
Agile Store: Experience with Quorum-Based Data Replication Techniques for
Adaptive Byzantine Fault Tolerance∗

Lei Kong†, Deepak J. Manohar†, Arun Subbiah‡, Michael Sun‡, Mustaque Ahamad†, Douglas M. Blough‡
† College of Computing and ‡ School of Electrical and Computer Engineering

Georgia Institute of Technology; Atlanta, GA 30332 USA
{konglei,mjdeepak,mustaq}@cc.gatech.edu,{arun,msun,dblough}@ece.gatech.edu

Abstract

Quorum protocols offer several benefits when used to
maintain replicated data but techniques for reducing over-
heads associated with them have not been explored in de-
tail. It is desirable that a system be able to adapt its op-
eration so that fault tolerance related overheads are only
incurred when the protocol execution actually encounters
faults. There are a number of issues that need to be care-
fully examined to achieve such agility of quorum based sys-
tems. We make use of a file system prototype, developed in
our Agile Store project, to experimentally evaluate several
techniques that are important for efficient implementation
of Byzantine fault-tolerant quorum protocols. We present
an optimistic quorum collection scheme and a probabilis-
tic hashing scheme for determining the response to a quo-
rum request, and show that they lead to significant perfor-
mance improvements. The Agile Store also makes use of
reconfigurable quorum techniques to allow system size and
fault threshold to be dynamically varied when, for example,
faulty servers are removed, new servers are added, or the
threat level is changed. We quantify the performance gains
made possible by such reconfiguration of quorum parame-
ters. We also show how performance scales with different
system parameters and how it is affected by design choices
such as whether to use proxies. We believe that the results
in the paper provide important insights into how to imple-
ment quorum protocols to provide good performance while
achieving Byzantine fault tolerance.

1. Introduction

As computing and communication devices become per-
vasive, new information rich applications will be deployed
in environments that range from home and the community

∗This research was supported by the National Science Foundation un-
der Grant CCR-0208655.

to enterprises. For example, the Aware Home project [2] at
Georgia Tech, which is exploring future applications in the
home environment, deploys a variety of sensors and com-
putational devices to capture and manipulate information
about the home’s residents and their activities. Such in-
formation is essential for enabling applications that assist
elderly residents in their daily activities and in case of emer-
gencies. Clearly, a service that is entrusted to store data cre-
ated in the Aware Home will have to provide confidentiality
for personal information. At the same time, high availabil-
ity and timely access are essential for critical information
that may be needed in emergency situations. We believe
that future applications will create, access and manipulate
information that has a variety of dependability and consis-
tency requirements, while at the same time demanding high
performance. Our research project focuses on the design,
implementation and evaluation of Agile Store, a storage ser-
vice that can meet such diverse needs.

This agile approach is explored in the context of file sys-
tem services in this paper. Our file system prototype is avail-
able to the user with an NFS interface, but the back end
is a distributed set of servers that provide scalable and de-
pendable data storage services. Thus, the agile file system
service is provided transparently to user applications. The
performance of the file system can be measured using two
metrics - the time taken to read and write files (latency), and
the throughput. Not surprisingly, these performance metrics
are in direct conflict with the dependability of the system,
measured by the number of nodes that can fail or be com-
promised before the service guarantees are violated. Our
approach is to acknowledge the trade off between perfor-
mance and dependability and exploit it under the spectrum
of operating conditions experienced by a given system.

Most works assume that not more than b servers fail or
are compromised during the entire operational life time of
a system. We instead use a fault threshold only to mask
faults for a certain period of time, but not as an upper bound
on the total number of faults or compromises that can take

place in the system over its lifetime. Our solution incorpo-
rates a fault detection algorithm that detects faulty servers
and reconfigures the system to exclude them without any
disruption to the storage service [14]. Through timely de-
tection and removal of faulty servers, the requirement that
not more than b compromised servers are present in the sys-
tem can be maintained as long as possible. Intrusion detec-
tion mechanisms help us in estimating a safe fault threshold
setting based on perceived threat conditions. In order to take
advantage of this approach, the read and write protocols of
the Agile Store adapt themselves based on the current fault
threshold and the current system size [14].

The overhead of Byzantine quorum protocols increases
rapidly with the number of servers and the fault threshold.
We focus in this paper on several optimizations that can sig-
nificantly improve their performance. Note that maintaining
a low fault threshold, as is enabled by our basic reconfig-
urable Byzantine quorum approach [14], is important for
achieving good performance. However, performance mea-
surements from our file system prototype have shown that
this, by itself, is not sufficient. The first optimization we
present is optimistic quorum collection. Since fault thresh-
olds must account for worst-case situations, they are in-
evitably pessimistic under normal operating conditions. In
our optimistic approach, the read protocol initially attempts
to complete a read operation using a subset of a quorum
under an optimistic assumption about the current number
of faults. Using quorum properties, it is possible to de-
tect when the optimistic assumption is violated in the initial
read attempt and, in this case, a second round of the read is
performed to finish contacting a full quorum. This allows
performance to degrade gracefully with the actual number
of faults present, instead of being dependent on worst-case
limits or a pessimistic view of the current number of faults.
A second optimization we consider is adaptive probabilis-
tic hashing. In this approach, data servers probabilistically
return either a complete data block or a hash of the data
block. By adapting the probability with which servers re-
turn a hash, system performance can be tuned to the current
operating environment.

In order to evaluate the performance of our basic ap-
proach and its optimizations, Emulab [23] facilities were
used to gather extensive performance measurements from
our agile file system prototype. We also used this experi-
mental set-up to investigate the performance of Byzantine
quorum protocols more generally, considering their scala-
bility, the impact of design choices such as proxies, and how
well they compare against the non-fault-tolerant NFS v3 file
system. Results show that, with our optimizations, single
Byzantine fault tolerance can be achieved with 5 servers and
an overhead of less than 10%, as compared to NFS v3.

2. Related Work

A number of projects [3, 6, 7, 8, 19] have addressed
dependable storage services that rely on data replication.
Quorum based protocols [10] represent one popular repli-
cation technique used by several such systems [12, 17, 19].
In quorum systems, reads and writes are performed on a
quorum or a subset of all servers. By requiring that any
two quorums overlap, at least safe variable semantics [16]
can be provided. Safe variable semantics provides single-
register consistency guarantees as long as read operations
to a data object (variable) are not concurrent with write op-
erations on the object. To tolerate Byzantine server faults
and server compromises, Byzantine quorum systems [18]
were developed. Here, the overlap between any two quo-
rums is increased sufficiently to mask arbitrary actions by
faulty servers. While there are different types of Byzantine
quorum constructions, threshold masking quorums, which
we consider herein, are widely studied because of their sim-
plicity and high availability.

To mask faults, fault tolerant protocols need to execute
expensive operations, despite the fact that such faults are not
present most of the time. In dynamic quorum systems [4],
varying the fault threshold (the maximum number of faults
that can be masked) was proposed to reduce overheads asso-
ciated with such protocols. The idea is to increase the fault
threshold only when the situation requires it, and to operate
at a lower fault threshold at other times. In reconfigurable
Byzantine quorum systems [14], we added the capability
to remove faulty servers while the system is in operation,
which helps to keep the fault threshold low. A framework
that allows reconfiguration of arbitrary Byzantine quorums
was reported in [20].

Besides dynamic threshold adjustment, we use an opti-
mistic quorum protocol for reads, where a subset of a read
quorum is first probed, and only if required, a second round
is executed wherein the remaining servers in a full quorum
are queried. To the best of our knowledge, this is the first
quorum collection technique that is optimized for the com-
mon case where few faults are present and adapts to the
actual fault number without changing the fault threshold.
Other kinds of optimistic behavior have been studied in the
context of storage systems. For example, S. Frolund, et al.,
have a two step read that tolerates crash failures in [9]. It is
optimistically assumed that there are no partial writes and
a light weight read is attempted at first. A more expensive
recovery process is executed when the assumption does not
hold. In dynamic Byzantine quorums [4], write quorums
change dynamically. A read operation first reads from a
small read quorum, optimistically assuming that it has suf-
ficient intersection with the latest write quorum of the ob-
ject being read, and if this is not true, it reads from a larger
quorum.

Many works, e.g. [7], have attempted to reduce the net-
work communication overhead as a means to achieve ef-
ficiency. This is typically achieved by communicating the
hash of the data instead of the data itself, which is typi-
cally much larger. In [22], this has been explored in the
context of Byzantine-tolerant coordination protocols which
use Byzantine quorum systems, but lacks a detailed perfor-
mance evaluation. In this paper, we provide a detailed per-
formance evaluation to demonstrate the benefits of hashing
in the context of quorum protocols in local area and wide
area network settings.

In [11], optimistic techniques and cryptographic hashes
are used in the context of storing erasure-coded data using
versioning and quorum systems. In this paper, we inves-
tigate optimistic quorum collection techniques and prob-
abilistic hashing for improving the efficiency of the orig-
inal read and write protocols for Byzantine quorum sys-
tems given in [18]. The techniques presented are suffi-
ciently general to be used in other quorum read-write pro-
tocols. In [11] however, the optimistic techniques and cryp-
tographic hashes are used for easy detection and repair of
malformed writes due to faulty clients and servers, and to
achieve linearizability and wait-freedom of read-write oper-
ations when versioning is used along with erasure-coding.
In contrast, the read-write protocols given in [18] consider
only replicated data and do not use versioning. Only safe-
variable semantics are provided. We do not consider the
possibility of partial and inconsistent writes by malicious
clients, as these can be overcome by incorporating reliable
broadcast protocols into writes.

3. The Agile Store Prototype

3.1. System Model

Broadly speaking, the system consists of three main en-
tities: servers that provide the file system service, clients
that use the file system, and a fault detection service which
is responsible for reconfiguring the system as part of pro-
viding agility. A Byzantine fault model is assumed for the
servers. It is assumed that not more than a threshold num-
ber of servers are Byzantine faulty at any given time. Some
measures are taken to deal with faulty clients, but as in prior
work on Byzantine quorum systems, our primary focus is on
server faults. Our read/write protocols and fault detection
and reconfiguration algorithms operate under the assump-
tion of an asynchronous network. However, the access con-
trol mechanism in our file system prototype requires loose
clock synchronization among the servers. Since Byzantine-
tolerant access control is not the focus of the project, we
achieved clock synchronization in our prototype using the
Network Time Protocol (NTP) [1]. Throughout the paper,
we use the term “system size” to refer to the number of data

servers in the system.

3.2. Architecture of File System Prototype

Figure 1 illustrates the main architectural components of
the file system prototype. The client agent is a user-space
application that exports an NFS file server interface to the
client machine. The client agent fulfills NFS requests by
interacting with the metadata service and the data servers.
A small subset of NFS functionality (symbolic links, hard
links, dynamic file system information) is not implemented.
File system consistency mimics that of NFS V3, a stateless
protocol with loosely enforced open-to-close file semantics.

The metadata service consists of a distributed set of
servers designated to handle the bulk of the file system’s
metadata needs. Metadata belongs to a class of informa-
tion that is usually modified from its current state, but is
rarely overwritten with data that is independent of its ear-
lier contents. Since strict ordering requirements must be
enforced on metadata operations, the metadata service is
implemented as a Byzantine-Fault Tolerant (BFT) state ma-
chine [21]. Our prototype uses the Castro–Liskov proto-
col [7] to achieve this. It is responsible for managing the
mapping of the file system directory structure to the flat di-
rectory namespace used at the data servers, as well as direc-
tory attributes and access control information.

Certain types of metadata such as file sizes, file access
times, file modification times, and attribute modification
times are best managed at the data servers because they
do not require strict ordering and are modified frequently
(on every file block read/write request). Read requests also
implicitly require a data server to perform certain file at-
tribute modifications, i.e. updates on access times. Reads
and writes occur on file blocks, which are 8 KB in size.

The data servers are comprised of a distributed set of
servers from which file data and attributes are read and to
which they are written. A client agent randomly chooses
a data server as its proxy server, and the proxy server for-
wards its request to a quorum of data servers. Responses
from the data servers are channeled back to the proxy and
then sent back to the client agent. The quorum and the
proxy server are randomly chosen by the client agent for
every request. Note that a proxy server is a data server and,
according to our system model, it can suffer from a Byzan-
tine fault. In order to protect the integrity of reads and writes
despite the possibility of a faulty proxy, message authenti-
cation codes (MACs) are used on requests and responses.
Thus, individual data servers verify a client-generated MAC
before processing a request and the client verifies a server-
generated MAC before processing the server’s response. A
proxy server can drop requests and/or responses but can not
undetectably modify them. A client that does not receive
enough verified responses simply retries the operation us-

Application Client Agent

NFS Client

KERNEL SPACE

USER SPACE

Client
Read/Write Operations
Access Control Operations
Weaker Consistency
Metadata Operations

Data Server Quorum

Byzantine Fault
Tolerant
Metadata
Service

Stronger Consistency
Metadata Operations
Access Control Operations

Fault/Intrusion
Detection
Services

Proxy

Figure 1. Schematic overview of the file system prototype

ing a different proxy.
Upon opening a file for read access, a client agent obtains

the file handle from the metadata service. The client agent
proceeds to read file blocks from the data servers by means
of quorum read protocols. The file size, read time, access
time, and attribute creation time are also read from the data
servers. A write session occurs in an analogous manner with
quorum write protocols governing the interaction between
the client agent and data servers.

The agile system continuously adapts its operating point
so that a balance between performance and dependability
is achieved. This operating point is varied using a system
parameter called the fault threshold. If the fault threshold
is set conservatively to a large value, system performance
will suffer. If it is too small, the system will suffer in its ro-
bustness to faults. The fault and intrusion detection services
include feedback mechanisms from which the fault thresh-
old is set and the system reconfigured. Section 3.3.1 further
discusses these feedback mechanisms.

3.3. Algorithms and Protocols

3.3.1. Reconfigurable Byzantine Quorum Systems

In dynamic Byzantine quorum systems [4], the fault thresh-
old for masking quorum systems is allowed to change dy-
namically based on information about the current fault envi-
ronment. In [14], we introduced the technique of reconfig-
urable Byzantine quorum systems, where both the system
size and fault threshold can be adjusted dynamically. Read
and write operations on data objects are executed accord-
ing to the current system parameter values. Reconfigurable
Byzantine quorum systems include read and write protocols
that adapt to changes in system parameters, and fault detec-
tion protocols that enable the system to remove data servers
that are identified as faulty or compromised. The read and
write protocols are similar to those of dynamic Byzantine
quorum systems but extended to deal with varying system

size. Full details of the protocols can be found in [14].
The fault detection algorithm described in [14] is used

to detect compromised data servers. The use of proxy
servers (see Section 3.2) in the Agile Store architecture en-
ables servers to monitor other servers’ responses to read re-
quests. Each individual server monitors sequences of re-
sponses from other servers and uses a statistical approach to
identify servers that are likely to have failed or been com-
promised. This statistical approach takes into account the
likelihood that servers might respond incorrectly because
they were not part of the most recent write quorum and
the fact that clients choose quorums at random in our ap-
proach. The detection algorithm has a high probability of
detection with low false alarm rate even with a moderate
percentage of concurrent write operations. A fault detec-
tion service, which connects directly to servers and does
not otherwise accept external connections, gathers detection
results from individual servers and executes a voting algo-
rithm to make the final determination on when to remove
a data server. The fault detection service is responsible for
removing the data server and updating system parameters
accordingly. The fault detection service can be executed as
a Byzantine fault-tolerant state machine [7, 21]. Feedback
is also provided by a specification-based intrusion detection
service (IDS). The IDS has been designed to focus on de-
tecting abnormal usage of the file system and adapting the
fault threshold accordingly. A central IDS detects system-
wide attacks on the system while IDS sensors at each server
detect attacks in individual servers. A full description of the
IDS service and its implementation is beyond the scope of
this paper.

3.3.2. Optimistic Quorum Collection

In the Agile Store, agility is not only expressed in its ability
to dynamically adjust the fault threshold, but also in its abil-
ity to tune system performance based on the actual number
of faults present [15]. In optimistic quorum collection, we

achieve this by optimistically assuming a smaller number
of faulty servers is present among a read quorum than the
actual fault threshold. We use this optimistic assumption to
initially query fewer servers than in the case of a full read
quorum.

In threshold masking Byzantine quorum systems, a read
quorum intersects with any write quorum in at least 2b + 1
servers. When there are no faulty servers, these 2b + 1
servers all return the latest value of the object being read (as-
suming there is no concurrent write operation on the object).
Since b+1 servers are enough to guarantee that the returned
value was produced by a past write operation, querying b ex-
tra servers is a waste in a fault free scenario. A simple ver-
sion of our optimistic approach is realized in what we call
“blind” optimistic quorum collection. During a read opera-
tion, the read quorum size minus b servers are first queried.
When fewer than b+1 servers return the latest value, which
can be caused by faults among queried servers or by con-
current writes, b more servers are queried to complete a full
read quorum collection.

The above “blind” optimistic quorum collection finishes
in one round with b fewer servers queried, when no faults
are encountered. The risk taken is that a read quorum might
have to be collected in two rounds. Although this does not
lead to higher server workload or lower throughput, read
latency might be higher than that of a single round full quo-
rum collection.

A more general optimistic collection scheme utilizes an
estimate of the current number of actual faults to derive an
estimate of the number of faults that are expected in the
servers contacted during the initial read attempt. This value
is used as the optimistic “threshold” for read operations.
When there are fewer faults than estimated, the optimistic
assumption holds true and the reads still terminate faster
and server workload is lower due to the use of fewer servers
than in the case of a full quorum read. We can detect during
the initial phase of the read if the optimistic assumption is
violated, and if so, query additional servers to bring the total
number of responses to a full read quorum. In this way, the
correctness of the approach is not compromised even when
the optimistic assumption does not hold.

With this generalization, the optimistic quorum collec-
tion approach becomes similar in certain respects to dy-
namic Byzantine quorums [4], but does not rely on accu-
racy of the current fault estimate for correctness. Only per-
formance is penalized when the estimation is not accurate.
In Section 4.3, we demonstrate that optimistic quorum col-
lection achieves similar performance to dynamic Byzantine
quorum systems without the need for an accurate fault esti-
mate assumption for correct operation.

Figure 2 shows the pseudo-code for an optimistic read
quorum collection strategy within a b-masking Byzantine
quorum system [18]. δ refers to an estimate of the number

of faulty servers among a read quorum, qr is the read quo-
rum size, and b is the fault threshold. δ = 0 represents the
blind optimistic quorum collection scheme. If an estimate
of the number of faulty servers in the system is available,
denoted by f , we set δ = [f(qr−b)

n−f], which represents the
expected number of faults in a read set of size qr − b + δ.
Another strategy would be to dynamically adapt the value of
δ so that a target percentage of read operations in which the
optimistic assumption is met is achieved. Our proxy-based
fault detection [14] or statistical methods reported in [5] can
be used to estimate the number of faults present, but more
efficient methods might also be possible since we do not
rely on the estimate for correctness.

A faulty server can respond with corrupted data or sim-
ply refuse to respond. The latter case will cause a client side
timeout. When a timeout occurs, a client must query more
servers in order to collect the required number of responses.
To simplify the protocol description, we omit the details of
this in the pseudo-code.

Theorem 1. Applied to any b-masking Byzantine quorum
system [18], optimistic quorum collection with 0 ≤ δ ≤
b maintains safe variable semantics [16], i.e. when there
are no concurrent write operations on the data object being
read, a read operation returns the value of the most recently
completed write in some serialization of preceding writes.

Proof. First, assume there are no write operations concur-
rent with a given read operation. Suppose a data object
A is being read, and when A was written most recently,
the write quorum was Qw and < v, t > is the value and
timestamp pair written. In optimistic quorum collection,
suppose responses collected in Round 1 are from a server
set S1. Then |S1| = qr − b + δ, where qr is the read
quorum size. Given this is a b-masking Byzantine quo-
rum system, |Qw| + qr − n ≥ 2b + 1. It follows that,
|Qw| + (qr − b + δ) − n ≥ b + 1 + δ. This means that at
least b+1+ δ responses from S1 were also part of Qw. As-
suming there are no concurrent write operations on object
A, then the client will get at least δ + 1 copies of < v, t >
in Round 1.

When the number of faults in S1 does not exceed δ, the
client will get at least b + 1 copies of < v, t > in Round 1.
Any response with a timestamp higher than t is obviously
faulty and can not be returned by more than δ servers in
this case. Therefore, the client will return < v, t > as the
result in Round 1. Legitimate but older values of A cannot
be returned as the read result in Round 1, because at least
δ + 1 copies of < v, t > are collected.

The protocol will execute Round 2 if it does not return <
v, t > in Round 1. In Round 2, b−δ additional responses are
collected, which completes a full read quorum together with
the qr − b + δ responses collected in Round 1. In this case,
< v, t > will be returned as the result, as guaranteed by the

Round 1: {Fast Path}
Query qr − b + δ servers for the object O.
If there is a highest timestamp winner then

Return highest timestamp winner {Fault free case}
Else If there is a winner then

If more than δ responses have higher timestamp
than the winner then
Perform Fault Handling Round {Faults present}

Else Return winner {Faults present but masked}
EndIf

Else Perform Fault Handling Round {Faults present}
EndIf

EndIf

Round 2: {Fault Handling Round or Slow path}
Query b − δ more servers for the same object O
If there is a winner among responses from
both Rounds 1 and 2 then

Return winner
Else Return Null {Concurrent write}
EndIf

Response: A <value, timestamp> of the data object
being read, which is returned by a server.

Candidate: A candidate is a response returned
by at least b + 1 different servers in a given read
operation.

Winner: A winner is defined as the candidate
that has the highest timestamp among all candidates
that have been received in a particular read attempt.

Highest timestamp winner: A winner is also a
highest timestamp winner if the winner has the
highest timestamp among all responses in a
particular read attempt.

Figure 2. Optimistic Read Protocol

properties of b-masking Byzantine quorum systems.

The optimistic approach not only performs better in a
system with faults, but performance degrades gracefully as
the number of actual faults increases up to the fault thresh-
old. This is due to the fact that quorums are chosen at
random and, therefore, the probability that the optimistic
assumption is violated increases monotonically as the ac-
tual number of faults increases beyond the assumed value.
In Section 4.3, we provide detailed performance results
demonstrating the benefits of the optimistic approach.

3.3.3. Adaptive Probabilistic Hashing

Fault tolerance in replicated systems comes at a price, i.e.
multiple copies of a data object need to be received by a
client in order to compute a safe result. This communi-
cation overhead can be reduced by making use of hashes,
assuming that the data object size is much larger than the
hash size. Cryptographically strong hashes can be treated
equivalently as their data objects for verification purposes
in read result voting. In [7], a client picks one server to
return the full data object requested and all others return a
hash of the data object. This approach does not work well
with Byzantine quorum systems because of their inherent
data inconsistency. Writes happen to quorums, not to all
servers. If the server picked to return the full data object
does not have the latest version, then the read will fail, even
when the chosen server is not faulty.

To address this problem particular to quorum systems,

we adopt a probabilistic approach. Each server in a read
quorum returns the hash of the requested data object with
some probability ph and it returns the data object itself with
probability 1− ph. Intuitively, the larger ph is, the less data
is transferred. However, a large ph leads to a high probabil-
ity of failure, i.e. that no server returns the latest version of
the data object. If this happens, the client will execute a sec-
ond round where it requests the full data object from one of
the servers that returned the correct hash value previously.
Figure 3 gives the pseudo code executed by clients.

During execution of the system, the hash probability can
be adapted in order to optimize different performance met-
rics, e.g. client latency or system throughput. This can
be done based on analytical derivations of these quantities
given measurable parameters such as round-trip time and
available bandwidth, or on hill-climbing techniques within
a feedback control loop where changes are made to the
hash probability and the performance metrics are directly
measured, or on some combination of these approaches.
Adaptation of the hash probability in this manner allows
the system to maintain best performance as system condi-
tions change. In Section 4.4, we present some initial results
showing how this can be done when the goal is to minimize
latency.

4. Experiments and Results

In this section, we present a detailed performance evalu-
ation of the Agile Store prototype. Micro-benchmarks and

Query servers in a quorum Q for the object O
and await either hashes or data
values or a combination of the two.

Case a: Only data values received

If there is a winner (defined in Figure 2) then
Return winner

Else Return Null {Concurrent write}
EndIf

Case b: Mixture of hashes and data objects received
{This pseudocode is optimized
for clarity rather than performance}
1. Compute C(O), hash of each object O returned
2. Compare each response and of those H or C(O)

that were returned by at least b + 1 servers
add those H or C(O) with the highest TS to set HH.

3. If there is a C(O) in HH then
Return the data object O corresponding to C(O)

Else
For each server that has its H in HH

a. Query the whole data object O from
the server

b. Compute the hash of the returned
object O in C(O)

c. If C(O) matches with H then
Return the data object O
Exit

EndIf
EndFor

EndIf
4. If no value returned then

Return Null {Concurrent write}
EndIf

Figure 3. Probabilistic Hash Read Protocol

the widely-used Andrew benchmark are used to evaluate the
prototype and its realization of the techniques discussed in
Section 3.3. Our evaluations focus on failure-free perfor-
mance (as is customary in the field), except where presence
of faulty servers is essential to the experiment.

All experiments were performed in Emulab [23]. Unless
otherwise explicitly noted, experiments were performed in
a 100 Mbps switched Ethernet environment. Our machine
testbed consisted of Intel PIII 600 MHz processors with 256
MB RAM and 13 GB 7200 RPM IDE hard disks, and Intel
PIII 850 MHz processors with 512 MB RAM and 40 GB
7200 RPM IDE hard disks. All machines ran RedHat Linux
7.3. 1 MB files were used to measure read and write laten-
cies. A block size of 8 KB was used in all experiments—in
our prototype and in standard NFS implementations when
comparisons were made.

4.1. Agile Store Prototype Base Version

The base version of the Agile Store prototype refers to
our implementation of a reconfigurable Byzantine quorum
system without optimistic quorum collection and adaptive
probabilistic hashing. Figure 4 shows the performance of
the prototype’s base version—measured in terms of latency
when reading and writing a 1 MB file—as a function of
system size. A minimum Byzantine quorum configura-
tion, which can tolerate one Byzantine fault, requires 5 data
servers. Reading or writing a 1 MB file with this minimum
configuration of our prototype’s base version takes approx-
imately 0.6 seconds. Read/write latency of the base version
increases linearly with the number of data servers, albeit at
a fairly steep slope. This baseline performance is tolerable

(about one third of the speed of NFS), though later we will
show that our optimizations improve it considerably.

Figure 5 shows the base version performance as the fault
threshold, b, is increased. In this figure, n is set to 21, which
is the minimum necessary to tolerate up to 5 faulty or com-
promised servers. As b increases from 1 to 5, write through-
put decreases by over 20%, read throughput decreases by
over 25%, and read latency increases by over 40%. Thus,
to optimize performance for a given system size, it is im-
portant to keep b as low as possible. We note that smaller b
also allows the system size to be minimized, further improv-
ing performance (compare Figure 4 latencies for n ≤ 10 to
those of Figure 5 with n = 21).

One of our mechanisms for maintaining a low fault
threshold is the fault detection service, which diagnoses
faulty or compromised data servers and removes them from
the system by suitably changing the quorum variables. The
integration of this process with Byzantine quorum systems
is known as reconfigurable Byzantine quorum systems [14].
The fault detection algorithm we described in [14] is used
in our prototype. Figure 6 shows the variation of the num-
ber of data servers in the system and the fault threshold in
one sample run where data servers became faulty over time.
The variations in n and b for reconfigurable quorum sys-
tems are compared against the case where the fault thresh-
old is preset to a conservatively high value (static Byzan-
tine quorums [18]), and the case where the fault threshold
is increased to mask new faults but no faulty servers are re-
moved (dynamic Byzantine quorums [4]).

The experiment was run with 35 data servers, fed with
a continuous stream of read operations. The fault threshold
b was allowed to vary between bmin = 1 and bmax = 5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 5 6 7 8 9 10

La
te

nc
y

(s
ec

on
ds

)

Number of Data Servers (n)

Write Latency
Read Latency

Figure 4. Agile Store base version: latency
vs. system size (b = 1).

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5
 400

 500

 600

 700

 800

La
te

nc
y

(s
ec

on
ds

)

T
hr

ou
gh

pu
t (

bl
oc

ks
 r

ea
d/

w
rit

te
n

pe
r

se
co

nd
)

Fault Threshold (b)

Write Latency
Write Throughput

Read Latency
Read Throughput

Figure 5. Agile Store base version: latency
and throughput vs. fault threshold (n = 21).

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600 700 800

S

er
ve

rs

Experiment Time (seconds)

Reconfig. Quorum System Size N

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600 700 800

S

er
ve

rs

Experiment Time (seconds)

Static and Dynamic Quorum System Size N

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600 700 800

S

er
ve

rs

Experiment Time (seconds)

Static Quorum Fault Threshold B

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600 700 800

S

er
ve

rs

Experiment Time (seconds)

Dynamic Quorum Fault Threshold B

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600 700 800

S

er
ve

rs

Experiment Time (seconds)

Reconfig. Quorum Fault Threshold B

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600 700 800

S

er
ve

rs

Experiment Time (seconds)

Fault Events

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600 700 800

S

er
ve

rs

Experiment Time (seconds)

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600 700 800

S

er
ve

rs

Experiment Time (seconds)

Figure 6. The variation of the number of data
servers (n) and the fault threshold (b) when
data servers become faulty over time.

servers. At start, there were no faulty data servers in the
system. Servers became faulty at random times, but the
likelihood of additional servers being faulty was increased
each time a new server became faulty. A randomly chosen
parameter for each faulty server controlled how closely its
behavior matched that of a correct server. This controlled
how easy or difficult the faulty server was to detect. Since
the fault threshold b can increase only up to bmax = 5
servers, only five faults can be injected into dynamic and
static quorum systems. By contrast, a total of 11 faults
were introduced in the case of reconfigurable quorums due
to the timely detection and removal of faulty servers, which
keeps b in check. All of these faults were eventually de-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 5 6 7 8 9 10

La
te

nc
y

(s
ec

on
ds

)

Number of Data Servers (n)

Write Latency with Proxy
Read Latency with Proxy

Write Latency without Proxy
Read Latency without Proxy

Figure 7. Latency with and without proxies

tected by our fault detection service despite several of them
exhibiting behaviors very close to that of a correct server.
Furthermore, the lower value of b maintained for reconfig-
urable quorums resulted in significantly lower latency and
increased throughput as predicted by Figure 5.

4.2. Performance with and without Proxy Servers

In our Agile Store architecture, using proxy servers that
act as gateways for client requests allows the proxy servers
to monitor other servers’ responses and run a fault detection
algorithm to detect faulty or compromised servers. Figure 7
shows the times required to read and write a 1 MB file ver-
sus system size with and without the use of proxy servers.
Using proxy servers increases read latency by about 25%
and write latency by about 10%. When the client was op-

erated from a low bandwidth, high RTT link (40 ms) while
the data servers remained on a LAN, the overhead of using
proxy servers was lowered to approximately 5%.

The use of proxy servers is necessary for our fault de-
tection service to be run. Proxies also facilitate clients that
connect over an unreliable network and can aid resource-
constrained clients interacting with large system and quo-
rum sizes. Due to these reasons, we have chosen to main-
tain the use of proxy servers in our prototype. However, if
other effective methods of fault detection can be developed,
the use of proxies should be reexamined.

4.3. Optimistic Quorum Collection

Figures 8 and 9 show the performance improvement of
using the “blind” version of our optimistic quorum collec-
tion (“optimistic” in the figure), as compared with single
round full read quorum collection (“full” in the figure). Ex-
periments of Figure 8 were performed on static threshold
masking quorum systems with different b values, and sys-
tem sizes equal to 4b + 1. When there are no faults present,
optimistic quorum collection reduces the number of servers
accessed during read operations, and both client side latency
and system throughput are improved significantly as shown
in Figure 8. Though this performance improvement occurs
in a fault-free situation, the lifetime of smaller systems is
primarily composed of fault-free time and the improvement
can therefore be quite significant. Figure 9 shows how the
read throughput varies with the number of faults f in the
system. With f growing from 0 to the fault threshold, read
throughput of the “blind” protocol degrades gracefully, with
the worst case on par with single round full read quorum
collection.

Figure 10 evaluates the use of optimistic quorum collec-
tion in fault situations when b = 4 and n = 17, for different
values of f . δ = 0 and δ = 4 correspond to “blind” op-
timistic quorum collection and single round full read quo-
rum collection, respectively. We see that there is a penalty
incurred for underestimating the number of faults, because
two rounds may be necessary to finish a read operation. Fig-
ure 10 further shows how different δ values affect the read
performance of optimistic quorum collection. As seen in
the figure, for a given fault number f , there exists an opti-
mal δ value that can be used to maximize performance. We
found that setting δ = [f(qr−b)

n−f] (expected fault number in
the first round) works well practically for static threshold
Byzantine quorums, where qr is the read quorum size, b is
the fault threshold, and n is the system size.

Both optimistic quorum collection and dynamic fault
threshold schemes attempt to reduce the overhead of quo-
rum operations, though with differing assumptions. Op-
timistic quorum collection attempts to estimate the actual
number of faults, f , in order to optimize performance, but

does not depend on accurate estimation for correct op-
eration. Performance gains resulting from dynamic fault
threshold schemes, such as dynamic quorum systems, re-
quire accurate knowledge of f for correct operation. The
performance of these two approaches is compared in Fig-
ure 11 for n = 17. In order to do this comparison, it was
necessary to simulate faulty server behavior, which we did
by having faulty servers always return incorrect data for
both approaches. Dynamic quorum systems were operated
with a minimal fault threshold, bmin, set to 1 and a maxi-
mum fault threshold, bmax, set to 3 1. The optimistic quo-
rum collection system used a static fault threshold, b, of 3.
For both approaches, we assumed that the protocols are able
to determine the actual fault number exactly. For dynamic
Byzantine quorums, this set the fault threshold b, while for
the optimistic approach, it was used to determine δ.

Optimistic quorum collection outperforms dynamic quo-
rum systems in most cases of the experiment, even when
best case scenarios were used for dynamic quorum systems
(data objects read were always written under the current
threshold for dynamic quorums). Optimistic quorum collec-
tion is not as efficient as dynamic quorum systems in write
performance due to its use of an un-optimized, large write
quorum size. But when overall file system performance is
taken with the commonly assumed 80% to 20% read/write
ratio, the combined latency of optimistic quorum systems
still outperforms dynamic quorum systems.

Optimistic quorum collection is able to achieve its bet-
ter performance because it sets the δ value lower than the
actual number of faults f . This leads to execution of the
second round with some probability, but correctness is not
affected. As long as that probability is low enough, average
read performance will benefit. Dynamic quorum systems
achieve better read performance by setting the fault thresh-
old as low as possible, but the threshold is limited by f for
correctness.

4.4. Adaptive Probabilistic Hashing

In this section, we experimentally show the presence
of a hash probability, ph, where normalized read latency l
reaches its minimum on [0, 1] for different network settings.
Here data objects are file blocks of 8 kilobytes. We recall
that a high ph means that most servers will return hashes and
the protocol is likely to require a second round to determine
the data object value, while a low ph will cause most servers
to return full data objects and the protocol will likely termi-
nate after the (more costly) first round. We present read
latency results from two network settings that represent a
LAN (Figure 12) and a WAN (Figure 13). The LAN set-

1Note that dynamic quorum systems have the same read/write latency
when f = 0 and f = 1. This is because b = max(f, bmin), which is
equal to 1 in both of these cases.

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1 2 3 4
 1600

 1800

 2000

 2200

 2400

 2600

 2800

re
ad

 la
te

nc
y

re
ad

 th
ro

ug
hp

ut
(n

um
be

r
of

 r
eq

ue
st

s/
se

c)

fault threshold

"optimistic" read latency
"full" read latency

"optimistic" read throughput
"full" read throughput

Figure 8. Performance improvement of opti-
mistic quorum collection with no faults

 1600

 1800

 2000

 2200

 2400

 2600

 1 2 3 4

re
ad

 th
ro

ug
hp

ut
(n

um
be

r
of

 r
eq

ue
st

s/
se

c)

fault number

"optimistic" read throughput
"full" read throughput

Figure 9. Read throughput with faults (n = 17,
b = 4)

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0 1 2 3 4

re
ad

 la
te

nc
y

in
 s

ec
on

ds

fault number

delta=0
delta=1
delta=2
delta=3
delta=4

Figure 10. Read latency of δ-optimistic quo-
rum collection

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0 1 2 3

la
te

nc
y

in
 s

ec
on

ds

fault number

read of optimistic
read of dynamic

write of optimistic
write of dynamic

average of optimistic
average of dynamic

Figure 11. Optimistic quorum collection vs.
dynamic Byzantine quorums

ting resulted from Emulab’s actual network delays, while
the WAN setting utilized Emulab’s facility for emulating
WAN networks by inserting additional delay components
in message paths.

The figures show how hash probability affects read la-
tency in the two network settings with varying bandwidth.
In a LAN environment, it is always advantageous to use a
high ph irrespective of bandwidth, because the penalty for a
second round is very low. In a WAN environment, a rever-
sal in the slope of normalized read latency occurs between
the 100 Mbps and the 10 Mbps cases. At low bandwidths
(10 Mbps), a high ph leads to low latency due to reduced
demands on the limited bandwidth. However, at high band-
widths (100 Mbps), the bandwidth savings are insignificant
when compared to the penalty (running an extra round) of

hashing; a low ph is thus a better choice. The curve for 95
Mbps further shows that, in some cases, the optimal hash
probability takes an intermediate value, neither close to 0
nor close to 1.

These results demonstrate the importance of choosing
ph values that are optimized for current network condi-
tions. We are exploring the use of empirical methods in
determining good ph values for specific network conditions.
Since the Agile Store is designed to serve a large number of
clients, we believe that empirical data collected from such
a large number of clients would be sufficient in providing
near-optimal values of ph for most network conditions. The
performance of hashing is dependent on data object size.
For the fairly large block sizes typical in file systems, hash-
ing is quite beneficial. However, in other applications with

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1no
rm

al
iz

ed
 (

w
/m

ax
 fo

r
sp

ec
ifi

c
B

W
)

re
ad

 la
te

nc
y

hash probability

n=17,b=4,RTT=122us

BW=10mbps
BW=20mbps

BW=100mbps

Figure 12. Read latency for LAN setting

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1no
rm

al
iz

ed
 (

w
/m

ax
 fo

r
sp

ec
ifi

c
B

W
)

re
ad

 la
te

nc
y

hash probability

n=5,b=1,RTT=40061us

BW=10mbps
BW=95mbps

BW=100mbps

Figure 13. Read latency for WAN setting

smaller data object sizes, the benefits of hashing will likely
be significantly reduced.

4.5. Performance of an Optimized Version of the
Prototype

Optimal quorum collection and adaptive probabilistic
hashing benefit only read operations. While usage studies
indicate that reads are far more common than writes, very
poor write performance could still have a substantial neg-
ative impact on overall performance. Since, in a LAN en-
vironment, optimized multicast primitives are usually pro-
vided, we considered the use of a multicast-based write op-
eration along with the other two optimizations. In this sec-
tion, we focus on LAN environments and we, therefore, set
ph = 1 based on the results of the previous section.

4.5.1. Microbenchmark Performance

Figure 14 compares the latency in reading and writing 1
MB files with the three optimizations, and compares these
values against those of a single NFS v3 server from Red-
hat Linux 7.3. As seen in the figure, the latency in writ-
ing files for our optimized prototype is almost the same as
that of NFS with the NFS server running in fast, but less
reliable, asynchronous mode. Compared to the base (un-
optimized) version of the prototype, write performance is
improved by a factor of 3–5. Optimistic quorum collection
and probabilistic hashing have significant performance ben-
efits for read operations. From Figure 14, we see that reads
in the optimized prototype are about 10–15% slower than
NFS over the range of system sizes plotted. The low degra-
dation rate in reads as system size increases is mainly due
to the aggressive usage of hashing.

The read and write latencies can be further reduced by
having the data servers cache data in volatile memory and

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

 5 6 7 8 9 10

La
te

nc
y

(s
ec

on
ds

)

Number of data servers (n)

optimized read(optimistic+hash)
optimized write(IP multicasting)

NFS read/write

Figure 14. Comparison of the optimized ver-
sion of our prototype with NFS in terms of
read and write latencies on 1 MB files. The
fault threshold for the prototype was kept
equal to one.

committing it to local storage periodically. This technique
has been investigated in [7]. Preliminary experiments with
this technique have revealed that the read latency can be
improved by an additional 4%. In a LAN setting, the benefit
of hashing far exceeds the benefit of caching.

4.5.2. Performance on the Andrew Benchmark

We also compared the performance of our optimized proto-
type against NFS v3 using the Andrew benchmark [13]. The
Andrew benchmark emulates typical workload of software
development. It proceeds in five phases, with each phase
emphasizing different file system operations. Our prototype
was set up to use five data servers and four metadata servers
with the fault threshold set to one. Table 1 shows the time
taken in seconds for each phase of the Andrew benchmark

Table 1. Andrew benchmark: Execution times
of Agile Store and NFS 3 (in seconds)

Phase
I

Phase
II

Phase
III

Phase
IV

Phase
V Total

Agile Store 0.10 1.87 2.66 2.52 15.51 22.66
NFS 0.14 1.43 2.12 2.38 14.95 21.02

for our prototype and NFS. Overall, our prototype is only
7.8% slower than NFS 2. Phase I consists of many small
metadata operations that are handled by the BFT metadata
server asynchronously, which accounts for our prototype
outperforming NFS in this phase.

The results of this section indicate that a Byzantine fault-
tolerant quorum-based file system, consisting of 5 data
servers and 4 meta-data servers, can compete with raw NFS
v3 in terms of performance, despite the overheads of com-
municating with multiple servers on each operation.

5. Conclusion

In this paper, we reported on a detailed performance
evaluation of both existing and novel techniques for adap-
tive Byzantine quorum systems, implemented within a pro-
totype file system. Among our most salient findings were:

• techniques for maintaining a low fault threshold, e.g.
timely detection and removal of faulty or compromised
servers, substantially improve performance;

• use of proxy servers has a moderate performance
penalty in LAN environments but it also enables
servers to monitor each other’s behavior and eases the
burden on clients;

• optimistic quorum collection techniques allow perfor-
mance to degrade gracefully with the actual number of
faults and provide similar performance benefits to dy-
namic Byzantine quorum systems without relying on
an accurate fault estimate for correctness;

• probabilistic hashing significantly improves perfor-
mance for large data objects but the optimal hash prob-
ability is dependent on network conditions; and

• single Byzantine fault tolerance can be provided by a
quorum system having 5 data servers with less than
10% performance overhead, compared to NFS v3.

Areas for future study include techniques to dynamically
optimize hash probability and investigation of Byzantine
quorum performance for non-block-oriented data stores,
which are used in most WAN-based storage systems.

2NFS was running in a fast but less reliable asynchronous mode

References

[1] Ntp v3 rfc 1305. http://www.faqs.org/rfcs/rfc1305.html,
Mar. 1992.

[2] The aware home research initiative, college of computing,
georgia tech. http://www.cc.gatech.edu/fce/ahri/, 2000.

[3] A. Adya and et al. Farsite: Federated, available, and reliable
storage for an imcompletely trusted environment. Proc. 5th

OSDI, Dec. 2002.
[4] L. Alvisi and et al. Dynamic byzantine quorum systems. In

Proc. DSN, 2000.
[5] L. Alvisi, D. Malkhi, E. Pierce, and M. Reiter. Fault detec-

tion for byzantine quorum systems. IEEE Trans. on Parallel
and Distr. Sys., 12(9), 2001.

[6] R. J. Anderson. The eternity service. Proc. of 1st Intl. Conf.
on Theory and Appln of Cryptography (Pragocrypt), 1996.

[7] M. Castro and B. Liskov. Proactive recovery in a byzantine
fault tolerant system. In Proc. 4th OSDI, 2000.

[8] Y. Chen and et al. A prototype implementation of archival
intermemory. Proc. of the 4th ACM Intl. Conf. on Digital
Libraries, pages 28–37, Aug. 1999.

[9] S. Frolund and et al. A decentralized algorithm for erasure-
coded virtual disks. In Proc. DSN, 2004.

[10] D. K. Gifford. Weighted voting for replicated data. In Pro-
ceedings of the 7th SOSP, pages 150–162, 1979.

[11] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter.
Efficient byzantine-tolerant erasure-coded storage. In Proc.
DSN, 2004.

[12] M. Herlihy and J. Tygar. How to make replicated data se-
cure. In Advances in Cryptology, 1987.

[13] J. H. Howard and et al. Scale and performance in a dis-
tributed file system. ACM Trans. on Comp. Sys., Feb. 1988.

[14] L. Kong, A. Subbiah, M. Ahamad, and D. Blough. A recon-
figurable byzantine quorum approach for the agile store. In
Proc. 22nd SRDS, pages 219–228, 2003.

[15] S. Lakshmanan, D. Manohar, M. Ahamad, and
H. Venkateswaran. Collective endorsement and the
dissemination problem in malicious environments. In Proc.
DSN, 2004.

[16] L. Lamport. On interprocess communication, part 1: Basic
formalism. Distributed Computing, 1:77–85, 1986.

[17] D. Malkhi and et al. Persistent objects in the fleet system.
In Proceedings of the 2nd DARPA Information Survivability
Conference and Exposition, 2004.

[18] D. Malkhi and M. Reiter. Byzantine quorum systems. Dis-
tributed Computing, 11(4), 1998.

[19] D. Malkhi and M. Reiter. Secure and scalable replication in
phalanx. Proc. 17th SRDS, Oct. 1998.

[20] J. P. Martin and L. Alvisi. A framework for dynamic byzan-
tine storage. In Proc. DSN, 2004.

[21] F. B. Schneider. Implementing fault-tolerant services using
the state machine approach: A tutorial. ACM Computing
Surveys, 22(4), Dec. 1990.

[22] D. Tulone. Enhancing efficiency of byzantine-tolerant coor-
dination protocols via hash functions. In Euro-Par, 2004.

[23] White, Lepreau, Stoller, Ricci, Guruprasad, Newbold, Hi-
bler, Barb, and Joglekar. An integrated experimental en-
vironment for distributed systems and networks. In Proc.
OSDI, Dec. 2002.

