.4 Chord as a Tree-Based Routing DHT

To provide consistency with previous work [16], we
reconsider Chord as a tree-based routing DHT. It is
straightforward to show that Chord finger tables are
constructed like tree-based routing tables withB ¼ 2. There-
fore, we can apply Theorem 1 to give the following corollary:

Corollary 2. To produce d � logB N disjoint routes from any
query node to a key k in a full tree-based routing DHT with

424 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 8, NO. 3, MAY/JUNE 2011

4. It is possible that one of the replicas is placed at u. Even though no
routing is performed to fetch this replica, we count it as a route of zero hops.

branching factor B ¼ 2, the key k must be replicated at 2d�1

equally spaced locations in the ring.

Proof. When B ¼ 2, m ¼ d� 1 and n ¼ 0. Therefore,
d disjoint routes are created by replicating k at 2d�1

locations in the ring. Furthermore, round i will place
2i�1 replicas equally spaced over the id space.
Aggregating the replicas placed in each round will
result in 2d�1 replicas equally spaced over the id space
with interreplica spacing N

2d�1 . tu
Note that the claim in Corollary 2 is consistent with the

findings in [16].

4.5 Toleration of Runs

We define a run of length l starting at peer m to be the
contiguous set of peers with identifiers in the interval
½m;mþ lÞ. As indicated in [33], an adversary can create
imbalance in the distribution of peers in the DHT by
appropriately selecting identifiers. In the worst case, an
adversary can take control of a contiguous sequence of
identifiers or, using our terminology, a run of peers.

We claim that MAXDISJOINT replication can tolerate
adversarial runs of bounded length in tree-based routing
DHTs. Before proving the tolerable length of a run, we
provide some intuition of how a run may be used to disrupt
routing in the DHT. Consider a query node q. An adversary
can reduce the number of replicas reachable from q by 1

B by
controlling the peer with identifier q þ N

B , where N is the
identifier space size and prefix matching is performed in
base B. This is because all of the replicas in the interval
½q þ N

B ; q þ 2N
BÞ are routed through the node q þ n

B (1
B of all

replicas are in this interval). If the adversary controls a run
of nodes ending at q þ B�1

B
N
B , he can control a larger number

of replicas.

Theorem 3. A full tree-based routing DHT with an identifier
space of size N , and r � B replicas placed using MAXDIS-

JOINT placement can tolerate any adversarial run of length
1þNðB�1

B � 1
BmÞ, where m ¼ blogB rc.

Proof (By Induction). Since we are using MAXDISJOINT

placement, it is straightforward to show that m ¼
blogB rc ¼ bd�1

B�1c. This implies that the maximum length
run tolerable by the DHT changes with each round of the
MAXDISJOINT algorithm.

Consider a peer q. For B � r < B2, m ¼ 1 and there
exists a replica k in the interval ½q; q þ N

BÞ. If we assume
that the adversary has control of the peer q þ ðB� 1ÞNB
(which is the worst case), then we must ensure that k is
not in the run. Thus, the maximum length run is
½q þ N

B ; q þ ðB� 1Þ NBÞ, which has length ðB� 1ÞNB � N
B þ

1 or 1þNðB�1
B � 1

BÞ.
Assume that the maximum length run tolerable with

r replicas is 1þNðB�1
B � 1

BmÞ, where m ¼ blogB rc. Con-
sider a query node q. If we assume the adversary takes
control of the peer q þ ðB� 1ÞNB , then he does not control
any peers in the interval ½q; q þ N

BmÞ. Furthermore, there
must be at least one replica in this interval. If another
round of the MAXDISJOINT algorithm is performed, then
there will be B replicas in this interval separated by a
spacing of N

Bmþ1 . Thus, the length of the tolerable run
increases by N

Bmþ1 to 1þNðB�1
B � 1

Bmþ1Þ. tu

In a Pastry DHT with a typical value of B ¼ 16 and
16 replicas, an adversary may control a run of more than
85 percent of the identifier space and there will be a route to
at least one replica for every possible query. As the
replication degree approaches the identifier space size, the
maximum length run tolerable by the DHT approaches
B�1
B N .

4.6 Adaptivity and Flexibility of MaxDisjoint

There is a noted similarity between the MAXDISJOINT and
equally spaced placements. In fact, when n ¼ 0, MAXDIS-

JOINT produces equally spaced replica locations. One may
argue that equally spaced replica placement is as effective as
MAXDISJOINT in creating disjoint routes. However, replica
placements have other desirable properties other than their
ability to create route diversity; equally spaced placement
fails to deliver some of these benefits when B > 2.

Two properties in particular are adaptivity and flexibility.
Adaptivity is the ability to easily change the replication
degree of an object without incurring a large overhead. If the
replication degree of an object is changed, we would like to
minimize the number of messages exchanged and objects
shifted. Flexibility is the ability to easily vary the replication
degree of different objects without incurring a large over-
head. Certainly, some objects may be more popular or critical
than others and require a higher degree of replication. The
placement should replicate objects to varying degrees
without using excessive time or state at the time of insertion
and lookup.

MAXDISJOINT provides adaptivity more effectively than
an equally spaced placement. A change in the replication
degree must be handled carefully to maintain equal
spacing. Consider an increase in the replication degree to
add an additional disjoint route. With MAXDISJOINT, the
additional replicas are placed at the locations determined
by performing another step in the placement algorithm
leaving the existing replicas in their current locations.

With equally spaced replicas, additional replicas can be
introduced in two different ways. The first option is to
compute the equally spaced replica locations for the new
replication degree and shift existing replicas, if necessary. In
some cases, the existing replica locations will not be a subset
of the new replica locations. This implies that existing
replicas will have to be shifted, which has a non-negligible
cost. The second option is to double the current replication
degree such that no existing replicas must be shifted. These
two options are depicted graphically in Fig. 3.

HARVESF AND BLOUGH: REPLICA PLACEMENT FOR ROUTE DIVERSITY IN TREE-BASED ROUTING DISTRIBUTED HASH TABLES 425

Fig. 3. Two methods for increasing the replication degree when using
equally spaced replica placement.

Doubling the replication degree avoids the cost of
shifting existing replicas, but may come with the added
burden of storing an excessive number of replicas. The
number of replicas prescribed by Theorem 1 is sufficient.
For example, in Fig. 3, only four additional replicas are
needed to create an additional disjoint route; however,
doubling the replication degree introduces eight new
replicas. The excess storage burden created when doubling
the replication degree is shown quantitatively for B ¼ 16 in
Fig. 4. MAXDISJOINT is able to create a desired number of
disjoint routes more effectively than equally spaced place-
ment when there is a change in the replication degree.

A sound replica placement also provides flexibility;
that is, the replication degree of one data item is not
dependent on the replication degree of any other data
item. Fortunately, flexibility can be provided easily by
MAXDISJOINT placement.

The problem of flexibility arises at the time of lookup.
Without knowledge of the replication degree of the target,
the replica locations cannot be determined. As a solution,
rather than fixing a system-wide replication degree for all
data items or storing the replication degrees for all objects,
we fix a maximum replication degree rmax for all objects. For
a data item with replication degree r � rmax, the r replicas
will be located at a subset of the rmax replica locations. As a
result, for some lookups, we may query a replica that does
not exist, but we trade off these extra messages for the
reduction in node state.

4.7 Implementation

To uniquely identify each replica, we use a key identifier pair
ðk; vÞ, where k is the key identifier and v is virtual key
identifier. For each replica, v gives the location of the master
key. By definition, the master key k is denoted by the pair
ðk; kÞ. We require an ordered pair because two data items
may have replicas that reside on the same peer.

When a key k is inserted into the DHT with replication
degree d, we first compute the key identifier pairs for each
replica: ðk; kÞ; ðk1; kÞ; ðk2; kÞ; . . . ðkd�1; kÞ. Once the key iden-
tifier pair for each replica is computed, we use the DHT key
insertion mechanism to insert the replicas. That is, we
perform a lookup for each key identifier and store the
replica in their respective locations.

Next, the DHT lookup primitive must be modified to
accommodate the new replication scheme. When a peer is
queried for a key, the query node must compute the
locations of all replicas. The key identifier is used to route
to the replicas. Once a replica’s home node is found, the
key identifier pairs are compared to return the appro-
priate replica.

It is worth noting that no additional routing table entries
are required to route to the replicas. In addition, if the query
node dispatches the lookups for the entire replica set
simultaneously, there may be an improvement in perfor-
mance because the query node can return the first correct
response received (which may have returned along a route
shorter than the route to the master key). However, if the
added load of the extra lookups puts strain on the system,
the performance may improve only slightly or even degrade.
We evaluate this hypothesis through experimentation.

Finally, when peers join or leave the DHT, the DHT join
and leave mechanisms can be used by simply ignoring the
virtual peer identifiers in each key identifier pair. Note that
DHT replica placement schemes that place replicas in the
neighborhood of the master key require modification to the
node join and leave mechanisms. To maintain the replica-
tion degree, replicas will need to be shifted for every join
or leave. Ghodsi et al. [12] discuss the effect of churn on
symmetric (equally spaced, MAXDISJOINT) replication and
show that only Oð1Þ messages are needed to maintain the
replication degree for every join or leave compared to
�ðrÞ messages for a successor-list (neighbor set) placement,
where r is the replication degree.

5 EXPERIMENTS

To confirm that our analytical results hold for sparsely
populated DHTs or DHTs with clustered id spaces, we
conducted a series of experiments through simulation. First,
to measure the impact of replica placement on routing
robustness, we consider the number of disjoint routes
created for several replica placements. Furthermore, we
find the probability of lookup success when nodes are
compromised at random or in a run of several nodes.

Second, we consider a heuristic used for creating route
diversity in [3] that we call neighbor set routing. We measure
its ability to create route diversity and the impact on the
probability of lookup success.

Finally, having shown that replica placement can
improve routing robustness, we consider the impact of
parallel queries on response time.

1. Simulation Environment: All of our experiments were
performed using a Java-based simulator we devel-
oped. We are able to model Chord and Pastry
routing, uniform and clustered node distributions,
and two adversarial models. Nodes may be com-
promised at random with some failure probability or
in a run of several nodes. The simulator is extensible
to model other DHT implementations, node dis-
tributions, and adversarial models.

Each data point in our results is representative of
over 100,000 lookups performed in 10 different
random node distributions. We simulate a lookup

426 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 8, NO. 3, MAY/JUNE 2011

Fig. 4. Replication degree for increasing numbers of disjoint routes
(B ¼ 16).

by randomly selecting an uncompromised query
node and a target key. In reality, if the query node is
compromised, it can affect the outcome of the lookup.
However, if we assume that data items are self-
verifying, a compromised query node can only cause
the client to time out and select another query node.
We deem a lookup successful if there exists a route
consisting of only uncompromised nodes from the
query node to any replica of the target key. If all
routes from the query node to the replica set contain a
compromised node, then the lookup is deemed to fail.

For most experiments, it is sufficient to compute
routes in the network using the appropriate
routing protocol. However, to measure response
time, it was necessary to modify our simulator to
be event driven. The remaining simulation para-
meters are summarized in Table 1.

2. Replica Placements Considered: In our experiments, we
consider four replica placements: MAXDISJOINT;
neighbor set, where replicas are placed at distinct
nodes in the neighborhood of the root (e.g., Chord
successor list, Pastry leaf set); random, where replica
locations are uniformly distributed; and spaced,
where replica identifiers are separated by a uniform
spacing s. It is worth noting that two replicas may be
placed at the same node with spaced replication.

In the case of neighbor set placement, some
implementations may attempt to reduce load by
querying the entire replica set with a single lookup
message. This naturally creates route overlap; for a
fair assessment, we dispatch a separate lookup for
each replica in the replica set.

5.1 Measurement of Disjoint Routes

First, to verify the correctness of our analysis, we measure
the average number of disjoint routes created using the
considered replica placements. These results are depicted
in Fig. 5. For the parameters tested, MAXDISJOINT

placement outperforms the other placements in creating
disjoint routes.

The neighbor set placement does not create a significant
number of disjoint routes as expected. Routes toward keys
that are close to each other in the identifier space are likely
to converge. Since the neighbor set placement clusters
replicas, an adversary can eliminate the entire replica set if
he can compromise a node common to all routes destined
for that neighborhood. By increasing the route diversity, we
eliminate these single points of vulnerability.

The performance of the spaced placement scheme is
dependent on the spacing chosen. If the spacing is small,
then the spaced placement is very similar to the neighbor

set placement. In the extreme case, if the replica spacing is
much less than the average internode spacing, two or more
replicas may be placed at the same node. We observe this
phenomenon for the spaced placement with s ¼ 105 in
Fig. 5. As we increase the spacing, there is a tendency to
increase the number of disjoint routes. However as we
continue to increase the replication, we will reach a
saturation point where replica locations wrap around the
identifier space and no additional disjoint routes will be
created. We observe this phenomenon when the spacing
s ¼ N=6. This implies that the spacing should be a function
of the replication degree, which is fundamental to how
MAXDISJOINT creates disjoint routes.

The random placement creates nearly as many disjoint
routes on average because replicas are uniformly distributed.
However, there is a significant difference between MAXDIS-

JOINT and random placement in the worst case. We present
an argument in support of this claim at the end of this section.

To ensure that this number of disjoint routes could be
created in more sparsely populated id spaces, we varied the
number of nodes in the DHT starting from 32 and measured
the number of disjoint routes for various replication degrees.
These data are depicted in Fig. 6. The actual number of
disjoint routes converges quickly to the theoretical value,
which implies that MAXDISJOINT placement can be used
effectively in very sparsely populated networks. In these

HARVESF AND BLOUGH: REPLICA PLACEMENT FOR ROUTE DIVERSITY IN TREE-BASED ROUTING DISTRIBUTED HASH TABLES 427

TABLE 1
Pastry Simulation Parameters

Fig. 5. Number of disjoint routes with increasing replication degree in
Pastry (N ¼ 228; n ¼ 8;192; B ¼ 16).

Fig. 6. Number of disjoint routes with increasing number of nodes in
Pastry (N ¼ 228; B ¼ 16; d 2 f2; 3; 4; 5; 6g).

results, the theoretical number of disjoint routes is achieved
for loads greater than 1,000 nodes, which is less than a
thousandth of a percent of the identifier space.

5.2 Resilience to Node Clustering

To model the population distribution that may result from
the collusion of several malicious nodes, a series of
experiments were run on clustered DHTs. To model a
clustered distribution, four node ids were randomly
selected as cluster means such that the clusters are
nonoverlapping and unpopulated gaps exist in the id
space. The cluster density was tuned using the standard
deviation of the Gaussian distribution centered around each
cluster mean. The number of disjoint routes created for � ¼
215 and � ¼ 216 are shown in Figs. 7 and 8, respectively.

Clustering can marginally reduce the number of disjoint
routes created for small replication degrees, but the impact
is more dramatic when creating a larger number of disjoint
routes. The impact of clustering is intensified with tighter
clusters (i.e., decreasing �) because replicas are not located
at the positions that MAXDISJOINT prescribes. Although the
replica ids are properly assigned, the replicas themselves
are confined to the clusters. One or more of the replicas may
lay in the unpopulated gaps between clusters. These
replicas get “pushed” to next cluster in the id space,
possibly eliminating a disjoint route. This is more likely to

happen when creating a large number of disjoint routes
(which requires more replicas).

We computed the percentage decrease in disjoint routes
that results from clustering. This analysis produced some
very interesting results that are depicted in Fig. 9. One
interesting conclusion is that not all replica placements are
negatively affected by node clustering. In particular, when
replicas are placed close together in the id space, e.g.,
neighbor set or spaced (for small spacings) placement, there
can actually be an increase in the number of disjoint routes
created. This is because a long string of closely packed
replicas may span a gap between clusters, which pushes
some of the replicas to another cluster. The clustering
actually helps distribute the replicas better resulting in
more disjoint routes. Nevertheless, the 4-6 percent increase
in the number of disjoint routes is insubstantial because
these placements fail to create a sufficient number of
disjoint routes with uniformly distributed nodes.

To the contrary, the MAXDISJOINT and random place-
ments are affected negatively by clustering. Placements that
distribute replicas in the id space may place a replica in the
unpopulated gaps between clusters. These replicas get
pushed to a cluster and a disjoint route may be lost. This
phenomenon takes effect for MAXDISJOINT when r ¼ 8. At
this point, the interreplica spacing is 225. If we use two
standard deviations to capture 95 percent of each cluster, we
can estimate the intercluster gaps to about 226, which is twice
the interreplica spacing. That implies that about half of all
replicas are located in the gaps between clusters. Note that
the random placement suffers from this problem over the
entire range of replication degrees because it is not
guaranteed to distribute replicas across the entire id space.
Furthermore, as we increase the replication degree, more
replicas will be located in the gaps and we lose the benefit of
increased replication degree. Nevertheless, the three to five
percent decrease in the number of disjoint routes is relatively
insignificant because MAXDISJOINT creates so many more
disjoint routes than the other placements in a uniformly
populated id space.

5.3 Impact of Replica Placement on Routing
Robustness

To demonstrate that the number of disjoint routes has a
significant impact on the robustness of the DHT, we
measure the probability of lookup success with a random

428 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 8, NO. 3, MAY/JUNE 2011

Fig. 7. Disjoint routes for tightly clustered nodes in Pastry
(N ¼ 228; n ¼ 8;192; � ¼ 215).

Fig. 8. Disjoint routes for loosely clustered nodes in Pastry
(N ¼ 228; n ¼ 8;192; � ¼ 216).

Fig. 9. Percent decrease in disjoint routes from uniformly
distributed nodes to a clustered distribution in Pastry
(N ¼ 228; n ¼ 8;192; C ¼ 4; � ¼ 1016).

fraction of faulty nodes. A faulty node may be a failed or
compromised node. The probability of routing success is
shown in Fig. 10.

These results indicate a correlation between the number
of disjoint routes and the probability of lookup success.
The MAXDISJOINT and random placements most effec-
tively create disjoint routes and, thus, have the most
positive impact on the probability of routing success.
Furthermore, we can conclude that using MAXDISJOINT

placement instead of neighbor set placement can drama-
tically improve the probability of routing success. With a
quarter of nodes compromised at random, greater than
97 percent of all lookups can be resolved successfully with
MAXDISJOINT placement compared to only 60 percent
with neighbor set placement.

With the network configuration in Fig. 10, the MAXDIS-

JOINT placement creates eight disjoint routes. Therefore, an
adversary could prevent the correct resolution of a given
query by compromising only eight nodes. However, with
far more nodes than that compromised at random, nearly
all queries are resolved successfully. This is a strong
indication that replica placement plays a critical role in
providing robustness in DHTs.

Our analysis indicates that MAXDISJOINT should be able
to tolerate runs of compromised nodes better than placements
that cluster replicas closely together. Experimental results
that confirm this hypothesis are depicted in Fig. 11. With
16 replicas and 85 percent of the identifier spaced compro-
mised in a run, greater than 96 percent of lookups are resolved
successfully with MAXDISJOINT placement compared to only
13 percent with neighbor set placement. Furthermore, these
results demonstrate an exploit of random placement. With
moderately long runs, MAXDISJOINT is able to successfully
resolve a higher fraction of queries than the random
placement. For example, with 85 percent of the identifier
spaced compromised in a run, only 66 percent of lookups are
resolved successfully with a random placement. This is
because the random placement may cluster replicas for a
significant fraction of keys. We investigate this further in the
following section.

5.4 MaxDisjoint versus Random Placement

In the experimental data presented thus far, random
placement seems to have performed on par with MAXDIS-

JOINT on average. We argue, however, that a truly random

placement is expensive to implement in practice and the
average performance of a random placement does not
trickle down to the worst case.

The worst case attack against a replica placement is to
target the replica locations themselves. One may argue that a
placement with random locations would make it more
difficult for an adversary to determine and target the replica
set than a deterministic approach like MAXDISJOINT.
However, a truly random placement also complicates
matters for the query node. The query node must be able
to compute the replica locations for any object at the time of
lookup. To avoid keeping a considerable amount of state at
each node, the only practical proposal of which we are aware
is to use multiple hash functions to generate “random”
replica locations. However, this implementation is not truly
random and, with knowledge of the hash functions, it is as
vulnerable as MAXDISJOINT to attacks that target all replica
locations for a particular object. This makes “random”
replication simply a different deterministic placement that
is, in a sense, an approximation of equally spaced replication.
Yet, as we show next, the performance of random replication
falls considerably short of MAXDISJOINT.

The performance results we have shown thus far depict
the average number of disjoint routes created. To consider
the worst case performance, we measured the minimum
number of disjoint routes created for MAXDISJOINT and
random placement. These results are depicted in Fig. 12.

The results in Fig. 12 confirm our hypothesis of the worst
case performance of a random placement. For a few objects,
the placement may create as few as half of the desired
number of disjoint routes. To establish that the worst case
was not an isolated case, we measured the number of
disjoint routes created over all lookups. The cumulative
distribution of the number of disjoint routes with eight
replicas is shown in Fig. 13.

For the case depicted in Fig. 13, MAXDISJOINT created
the expected eight disjoint routes for every single lookup.
Random placement created six or fewer disjoint routes for
45 percent of lookups and, in some cases, it created as few
as four, or only half of the number produced by
MAXDISJOINT. We observed the same behavior in other
cases as well. Therefore, if delivering a consistent level of
fault tolerance across all lookups is a design constraint,
random placement is not a reasonable solution.

HARVESF AND BLOUGH: REPLICA PLACEMENT FOR ROUTE DIVERSITY IN TREE-BASED ROUTING DISTRIBUTED HASH TABLES 429

Fig. 10. Probability of routing success with uniformly compromised
nodes in Pastry (N ¼ 228; n ¼ 8;192; B ¼ 16; r ¼ 8).

Fig. 11. Probability of routing success with runs of compromised nodes
in Pastry (N ¼ 228; n ¼ 8;192; B ¼ 16; r ¼ 16).

5.5 Replica Placement and Neighbor Set Routing

We believe replica placement is an efficient way of creating
disjoint routes because it does not require significant
modification to the underlying DHT routing scheme. Other
works have considered reusing the existing routing
information to create route diversity [3], [24]. Although
these approaches do not create provably disjoint routes, we
believe there is value in introducing some additional form
of route diversity. Furthermore, we believe that these
techniques could be combined with our replica placement
to provide additional benefit. To evaluate this claim, we
consider the route diversity technique introduced by Castro
et al. [3], which we call neighbor set routing.

Castro et al. use neighbor set routing to find diverse
routes toward the neighborhood of a key. To create diverse
routes, messages are routed via the neighbors of the source
node. This is depicted graphically in Fig. 14. Castro et al.
claim that this technique is sufficient in the case when
replicas are distributed uniformly over the identifier space,
as in CAN and Tapestry. We consider the ability of
neighbor set routing to create diverse routes to a replica
to enhance the routing robustness of MAXDISJOINT.

To evaluate the relative impact of replica placement and
neighbor set routing, we consider four scenarios:

1. neither replication nor neighbor set routing,
2. only neighbor set routing through eight neighbors,
3. only MAXDISJOINT placement with eight replicas,

and
4. both neighbor set routing and MAXDISJOINT

placement.

These results are depicted in Fig. 15.
Both MAXDISJOINT placement and neighbor set routing

can have a positive impact on the probability of lookup
success. However, the trend is stronger with replica
placement. With a quarter of nodes compromised at
random, over 97 percent of lookups are resolved success-
fully with MAXDISJOINT placement compared to 63 percent
with neighbor set routing alone. At best, neighbor set
routing can create independent routes, since all paths will
converge at the destination. If the destination node is
compromised, no amount of route diversity can increase the
probability of lookup success.

Nonetheless, the added route diversity that neighbor set
routing provides can benefit MAXDISJOINT placement,
especially with a large fraction of compromised nodes.
With 50 percent of nodes compromised, the probability of
lookup success of using MAXDISJOINT placement improves
from 52 to 84 percent with neighbor set routing.

5.6 Parallel Queries and Response Time

Finally, since replica placement seems to be a reasonable
method for improving routing robustness, it is natural to

430 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 8, NO. 3, MAY/JUNE 2011

Fig. 13. Cumulative distribution of disjoint routes created for MAXDIS-

JOINT and random placement in Pastry (N ¼ 220; n ¼ 8;192; r ¼ 8).

Fig. 14. Graphical depiction of neighbor set routing.

Fig. 12. Worst-case performance of MAXDISJOINT and random replica
placement in Pastry. The minimum number of disjoint routes created
over all lookups is shown (N ¼ 220; n ¼ 8;192).

Fig. 15. Probability of routing success with neither replication nor
neighbor set routing (None), neighbor set routing only (NBR),
MAXDISJOINT placement only (MD), and both neighbor set routing
and MAXDISJOINT placement together (NBR+MD) (N ¼ 228, n ¼8;192,
B ¼ 16, r ¼ 8).

consider some practical concerns of using replication. When
querying a replica set, response time may be reduced by
querying the entire replica set in parallel. Alternatively, this
could have a significant impact on the system load, which
may result in congestion and increased response time.
Therefore, we consider three replica query strategies:
parallel, sequential, and hybrid.

Unlike its counterpart, the sequential strategy queries
replicas one at a time waiting for a response between
replicas. This strategy controls system load at the expense of
response time. With very few failures, the sequential
strategy should result in reasonable response times without
inducing a significant load on the network. However, the
response time may not be as resilient to an increase in
failure rate as the parallel strategy.

We also consider a hybrid approach in which replicas are
queried in sets of two or more replicas. Sets are queried one
at a time waiting for a response before querying the next set.
With this strategy, the trade-off can be managed using the
set size to tune the response time with load. In figures, the
hybrid strategy series are labeled “Hybrid-S,” where S
denotes the set size.

To present realistic response times, we model the
internode delay with a log-normal distribution with � ¼
60 ms and � ¼ 50 ms and total response time as the sum of
internode delays along a route. The log-normal distribution
parameters were selected using results from a study of TCP
connection round trip times [1].

We extend our fault model to assume that failed nodes
correctly forward lookups to create added system load, but
return incorrect responses that the query node is able to
detect. Therefore, a failed route will result in the same
system load as a successful route, but will add to the overall
response time of the lookup. In a real system where a failure
may result in no response at all, it may be necessary to use a
time-out for the sequential and hybrid schemes.

To measure the effect of message queuing, we measure
response time for lookup rates varying from 1� 102 to
1� 107 lookups per second. Since the underlying physical
topology is difficult to predict and we are more concerned
with the queuing that results from our query strategy, we
modeled queuing in the overlay, rather than in the
physical network. We assume that each node in the
overlay is a leaf node in the underlying physical topology
and has a 1 megabit per second link to its gateway router.
Furthermore, we assume that the message size is 1 kilobyte,
which is consistent with real Pastry implementations.

The average response times for the discussed replica
query strategies are depicted in Fig. 16. We repeated the
experiment for f equal to 5, 10, and 15 percent; these results
are shown in Figs. 16a, 16b, and 16c, respectively.

The trend across these graphs confirms our intuition that
the response time of the sequential strategy increases with
the fraction of nodes compromised in the network.
Furthermore, the response time does not seem to vary
significantly with changes in the lookup rate because the
effects of an increased lookup rate are not compounded by
the parallelization of replica queries.

To the contrary, the parallel strategy is not resilient to
changes in the lookup rate. As the lookup rate increases
beyond 10,000 lookups per second, the response time of the
parallel strategy increases dramatically. With a relatively
low fraction of nodes compromised (Fig. 16a), the sequential
strategy can even outperform the parallel strategy in terms
of response time. The additional load resulting from

parallelization results in message queuing and delayed
responses. This effect may be stronger in small networks,
which have reduced capacity, and in networks with a higher
replication degree.

The hybrid strategies offer a suitable trade-off between
the parallel and sequential strategy. The set size can be
increased to reduce response times and improve resilience
to changes in the fraction of compromised nodes. To
improve the resilience to changes in lookup rate, the set
size should be decreased. The value of this parameter
should be determined by the needs of the application. For
example, caller lookup rates in a voice over IP (VoIP)
application may change wildly with the time of day and a
smaller set size should be used to control congestion.

HARVESF AND BLOUGH: REPLICA PLACEMENT FOR ROUTE DIVERSITY IN TREE-BASED ROUTING DISTRIBUTED HASH TABLES 431

Fig. 16. Response time (ms) for successful lookups with increasing
lookup rate with f ¼ (a) 5 percent, (b) 10 percent, and (c) 15 percent
(N ¼ 228; n ¼ 8;192; B ¼ 16; r ¼ 16).

6 DISCUSSION

In this paper, we characterized a class of DHTs, which
employ a tree-based routing scheme. We proved that for
every DHT of this class there exists a replica placement that
can create a provable number of disjoint routes. We defined
MAXDISJOINT, a replica placement that creates disjoint
routes in a full distributed hash table that employs a tree-
based routing scheme. Through simulation, we showed that
this placement creates disjoint routes effectively in DHTs
that are sparsely populated. In addition, MAXDISJOINT

creates disjoint routes without modification of the under-
lying routing scheme; therefore, its implementation is
independent of the underlying DHT chosen, provided that
the underlying DHT employs tree-based routing. Further-
more, we demonstrated that disjoint routes have a positive
impact on routing robustness and the probability of routing
success when nodes are compromised at random or in runs.
Specifically, we showed that a vast majority of queries can
be resolved successfully even with a quarter of nodes
compromised.

We also compared our replica placement with another
mechanism for creating route diversity called neighbor set
routing. MAXDISJOINT has a stronger impact on routing
robustness than neighbor set routing; however, when the
mechanisms are combined, substantial benefit is gained,
especially with a large fraction of nodes compromised.
Therefore, using two or more route diversity mechanisms,
like replica placement and neighbor set routing, can have a
positive impact on routing robustness.

Finally, we considered some of the practical limitations of
using MAXDISJOINT in a real implementation; that is, we
evaluated the choice of the replica query strategy on response
time. Of particular concern was the impact of a parallel
strategy on the system load and, as a result, the response
time. We observed that the parallel strategy is adversely
affected by an increase in the lookup rate; however, it is
resilient to changes in the fraction of nodes compromised.
Conversely, the sequential strategy is not significantly
affected by changes in the lookup rate, but the response time
increases with the fraction of nodes compromised. As a
solution, we offered a hybrid scheme, in which sets of two or
more replicas are queried sequentially. We explained how
the set size could be tuned to give a reasonable response time
and resilience to changes in the lookup rate.

Our assumption of self-certifying data is a common one
in the field [3], [7], [27]. When object contents do not change
frequently, one option is to use the hash of the contents of
an object as its key. When contents are retrieved, they can be
used to compute a new hash, which can then be verified
against the key value. This is the approach taken, for
example, in CFS [7]. This implies that queriers know the
hash of the contents they are seeking, which can be ensured
by periodically downloading a master list of names and
hashes from a centralized server or from one of a
distributed set of replicated servers. If objects are intended
to be written only by trusted authorities but can be read by
any peer, then the contents can be digitally signed. This
approach is used, for example, in PAST [27]. Another
potential application of this approach is domain name
service, which was one of the earliest proposed DHT
applications [33]. In this application, use of DNSSEC [18]
would provide the necessary certification mechanism. For
data with multiple writers, consistency among different

replicas is an issue, which necessitates Byzantine-fault-
tolerant replication and requires that clients retrieve multi-
ple replicas and perform a voting operation to ensure
correctness. This situation is more complicated than what
we describe in this paper. However, our approach can still
be used as a building block within this more complicated
scheme, similar to what is described in [3]. In [3], Castro et
al. describe a scheme where replica groups are stored using
self-certifying data, peers perform certified lookups of
replica groups, and then peers execute a Byzantine-fault-
tolerant read operation to collect a correct copy of the object.

Concerning the types of attacks that MAXDISJOINT

tolerates, we have considered random combinations and
contiguous runs of compromised nodes that can act
arbitrarily in routing and responding to queries. Another
attack that has been identified is the eclipse attack, where a
small group of nodes attempts to have themselves placed in
the routing tables of as many nodes as possible in the
system [30]. In an eclipse attack, a small group of nodes can
have a large impact on routing performance. While we do
not explicitly consider eclipse attacks herein, our replica
placement scheme can work seamlessly with proposed
approaches to handle eclipse attacks such as degree
bounding [30], which do not alter the tree-based routing
structure of the network.

Another recently explored category of p2p networks is
“one-hop” DHTs [14], [15]. These DHTs create routes with
Oð1Þ hops by restructuring the id space and maintaining
more routing state at each node. One of the proposed DHTs
in [14] is a true one-hop DHT, where every node maintains
a complete routing table with information about every other
node in the network. In this situation, since all paths are one
hop long, then any set of nodes holding r replicas forms
r disjoint paths from any query node. Thus, replica
placement is not an issue in true one-hop networks.
However, the second proposed DHT in [14] (the two-hop
DHT) and the Kelips network in [15] both have hierarchical
routing structures, albeit simple one-level hierarchies. It is
interesting to note that the principles of MAXDISJOINT are
applicable to the two-hop network of [14] and to Kelips.
This is because in both networks, nodes are partitioned (into
affinity groups in Kelips and into slices in [14]), different
first hops from a query node reach nodes in different parts,
and routes do not leave their specific part after the first hop.
Thus, by placing replicas in different parts of the partition,
k disjoint paths will be produced from any query node,
where k is the number of parts (Oð

ffiffiffi
n
p

) in Kelips and a
configurable parameter in [14]). This replica placement is a
simple special case of MAXDISJOINT and is an obvious
choice for these two network structures. Nevertheless, it is
interesting that the same principles that led to the design of
MAXDISJOINT apply to these “one-hop” networks also.

We believe that both one-hop DHTs and DHTs with
multilevel hierarchies will be used in the future for different
types of applications. Applications with an extremely large
user base that are not very latency sensitive in the lookup
phase, e.g., BitTorrent and Skype, will continue to prefer the
better scalability of multilevel hierarchies. Also, the avail-
ability of open-source software such as FreePastry makes it
a popular choice for research use and for rapid develop-
ment and deployment of new p2p applications [11].
Applications that are latency sensitive for lookups and do
not need to scale to massive numbers of clients will prefer
one-hop DHT technology.

432 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 8, NO. 3, MAY/JUNE 2011

ACKNOWLEDGMENTS

This research was funded in part by the US National
Science Foundation under Grant ITR-NHS-0427700.

REFERENCES

[1] J. Aikat, J. Kaur, F.D. Smith, and K. Jeffay, “Variability in TCP
Round-Trip Times,” Proc. ACM SIGCOMM Internet Measurement
Conf. (IMC ’03), pp. 279-284, 2003.

[2] M.S. Artigas, P.G. Lopez, and A.F.G. Skarmeta, “A Novel
Methodology for Constructing Secure Multipath Overlays,” IEEE
Internet Computing, vol. 9, no. 6, pp. 50-57, Nov./Dec. 2005.

[3] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D.
Wallach, “Secure Routing for Structured Peer-to-Peer Overlay
Networks,” Proc. Symp. Operating Systems Design and Implementa-
tion (OSDI ’02), pp. 299-314, 2002.

[4] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance,”
Proc. Symp. Operating Systems Design and Implementation (OSDI ’99),
pp. 173-186, 1999.

[5] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “SplitStream: High-Bandwidth Multicast in Co-
operative Environments,” Proc. ACM Symp. Operating Systems
Principles (SOSP ’03), pp. 298-313, 2003.

[6] Y. Chen, R.H. Katz, and J. Kubiatowicz, “Dynamic Replica
Placement for Scalable Content Delivery,” Proc. Int’l Workshop
Peer-to-Peer Systems (IPTPS ’02), pp. 306-318, 2002.

[7] F. Dabek, M. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Wide
Area Cooperative Storage with CFS,” Proc. ACM Symp. Operating
Systems Principles (SOSP ’01), pp. 202-215, 2001.

[8] J.R. Douceur, “The Sybil Attack,” Proc. Int’l Workshop Peer-to-Peer
Systems (IPTPS ’02), pp. 251-260, 2002.

[9] J.R. Douceur and R.P. Wattenhofer, “Large-Scale Simulation of
Replica Placement Algorithms for a Serverless Distributed File
System,” Proc. Int’l Symp. Modeling, Analysis and Simulation of
Computer and Telecomm. Systems (MASCOTS ’01), pp. 311-319, 2001.

[10] M.J. Freedman, E. Sit, J. Cates, and R. Morris, “Introducing
Tarzan, a Peer-to-Peer Anonymizing Network Layer,” Proc.
Revised Papers from the First Int’l Workshop Peer-to-Peer Systems
(IPTPS ’01), pp. 121-129, 2002.

[11] “FreePastry,” http://freepastry.org/, freepastry.org, May 2009.
[12] A. Ghodsi, L.O. Alima, and S. Haridi, “Symmetric Replication for

Structured Peer-to-Peer Systems,” Proc. Int’l Workshops Databases,
Information Systems, and Peer-to-Peer Computing (DBISP2P ’05),
pp. 74-85, 2005.

[13] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker,
and I. Stoica, “The Impact of DHT Routing Geometry on Resilience
and Proximity,” Proc. ACM SIGCOMM ’03, pp. 381-394, 2003.

[14] A. Gupta, B. Liskov, and R. Rodrigues, “Efficient Routing for Peer-
to-Peer Overlays,” Proc. Conf. Symp. Networked Systems Design and
Implementation (NSDI ’04), 2004.

[15] I. Gupta, K. Birman, P. Linga, A. Demers, and R.V. Renesse,
“Kelips: Building an Efficient and Stable P2P DHT through
Increased Memory and Background Overhead,” Proc. Int’l Work-
shop Peer-to-Peer Systems (IPTPS ’03), pp. 160-169, 2003.

[16] C. Harvesf and D.M. Blough, “The Effect of Replica Placement on
Routing Robustness in Distributed Hash Tables,” Proc. IEEE Int’l
Conf. Peer-to-Peer Computing (P2P ’06), pp. 57-66, 2006.

[17] C. Harvesf and D.M. Blough, “The Design and Evaluation of
Techniques for Route Diversity in Distributed Hash Tables,” Proc.
IEEE Int’l Conf. Peer-to-Peer Computing (P2P ’07), pp. 237-238, 2007.

[18] “DNS Security Extensions,” IETF, http://www.dnssec.net/, 2009.
[19] Q. Lian, W. Chen, and Z. Zhang, “On the Impact of Replica

Placement to the Reliability of Distributed Block Storage Systems,”
Proc. Int’l Conf. Distributed Computing Systems (ICDCS ’05), pp. 187-
196, 2005.

[20] P. Maymounkov and D. Mazières, “Kademlia: A Peer-to-Peer
Information System Based on the XOR Metric,” Proc. Int’l
Workshop Peer-to-Peer Systems (IPTPS ’02), pp. 53-65, 2002.

[21] J.W. Mickens and B.D. Noble, “Concilium: Collaborative Diag-
nosis of Broken Overlay Routes,” Proc. Int’l Conf. Dependable
Systems and Networks (DSN ’07), pp. 225-234, 2007.

[22] G. On, J. Schmitt, and R. Steinmetz, “The Effectiveness of Realistic
Replication Strategies on Quality of Availability for Peer-to-Peer
Systems,” Proc. IEEE Int’l Conf. Peer-to-Peer Computing (P2P ’03),
pp. 57-64, 2003.

[23] C.G. Plaxton, R. Rajaraman, and A. Richa, “Accessing Nearby
Copies of Replicated Objects in a Distributed Environment,” Proc.
ACM Symp. Parallel Algorithms and Architectures (SPAA ’97),
pp. 311-320, 1997.

[24] M. Portmann, S. Ardon, and A. Seneviratne, “Mitigating Routing
Misbehaviour of Rational Nodes in Chord,” Proc. Symp. Applica-
tions and the Internet (SAINT ’04), pp. 541-545, 2004.

[25] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Schenker, “A Scalable Content-Addressable Network,” Proc.
ACM SIGCOMM ’01, pp. 161-172, 2001.

[26] A. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized
Object Location and Routing for Large-Scale Peer-to-Peer Sys-
tems,” Proc. ACM Middleware ’01, pp. 329-350, 2001.

[27] A. Rowstron and P. Druschel, “Storage Management and Caching
in PAST: A Large-Scale, Persistent Peer-to-Peer Storage Utility,”
Proc. ACM Symp. Operating Systems Principles (SOSP ’01), 2001.

[28] N. Saxena, G. Tsudik, and J.H. Yi, “Admission Control in Peer-to-
Peer: Design and Performance Evaluation,” Proc. ACM Workshop
Security of Ad Hoc and Sensor Networks (SASN ’03), pp. 104-113,
2003.

[29] A. Serjantov, “Anonymizing Censorship Resistant Systems,” Proc.
Revised Papers from the First Int’l Workshop Peer-to-Peer Systems
(IPTPS ’01), pp. 111-120, 2002.

[30] A. Singh, M. Castro, P. Druschel, and A. Rowstron, “Defending
against Eclipse Attacks on Overlay Networks,” Proc. ACM
SIGOPS ’04, pp. 115-120, 2004.

[31] E. Sit and R. Morris, “Security Considerations for Peer-to-Peer
Distributed Hash Tables,” Proc. Int’l Workshop Peer-to-Peer Systems
(IPTPS ’02), pp. 261-269, 2002.

[32] M. Srivatsa and L. Liu, “Vulnerabilities and Security Threats in
Structured Peer-to-Peer Systems: A Quantitative Analysis,” Proc.
IEEE Ann. Computer Security Applications Conf. (ACSAC ’04),
pp. 252-261, 2004.

[33] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrish-
nan, “Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications,” Proc. ACM SIGCOMM ’01, pp. 149-160, 2001.

[34] B.Y. Zhao, L. Huang, J. Stribling, S.C. Rhea, A.D. Joseph, and J.D.
Kubiatowicz, “Tapestry: A Resilient Global-Scale Overlay for
Service Deployment,” IEEE J. on Selected Areas in Comm., vol. 22,
no. 1, pp. 41-53, Jan. 2004.

Cyrus Harvesf received the BS degree in
computer engineering and the MS and PhD
degrees in electrical and computer engineering
from the Georgia Institute of Technology,
Atlanta, in 2004, 2006, and 2008, respectively.
Since the spring of 2009, he has been a
software design engineer at Microsoft Corpora-
tion in Redmond, Washington, where he
focuses on the delivery of cloud-based access
control in the Windows Azure Platform.

Douglas M. Blough received the BS degree in
electrical engineering and the MS and PhD
degrees in computer science from the Johns
Hopkins University, Baltimore, Maryland, in
1984, 1986, and 1988, respectively. Since the
fall of 1999, he has been a professor of electrical
and computer engineering at the Georgia
Institute of Technology, where he also holds a
joint appointment in the School of Computer
Science. From 1988 to 1999, he was on the

faculty of electrical and computer engineering at the University of
California, Irvine. He was a program cochair for the 2009 IEEE
International Conference on Mobile Ad Hoc and Sensor Systems
(MASS) and the 2000 International Conference on Dependable Systems
and Networks (DSN). He has been an associate editor of the IEEE
Transactions on Computers and the IEEE Transactions on Parallel and
Distributed Systems, and is currently an associate editor of the IEEE
Transactions on Mobile Computing. His research interests include
dependability and security of distributed systems, and design and
evaluation of wireless multihop networks. He is a senior member of the
IEEE and the IEEE Computer Society.

HARVESF AND BLOUGH: REPLICA PLACEMENT FOR ROUTE DIVERSITY IN TREE-BASED ROUTING DISTRIBUTED HASH TABLES 433

