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Abstract— A MIMO network is a wireless network made up of
individual MIMO links. The problem we consider is to maximize
throughput in a multihop MIMO network with interference
suppression. Our problem formulation accounts for variable rates
on the MIMO links, which depend on the channel conditions
of the link, and the manner in which the diversity-multiplexing
trade-off is handled. We present an ILP formulation of the MIMO
one-shot scheduling problem with variable rates, which is the first
exact formulation of a MIMO network optimization problem
that accounts for full interference suppression capabilities of
MIMO links. We use CPLEX to evaluate the optimal solution
based on the ILP formulation for wireless networks with up to
32 concurrently transmitting links. We also modify a heuristic
algorithm from a related MIMO scheduling problem to work
in our problem setting. Results show that the heuristic can
scale to networks with 80 or more concurrent links, but is 10-
20% from optimal in terms of throughput. We show that the
heuristic scheduler is not able to fully exploit the diversity-
multiplexing-interference suppression tradeoff, which is inherent
in the problem. This shows that there is substantial room for
developing improved scheduling algorithms for MIMO networks
and provides some insight into promising directions to explore.

I. INTRODUCTION

Deployments of all-wireless networks are increasing rapidly
due to the emergence of wireless mesh networks and WiMax.
If these networks are to compete with wired networks in
terms of performance, techniques to maximize throughput in
all-wireless networks must be developed. One of the most
promising approaches to throughput improvement in wireless
networks is the use of multiple-input multiple-output, or
MIMO, technology. Applying MIMO on individual links can
provide an immediate throughput boost to these networks.
However, optimizing the use of MIMO resources across the
entire network has the potential to improve throughput by
an even greater amount. For example, our prior work has
demonstrated that the total number of concurrent streams that
can be supported across a network can be doubled if network-
wide optimization techniques are employed, as compared to
link-by-link optimization [17].

One of the key factors that distinguish the MIMO net-
work optimization problem from one in which link-by-link
optimization is performed is the capability of MIMO links
to perform interference suppression. Eliminating interference
allows greater spatial reuse, which increases the overall ca-
pacity of a wireless network. However, the use of MIMO
resources for interference suppression by a link reduces the
resources available to maximize the link’s individual capac-
ity. Thus, there is a fundamental trade-off between boosting
individual link performance and reducing interference, which

can increase spatial reuse and overall performance. In general,
the diversity-multiplexing trade-off has been very well studied
in the MIMO literature, but there is very little work on the
diversity-multiplexing-suppression trade-off [8]. It is exactly
this trade-off that we study in this paper.

To be specific, we consider the problem of maximizing
throughput in a multihop MIMO network while accounting
for variable-rate streams on individual MIMO links, and full
interference suppression (both receiver-side and transmitter-
side suppression). Our method of handling link rates explicitly
accounts for diversity and array gains on the links. We for-
mulate the maximum-throughput problem as an integer linear
program (ILP), which represents the first exact formulation of
a MIMO network optimization problem with full interference
suppression. We demonstrate the feasibility of computing
exact optimal solutions to the maximum throughput problem
by using CPLEX to solve the ILP problem on networks with
up to 32 concurrently transmitting links and varying levels of
interference. We also adapt a heuristic scheduling algorithm,
which was developed for a related problem, to the one studied
in this paper. The performance of the heuristic is shown to be
in the range of 10% to 20% from optimal. We further show that
the performance of the heuristic suffers due to its inability to
fully capture the diversity-multiplexing-suppression tradeoff,
which the ILP solution optimally handles. We also show
that the use of interference suppression produces more than
a multiplicative factor of 2 improvement in performance, as
compared to optimizing individual MIMO links’ performance
without interference suppression.

II. BACKGROUND

A. MIMO Networks

We refer to a wireless network containing MIMO links as a
MIMO network. The goal of this research is to use the MIMO
resources available on the links to optimize overall network
performance, rather than to separately optimize performance
of individual links, which can lead to sub-optimal network
performance. MIMO resources are antenna elements present
at each end of a MIMO link. These antenna elements can
be used for array gain, diversity gain, spatial multiplexing,
and/or interference suppression [2]. The problem is to find
the best operating point among these capabilities on each link
so as to optimize some measure of network performance. We
focus on maximizing aggregate network throughput, i.e. the
aggregate network data rate across a set of simultaneous one-
hop communications. Thus, although the network is multi-
hop, we do not consider aspects such as routing, bandwidth



allocation, etc. Rather, we focus on the maximum throughput
that can be achieved in the network in a single scheduling
slot by optimizing the set of links that are scheduled in the
slot and the use of resources on those links to maximize their
aggregate data rate. Such a problem is typically referred to as a
“one-shot scheduling” problem [9] and can form the basis for
complete link scheduling solutions that schedule all links in
the multi-hop network and account for factors such as routing
and bandwidth allocation.

The use of MIMO antenna elements is typically modeled
with degrees of freedom (DOFs). The DOFs available on a
link characterize the number of independent streams that can
be spatially multiplexed on the link, the amount of interference
that can be suppressed by the link, and a trade-off between
these two capabilities. A node with k antenna elements has
up to k DOFs, which it can use for multiplexing and/or
interference suppression. In the absence of interference, a link
with kt DOFs at the transmitter and kr DOFs at the receiver
can support up to min(kt, kr) spatially multiplexed streams. If
DOFs are used for interference suppression, then the number
of streams that can be supported on a link is reduced.

With a MIMO link, interference suppression can be done by
the transmitter or by the receiver or both. To completely elim-
inate interference requires channel state information (CSI).
Receivers can measure channels during transmission of probe
sequences in order to collect CSI necessary both for inter-
ference suppression and for performance optimization of the
channel. CSI can be fed back from receivers to transmitters
or, if the channel is symmetric, transmitters can measure CSI
by exchanging roles with receivers. We assume in this work
that interference suppression can be done by both transmitters
and receivers. However, the special cases of receiver-side-
suppression-only and transmitter-side-suppression-only can
easily be modeled by simply assigning zero values to some
variables in our linear program formulation.

The number of DOFs needed by a transmitter to suppress
interference on a concurrent receiver is equal to the number
of streams that are spatially multiplexed on the receiver’s
link. Similarly, the number of DOFs needed by a receiver
to suppress interference from a concurrent transmitter is equal
to the number of streams that are spatially multiplexed on the
transmitter’s link. Assume that a node i has k DOFs, spatially
multiplexes si streams on its link, and suppresses interference
with other nodes j1, . . . , jn, carrying sjl

streams respectively.
Then, the following inequality must be satisfied, whether i is
a transmitter or a receiver:

si +
n∑

l=1

sjl
≤ k

B. Network and Interference Models

We consider multi-hop networks consisting of a set of links
L = {l1, l2, ..., lm}, where each li is a transmitter-receiver
pair (ti, ri). Uni-directional links are allowed. Any wireless
propagation model can be used to compute the set of links,
given a set of node positions, or the set of links can simply

be given as input. Communication rates achievable on the
links are discussed in the next subsection. We assume that all
links use the same wireless channel. Joint optimization across
multiple channels is not considered. However, if assignments
of links to (non-overlapping) channels is done separately, then
our optimization procedure can be performed independently
within each channel.

The primary limitation on concurrent wireless transmissions
in the same channel is interference. Here, we consider both pri-
mary interference, wherein a single wireless node is restricted
from participating in multiple simultaneous communications1,
and secondary interference, which is interference between two
wireless links that do not have any node in common. A set of
links is primary-interference-free if and only if every node in
the network is part of at most one link in the set.

For secondary interference, we adopt a simple binary inter-
ference model wherein two links either interfere completely
or not at all. Thus, we define a directed conflict graph CG =
(L,E), where the vertex set L is the set of links to be
scheduled, and directed edge (li, lj) ∈ E if transmitter ti
causes interference at receiver rj .2 Again, we do not assume
any specific underlying interference model, e.g. interference
is not necessarily specified by a simple interference range nor
do the conflicts have to be symmetric. We simply assume that
the conflicts between links are known. The conflict graph can
be computed from the set of links and the node positions by
specifying an underlying (binary) interference model or the
conflict graph can simply be given as input.

Admittedly, modeling interference as a binary phenomenon
is a simplification of reality, and using more complex SINR-
based interference models as is done in some non-MIMO
wireless scheduling (e.g., [4]) would be preferable. However,
including SINR considerations into network MIMO models is
an open problem, which requires developing novel PHY layer
MIMO models, and is beyond the scope of this paper. For
this reason, modeling interference as a binary phenomenon is
a common assumption in MIMO network literature [3], [10].

C. Rates and Streams

The data rate on an individual MIMO link is determined by
the characteristics of the channel in between the transmitter
and receiver, the numbers of DOFs used at the transmitter and
the receiver for multiplexing, and the number of multiplexed
streams. We model this with a rate function dr(i, t, r, s), which
gives the rate on the link i = (ti, ri) when ti uses t DOFs for
multiplexing, ri uses r DOFs multiplexing, and s independent
streams are spatially multiplexed on the link.3 Note that the
above rate is computed in absence of interference, since
in our approach interference is always completely removed

1Here, we assume each node is equipped with only a single radio.
2Note that the conflict graph could easily be defined to account for both

primary interference and secondary interference. However, since the conflict
graph is primarily used to make decisions about how to suppress secondary
interference, we restrict it to that type herein.

3Although the data rate is also dependent on transmission power, we assume
all nodes transmit at a fixed power and hence we do not consider the added
dimension of power control in the optimization problem formulation.



by allocating MIMO resources and performing interference
suppression. We do not make any assumption on the rate
function, i.e. it can be an arbitrary function. Note that, if
the channel between ti and ri is random (as is the case with
Rayleigh fading channels, for example), the rate on the link
is also a random variable. In this case, we interpret dr as
the expected data rate, which can also be thought of as the
long-term rate on the link if its channel characteristics change
dynamically and at random.

Note that the rate functions as specified above are approxi-
mations to the actual rates, which depend on the instantaneous
channel characteristics and the MIMO weights that are chosen
by the transmitter and receiver. In Section V, we discuss how
we approximated the rate functions in order to carry out the
simulation experiments reported in that section. While we
believe those rates to be reasonable approximations, which
capture the essence of the diversity-multiplexing-suppression
trade-off, if more accurate techniques for approximating data
rates are developed, they could easily be plugged into our
problem formulation.

Table II shows representative rates for one link used in our
later evaluations. This table illustrates the complex nature of
the optimizations involved in our problem setting. The amount
of interference generated by a link l is dependent on the
number of streams that are spatially multiplexed on l (every
other link that wishes to suppress interference on or from l
must allocate one DOF for every stream on l). However, while
interference increases linearly with the number of streams,
there is a law-of-diminishing-returns effect on data rate as
the number of streams increases. Note in the table that going
from 1 to 4 streams increases the link data rate by at most a
factor of 119.25

56.31 ≈ 2.12. Thus, even if a link has extra DOFs
available, the overall network performance might benefit if
the link uses those DOFs for array and diversity gains, rather
than for increasing the number of streams it transmits. For
example, a link with the characteristics in Table II that has
3 DOFs available at both transmitter and receiver could use
those DOFs to transmit 2 streams, thereby achieving almost as
high a rate as with 3 streams but generating less interference
in the network. Clearly, the shape of the rate function has a
strong influence on the nature of the optimal solution and it
is, therefore, critical to know the rate function values when
trying to optimize network performance.

III. RELATED WORK

The vast amount of work on integrating MIMO with the
networking stack has focused on the MAC layer. Here, we
are interested in network-wide optimization. We also do not
consider cooperative MIMO using antenna arrays distributed
across multiple nodes. Cooperative MIMO requires tight syn-
chronization between transmissions on different nodes, which
provides extreme challenges for high data rate communica-
tions. We consider the use of MIMO techniques on nodes
of an individual link, where tight synchronization is possible
and MIMO techniques are already widely deployed [12].
We also consider the use of interference suppression through

MIMO, which involves multiple links but does not require
synchronization of communications [1].

It has only been fairly recently that MIMO networking
research has considered network throughput optimization [3],
[5], [10], [11], [13], [14], [16], [17], [18], [19]. A number
of these papers present formal network optimization problem
formulations [3], [5], [10], [13], [19]. Sundaresan, et al., give
a probabilistic throughput formulation but do not explicitly
consider interference constraints [19]. Bhatia and Li [3] and
Hamdaoui and Shin [10] include constraints that account for
both transmitter-side and receiver-side suppression but they
are based on necessary but not sufficient feasibility conditions.
Hamdaoui, Shin, and Maiya extend the problem formulation
to include multiple frequency bands [11]. Chu and Wang [5]
include constraints that are sufficient but not necessary for
feasibility and they assume receiver-side suppression only.
Liu, Hou, and Sherali jointly consider the problems of power
control and routing with a maximum throughput objective
through a network flow formulation [13]. Interference con-
straints are not considered. Mumey, Tang, and Hahn give
an approximation algorithm for joint stream control and
scheduling, where only receiver-side interference suppression
is considered. In [17], we solved the problem of maximizing
throughput within a single time slot exactly, for the special
case where all links reside within a single collision domain,
all nodes have the same antenna array size, and all streams
have the same rate. In [14], Liu, Shi, and Hou presented
an interference cancellation approach for multi-hop MIMO
networks, which is based on a sufficient (but not necessary)
condition for feasibility. This work also assumes that data rate
increases linearly with the number of streams on a link and,
therefore, does not account for diversity and array gains.

The most significant difference between our work and prior
work is that we use rate functions on a link, which specifically
consider the dependence of channel capacity on the numbers
of DOFs used for transmitting and receiving. This allows
array and diversity gains to be factored into MIMO resource
allocation decisions, which is necessary to fully exploit the
diversity-multiplexing-suppression trade-off.

IV. LINEAR PROGRAM FORMULATION

We consider a set L = {l1, . . . , ll} of MIMO links to sched-
ule. For each link li = (ti, ri), ti and ri denote the transmitter
and receiver node of the link, respectively. The number of
antenna elements at the i-th transmitter (respectively, receiver)
is denoted kt

i (respectively, kr
i ). Note that it is possible that

different links are incident in the same wireless node, i.e., we
might have ti = tj , or ri = rj , or ti = rj , for some i 6= j.
In the following, we denote by V = {v1, . . . , vn} the set of
wireless nodes that make up the transmitters and receivers of
link set L (note that n ≤ 2l). For a given wireless node v ∈ V ,
we denote by L(v) the set of indices of links for which v is
either transmitter or receiver. Formally,

L(v) = {i ∈ {1, . . . , l}|(ti = v) ∨ (ri = v)} .



For a conflict graph CG = (L,E), we define interference
sets as follows. The set of links interfered by a link li, i.e., the
set of links corresponding to the outgoing neighbors of li in
CG, is denoted by It(i). The set of links whose transmitters
cause interference at ri, i.e., the set of links corresponding to
the incoming neighbors of li in CG, is denoted by Ir(i).

Antenna elements at nodes ti, ri provide degrees of freedom
(DOFs) that can be used to transmit data on link li and/or
to suppress interference to or from links in It(i) or Ir(i).
In particular, ti can use DOFs to suppress interference at a
receiver rj with j ∈ It(i), or ri can use DOFs to suppress
interference generated by transmitter tj with j ∈ Ir(i). The
total DOFs available at ti (respectively, ri) for multiplexing
and interference suppression is given by kt

i (respectively, kr
i ).

The data rate function for li is denoted by dritrs, with
t = 1, . . . , kt

i , r = 1, . . . , kr
i , and s = 1, . . . ,min(t, r),

which gives the data rate on link li when t DOFs are used
for transmission at ti, r DOFs are used for reception at ri,
and s streams are spatially multiplexed on li. The presented
results are valid for arbitrary values of the dritrs’s, which are
considered as input values to the problem.

In the following, we use indicator variables to represent
usage of DOFs at the transmitters and receivers of the l links.
For each pair i, j of links in L, we have two sets of variables
γijm and δijn, with m = 1, . . . , kt

i and n = 1, . . . , kr
i .

γijm is 1 if transmitter ti is using m DOFs to suppress
interference at rj , and 0 otherwise. Similarly, δijn is 1 if
receiver ri is using n DOFs to suppress interference from tj .
Furthermore, we use variables xitrs (called resource allocation
variables), for i = 1, . . . , l, t = 1, . . . , kt

i , r = 1, . . . , kr
i , and

s = 1, . . . ,min(t, r), where xitrs = 1 if t DOFs are used
for transmission along li at ti, r DOFs are used for reception
along li at ri, and s streams are spatially multiplexed on li,
and xitrs = 0, otherwise. Finally, we use variables zi, for
i = 1, . . . , l, where zi = 1 if link i is inactive, and 0 otherwise.
The notation used is summarized in Table I.

L = {l1, . . . , ll} set of l links to be scheduled
V = {v1, . . . , vn} set of wireless nodes

L(v) set of links incident into node v
ti, ri transmitter and receiver of link li
kt

i , k
r
i number of antenna elements (also DOFs) at ti, ri

It(i) set of links interfered by ti
Ir(i) set of links whose transmitters interfere with ri

dritrs link data rate when ti uses t DOFs to transmit
along li, ri uses r DOFs to receive,
and s streams are sent on li

γijm =1 iff m DOFs are used by ti to suppress
interference at rj

δijn =1 iff n DOFs are used by ri to suppress
interference from tj

xitrs =1 iff ti uses t DOFs to transmit along li,
ri uses r DOFs to receive, and s streams
are sent on li

zi =1 iff link li is inactive

TABLE I
NOTATION USED IN THE ILP PROBLEM FORMULATION.

On the next page is the formal specification of our through-
put maximization problem, called OSTM (OneShotThrough-
putMaximization), as an integer linear program. Note that

the ILP formulation of OSTM is not trivial, as the direct
formulation of several constraints, e.g., those related to in-
terference suppression, gives rise to non-linear inequalities.
To get around this problem, we had to introduce indicator
variables in several places, e.g., the xitrs resource allocation
variables, which allowed us to remove the non-linearities at
the expense of increasing the overall number of variables in
the ILP formulation.

The inputs to the linear program are the link set L, the
wireless node set V , the data rate values dritrs, the numbers
of available antenna elements (kt

i and kr
i values) at each node,

and the interference sets It(i) and Ir(i), ∀i. The outputs of
the linear program are a set of resource allocation variables
(xitrs’s), and a set of DOF assignments (γijm’s and δijn’s) that
completely suppress interference for the resource allocation.

The objective function states that we want to maximize the
sum of link data rates. Constraint (5) states that the sum of the
resource allocation variables and the link activation variable
relative to link li must be equal to 1 which, coupled with
Constraints (1) and (2), ensures that exactly one amongst the
xitrs variables and zi must be 1. Constraints (3) and (4) state
that the values of the γ and δ variables must be 0/1.

Constraint (6), coupled with Constraint (2), accounts for
primary interference, dictating that at most one of the xitrs

variables incident into a wireless node v must be 1.
Constraints (7) through (11) are notational definitions. Con-

straint (7) defines ut
i to be equal to the number of DOFs used

at the transmitter side of link li (note that ut
i = 0 when all

xitrs’s are 0). Similarly, Constraint (8) defines ur
i to be equal

to the number of DOFs used at the receiver side of link li.
Constraint (9) defines si to be equal to the number of streams
being transmitted along link li (note that si = 0 when all
xitrs’s are 0). Constraints (10) and (11) define at

ij and ar
ij

to be equal to the number of DOFs used by ti to suppress
interference at rj , and by ri to suppress interference from tj ,
respectively (note that at

ij = 0 when all the γijm’s are 0, and
similarly for ar

ij with the δijn’s).
Constraints (12) and (13) are called the DOF constraints,

and state that the sum of the number of DOFs used for
transmission/reception along li and the number of DOFs used
at the transmitter/receiver for suppressing interference must
not exceed the number of available antenna elements.

Finally, Constraints (14), (15), and (16) are the interference
constraints. The first two interference constraints state that,
for each link lj interfered by link li, either sj DOFs must
be used by ti or si DOFs must be used by rj to suppress
the interference. However, these constraints only apply if both
li and lj are active. By choosing M sufficiently large (it is
enough to set M larger than the maximum number of antenna
elements available at a wireless node), the constraints are
automatically satisfied whenever either link is inactive. The
third interference constraint imposes that, when two links li
and lj interfere, the summation of the γ variables at ti and
of the δ variables at rj does not exceed 1, thus ensuring that
interference suppression is entirely done at either ti or rj .



max
∑l

i=1

∑kt
i

t=1

∑kr
i

r=1

∑min{t,r}
s=1 xitrs · dritrs

∀i zi ∈ {0, 1} (1)
∀i, t, r, s xitrs ∈ {0, 1} (2)
∀i, j, m γijm ∈ {0, 1} (3)
∀i, j, n δijn ∈ {0, 1} (4)

∀i zi +
∑kt

i
t=1

∑kr
i

r=1

∑min{t,r}
s=1 xitrs = 1 (5)

∀v ∈ V
∑

i∈L(v)

∑kt
i

t=1

∑kr
i

r=1

∑min{t,r}
s=1 xitrs ≤ 1(6)

∀i ut
i =

∑kt
i

t=1

∑kr
i

r=1

∑min{t,r}
s=1 t · xitrs (7)

∀i ur
i =

∑kr
i

r=1

∑kt
i

t=1

∑min{t,r}
s=1 r · xitrs (8)

∀i si =
∑kt

i
t=1

∑kr
i

r=1

∑min{t,r}
s=1 s · xitrs (9)

∀i, j at
ij =

∑kt
i

m=1 m · γijm (10)

∀i, j ar
ij =

∑kr
i

n=1 n · δijn (11)
∀i ut

i +
∑

j∈It(i) at
ij ≤ kt

i (12)

∀i ur
i +

∑
j∈Ir(i) ar

ij ≤ kr
i (13)

∀i, ∀j ∈ It(i) M · (zi + zj) + at
ij + M · ar

ji ≥ sj (14)

∀i, ∀j ∈ It(i) M · (zi + zj) + ar
ji + M · at

ij ≥ si (15)

∀i, ∀j ∈ It(i)
∑kt

i
m=1 γijm +

∑kr
j

n=1 δjin ≤ 1 (16)

To the best of our knowledge, this is the first exact
formulation of a network-level MIMO scheduling problem
with interference suppression. In fact, similar formulations
presented in [3], [5], [10], [14], although considering more
general problems in which multi-hop flows and routing are
considered, express only necessary conditions or only sufficient
conditions for interference suppression, but not both. Thus, the
presented results must be considered as upper bounds or lower
bounds to the actual achievable throughput. On the contrary,
our ILP formulation for OSTM is exact, i.e., it is guaranteed to
return an feasible solution, which is optimal under the stated
assumptions. Furthermore, differently from [3], [5], [10], [14],
our formulation is general enough to encompass an additional
reality of MIMO systems, namely link rates that depend on
DOF allocations of the transmitter and receiver, rather than
simply on the number of streams transmitted.

It should be noted that the complete linear program for-
mulation presented herein has several simpler MIMO sub-
problems embedded within it. For example, in the stream
allocation problem defined in [18], a primary-interference-free
link set is given. This version of the problem is arrived at by
removing Constraint (6), which enforces primary interference
restrictions. In [18] this problem was defined (informally) and
heuristic algorithms for single-collision-domain networks were
studied. Here, we study the exact optimal solution for multihop
networks. Also, removing the γijm variables and modifying
or removing the associated constraints yields a version of the
problem for the case where interference suppression is done
only at the receiver side. In a similar way, removing the δijn

variables yields the transmitter-side-suppression-only case.

V. NUMERICAL EVALUATIONS

The ILP defined in the previous section has been used to
numerically compute the optimal solution to the OSTM prob-
lem. Numerical evaluations have been done running CPLEX
on an Intel i7 920 (Quad core) machine with 6 GB of RAM.

A. Evaluation Set-up

One of the ILP inputs is the rate function ditrs, representing,
for each possible link i, the aggregate rate on the link when
t DOFs are used for transmission by ti, r DOFs are used for
reception at ri, and s ≤ min{t, r} streams are transmitted
on the link. Input rates have been numerically calculated by
modeling the radio channel as an idealized rich scattering
static environment. The resulting channel model corresponds
to a quasi-static Rayleigh fading channel model, according
to which the channel has i.i.d., complex, zero mean, unit
variance elements as described in [6]. The gain of each channel
matrix was calculated using Friis transmission equation and
the log-distance path loss model with exponent of 3 [15].
Since in our optimization framework, we assume perfect
channel state information is available at both receivers and
transmitters, optimal power allocation through water filling
at transmitters has been considered when computing rates,
which are computed using Shannon’s capacity formula with
the optimal power values [7].

In order to approximate the data rate due to the use of some
DOFs for interference suppression, we first perform antenna
selection and then find the optimal data rate as described
above. We perform antenna selection by picking the t transmit
elements and the r receive elements that maximize the data
rate of the link. We then calculate the rates for the case of
1 ≤ s ≤ min(t, r) streams by allocating power through the
best s eigenmodes of the t× r channel.

An example of input rates obtained for a certain transmitter-
receiver pair for different values of t, r, and s, and for
kt

i = kr
i = 4 are reported in Table II. The benefits of array

and diversity gains are apparent. When a single stream is
sent using 1 DOF at both transmitter and receiver, a rate
of 56.31 Mb/sec is obtained. The rate with a single stream
increases to 76.68 Mb/sec with 2 DOFs at both ends and
to 87.71 Mb/sec with 4 DOFs. Spatial multiplexing is also
effective in increasing aggregate rate on the link: the aggregate
rate on the link increases from 56.31 Mb/sec (1 stream sent
with 1 DOF at both sides of the link) to 119.25 Mb/sec
(4 streams sent with 4 DOFs at both sides of the link). As
noted earlier, the rate increase is sub-linear with respect to the
number of streams: a factor of 2.12 increase in rate is achieved
with a factor of 4 increase in the number of streams.

In all evaluations, wireless nodes (the link endpoints) are
arranged in a regular grid, with inter-node distance normalized
to 1. Regular deployment of wireless nodes, coupled with
a notion of interference range (see below), allows precise
control of the amount of interference generated in the wireless
medium, which is a critical factor in the resulting throughput.
In one group of simulations, we predetermine sets of primary-
interference-free links that form maximum matchings from all



(t, r)
s (1,1) (2,2) (3,3) (4,4)
1 56.31 76.64 85.01 87.71
2 – 82.25 104.96 116.26
3 – – 105.06 119.25
4 – – – 119.25

TABLE II
LINK RATES OF A SAMPLE LINK (IN Mb/sec) FOR DIFFERENT NUMBERS

OF DOFS AND STREAMS (kt
i = kr

i = 4)
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Fig. 1. Example of type 1 (left) and type 2 (right) link sets with 10 links
of the grid links and determine the optimal solution for those
sets. In a second group of simulations, we choose random link
sets from all of the grid links and evaluate the optimal solution
for each random set. In one sub-case, we choose a specified
number of arbitrary grid links at random, and the chosen link
set is not necessarily primary-interference-free. In a second
sub-case, we choose a specified number of grid links at random
while maintaining the primary-interference-free requirement.

The conflict graph is based on an interference range, de-
noted by rangeI . An edge between the vertex corresponding
to link li and the vertex corresponding to lj in the conflict
graph is inserted if and only if wireless node rj is within
distance rangeI from wireless node ti. Note that, due to
different distances between ti, rj and tj , ri, the fact that edge
(li, lj) is in the conflict graph does not necessarily imply that
the reverse edge is also in the conflict graph. In the following,
in order to clarify presentation, we consider only discrete
interference levels from 1 to 9, corresponding to different
interference ranges as detailed in Table III. The same levels
are used also for communication range. Unless otherwise
specified, the communication level is set to 1 in the following.

level distance level distance
1 1.0 6 3.0
2 1.414 7 3.162
3 2.0 8 3.605
4 2.236 9 4.242
5 2.828

TABLE III
INTERFERENCE RANGES FOR DIFFERENT INTERFERENCE LEVELS

B. Optimal Solution with Predetermined Link Sets
In the first set of evaluations, we considered primary in-

terference free link sets that are pre-selected from among
the grid links. In particular, two types of link sets were
considered, called type 1 and type 2 link sets (see Figure 1).
Both of these link sets correspond to maximum matchings of
the communication graph of the grid and they are, therefore,
maximum-sized primary-interference-free link sets. The only
difference between the two link sets is in the link orientation:
links in the same row have the same orientation in type 1 link
sets, while the orientations alternate in type 2 link sets.
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Fig. 2. Optimal aggregate throughput for type 1 link sets and different
interference levels (kt
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Fig. 3. Optimal aggregate throughput for type 2 link sets and different
interference levels (kt

i = kr
i = 4, ∀i)

For each link set type, we used CPLEX to compute the
optimal solution of OSTM using the ILP formulation presented
earlier. We calculated the optimal value for increasing grid
sizes and for different interference levels. The results are
shown in Figure 2 for type 1 link sets and in Figure 3 for
type 2 link sets. For type 1 link sets, the conflict graph does
not change when going from interference level 2 to level 3
and from interference level 4 to level 5. Thus, we have shown
only interference levels 2, 4, and 6 for this case.

In terms of the behavior of the optimal solutions, we see that
for both types of link sets, the throughput increases linearly
with the number of links for a fixed interference level. This is
as expected, because for a fixed interference level, a constant
number of links fall within a single interference range with
the grid topology. As the interference level increases, the
magnitude of the aggregate throughput decreases as does the
slope of the line representing the throughput. The decrease
in throughput that occurs as the interference level increases
is not uniform. This is because the number of new receivers
that are added to a single interference range around a given
transmitter does not increase uniformly as the interference
level is increased. This causes the same non-uniform increase
in the degree of the conflict graph, which is the primary
determining factor for the throughput in this situation. There
is no clear advantage to type 1 or type 2 link sets: for some
interference levels, type 1 link sets are slightly better and for
other levels, type 2 sets are slightly better.
C. Optimal Solution with Random Link Sets

In this set of evaluations, we computed the optimal through-
put for randomly selected link sets. In the first evaluations,
32 links were randomly selected out of the 224 possible
links in an 8x8 grid. These links are not necessarily primary-
interference-free and so this corresponds to the full version
of the MIMO link scheduling problem. The average optimal
throughput over ten random link sets was evaluated for each
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Fig. 5. Optimal aggregate throughput for random link sets (without primary
interference) and type 1 and 2 link sets (kt
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i = 4, ∀i)

interference level. For comparison, the corresponding optimal
values for the pre-selected type 1 and type 2 link sets are also
shown. The results are shown in Figure 4.

In terms of the feasibility of calculating the optimal solution,
these results demonstrate that the ILP solution complexity is
primarily dependent on the number of links that are input to
CPLEX and is not significantly impacted by whether the link
sets are primary interference free or not. When the link set
has primary interference, Constraint (6) must be evaluated,
while for primary-interference-free link sets, it is automatically
satisfied. Addition of this constraint did not significantly
increase convergence time for CPLEX.

The results show that including links with primary interfer-
ence degrades the quality of the optimal solution, particularly
for small interference levels. In these cases, primary interfer-
ence is dominant and the throughput of primary-interference-
free link sets is more than 60% higher than ones with pri-
mary interference. As interference level increases, secondary
interference increases and the difference between the optimal
solutions for the two cases is reduced.

In a second set of experiments, we randomly selected
links in sequence considering only those links that had no
primary interference with already chosen links. In this manner,
we were able to select random primary-interference-free link
sets with 30 links in them. Again, 10 different random link
sets were generated and the results averaged. The results of
these computations are shown in Figure 5. For comparison,
the optimal results from type 1 and type 2 link sets (with
32 links each) are shown also. The results show that the
random primary-interference-free link sets perform almost as
well as the pre-selected type 1 and type 2 sets. Performance
seems to be determined primarily by the number of primary-
interference-free links, rather than the specific structure of

the corresponding matching. By pre-selecting the links, we
were able to generate maximum matchings of 32 links for
these regular networks, whereas when randomly generating
matchings, 30 links was the maximum number that could be
consistently generated.
D. Computational Time

Clearly, since the worst-case complexity of general ILP
problems is exponential (unless P = NP), the time needed to
compute the optimal solution is an issue. In particular, what is
interesting to evaluate is the average time needed to compute
a solution of the various problem instances considered.

We first observe that, in case of grid networks of either type
1 or 2, optimal solutions can be computed quite efficiently for
relatively low values of the interference range and 32 or fewer
active links. As the interference range increases, the number
of interference constraints increases as well, with a negative
impact on computational time – see Table IV referring to the
case of type 1 networks. Recall that with an interference level
of 3, the interference range is twice the communication range,
which is the most common assumption in network evaluations.
For this case, less than two seconds of computation time are
required, even with 32 active links.

Active Links int = 2 int = 3 int = 4
8 0.12 0.12 1.13

12 0.12 0.13 1.97
16 0.22 0.2 5.12
20 0.59 0.62 14.56
24 0.91 0.95 49.18
28 1.21 1.21 883.02
32 1.64 1.72 3812.43

TABLE IV
TIME NEEDED TO COMPUTE THE OPTIMAL SOLUTION (IN sec) FOR TYPE 1

GRID NETWORKS WITH DIFFERENT INTERFERENCE LEVELS

With random networks, the time needed to compute the
optimal solution increases with respect to the case of grid
networks with comparable number of links and interference
range – see Table V. This is likely due to the less structured
shape of the optimal solution in case of random networks, as
opposed to very regular optimal solutions obtained with grid
networks (see Figure 8 later in this section). However, we
emphasize that computing the optimal solution for networks
of size as large as 30–32 links is feasible even for random
networks. Referring to the computational times reported in
Table V, we observe that instances with 32 links can be
solved faster than those with 30 links. As described earlier,
in the 30 link instances, all links were pre-selected to be
free of primary interference. Hence, each of them can be
considered as a good candidate link in the optimal solution. On
the other hand, the 32 link instances included links possibly
subject to primary interference. Since links subject to primary
interference exclude each other from the optimal solution, the
number of good candidate links for the optimal solution are
indeed less (on average) than in the 30 link instances. This
observation highlights that what influences computational time
is not merely the number of links to be considered, but also
their mutual primary and secondary interference relationships.



Links int = 2 int = 3 int = 4 int = 5
30 8 836 1233 5070
32 12 173 322 955

TABLE V
TIME NEEDED TO COMPUTE THE OPTIMAL SOLUTION (IN sec) FOR

RANDOM NETWORKS WITH DIFFERENT INTERFERENCE LEVELS
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Finally, we attempted to solve the ILP formulation when
all nodes have 8 antenna elements instead of 4. These experi-
ments were only partially successful. In many cases, CPLEX
converged fairly quickly (within a few hundred seconds) to
the optimal solution. In some cases, however, convergence
was much slower and in other cases memory usage rose
dramatically preventing an optimal solution from being found.
Figure 6 shows the lower and upper bounds calculated by
CPLEX over time for a slow-converging DOF=8 case for 24
random links chosen from an 8× 8 grid with an interference
level of 2. In this case, CPLEX found a solution guaranteed
to be slightly more than 1% away from optimal within 10
minutes but took almost one hour to complete the search.

E. Comparison of Optimal and Sub-Optimal Solutions

In this section, motivated by the fact that computing the op-
timal OSTM solution is feasible only for networks of moderate
size, we compute several sub-optimal solutions and compare
them to optimal. The first comparison focuses on a heuristic
scheduling algorithm for multihop MIMO networks, which
we refer to as Algorithm StreamMaxRate-Multihop (SMR-M).
Algorithm SMR-M is based on Algorithm StreamMaxRate
from [18], which is a type of gradient-descent heuristic
scheduling algorithm for single-collision-domain MIMO net-
works, which accounts for arbitrary rate functions on links. Al-
gorithm SMR-M extends Algorithm SMR to work in multihop
networks and also executes the algorithm on 10 random link
orderings and selects the best solution of the 10. The second
comparison focuses on a situation where MIMO resources are
used for spatial multiplexing, array gain, and diversity gain,
but not for interference suppression. This corresponds to a
situation where links are optimized individually, i.e. no multi-
link optimization of resource usage is performed.
Comparison with Algorithm SMR-M:

Figure 7 compares the optimal solution against the solution
found by Algorithm SMR-M for type 1 link sets. The results
for type 2 link sets were similar and are omitted due to
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space limitations. The results show that Algorithm SMR-
M can produce feasible but non-optimal solutions for large
numbers of links. We computed the solutions for up to 80
links with SMR-M, but could easily have gone higher. One
execution of SMR-M with 80 links required only 40 seconds
of computation time on a 2 GHz Intel Core Duo machine with
2 GB of RAM. In most cases for which the optimal value is
known, SMR-M produced somewhere between 10% and 15%
lower throughput than optimal. So, while computing exact
optimal solutions for large numbers of links is infeasible with
a tool such as CPLEX, an existing heuristic MIMO scheduler
modified to work in multihop networks can scale to quite large
numbers of links and produces solutions that are not too bad.

To understand the limitations of Algorithm SMR-M, we
looked at solutions produced for a 4 × 4 grid with type 2
link set and interference level 2. The link set has 8 links and
the conflict graph contains two chains of 4 links each. SMR-M
finds a solution where two streams are allocated to each link,
which is the maximum number of streams that are feasible in
this case. However, the optimal solution computed by CPLEX
(see Figure 84) allocates two streams to links on the ends
of the chains but only one stream on the internal links. In
this example, the optimal solution has some links transmitting
fewer streams than possible, which reduces interference and
allows the other links to use more DOFs for transmission
or reception. Here, the array and diversity gains that result
from the extra DOFs used in transmission/reception more than
outweigh the reduced number of streams.

At an intermediate step of StreamMaxRate, the algorithm
does not know exactly how all of the DOFs will end up being
used, so it conservatively estimates that the minimum number
of DOFs necessary to transmit a given number of streams will

4The numbers above the links indicate the numbers of streams allocated,
the numbers inside the squares indicate the use of DOFs for interference
suppression, and the numbers inside the circle indicate DOFs remaining for
transmission or reception after DOFs used for suppression are subtracted.
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be used. Hence, diversity and array gains are not considered
by StreamMaxRate during its intermediate steps. This tends to
bias StreamMaxRate toward solutions that maximize the total
number of streams in the network. Thus, StreamMaxRate does
a good job of trading off spatial multiplexing and interference
suppression, but does not adequately account for the additional
factors of diversity and array gains. Development of heuristics
that can account for the trade-offs among all of these different
MIMO capabilities is an interesting open problem.
Comparison to No Interference Suppression Case:

It is interesting to see how much benefit is derived from
using the interference suppression capabilities of MIMO. Here,
we compare the solutions obtained so far to the optimal
throughput without interference suppression. If interference
suppression is not done, two links that are adjacent in the
conflict graph cannot transmit concurrently, since there is no
way to eliminate the interference between them. Hence, the
optimal solution consists in finding a maximum independent
set of the conflict graph and then using the DOFs on each
of those links to maximize individual link rates. For the
grid networks considered herein, it is simple to calculate this
optimal value for a given interference level. The results are
shown in Figure 9 for interference level 5. The result is
compared to both the optimal value and the result from SMR-
M for type 2 link sets and the same interference level.

The results show that dramatic throughput increases are
possible by adding interference suppression capability. The
SMR-M heuristic is able to find solutions having approxi-
mately double the throughput of the best possible solution
without interference suppression. The optimal possible with
interference suppression is an additional 10-15% higher. To
take advantage of the potentially huge benefits of interference
suppression shown in Figure 9, multiple-link optimization,
such as we consider herein, is required.

VI. CONCLUSION

This paper has demonstrated that exact optimal one-shot
scheduling to maximize MIMO network throughput is possible
for multihop wireless networks of reasonable size but heuristic
schedulers that handle the diversity-multiplexing-interference
suppression trade-off are needed for larger networks. Near-
optimal link scheduling, where demands on all links of a
network must be met over multiple scheduling slots, is an
open problem that is the subject of current research.
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