
A Byzantine-Tolerant Distributed Consensus Algorithm for
Connected Vehicles Using Proof-of-Eligibility

Huiye Liu
huiyeliu@gatech.edu

Georgia Institute of Technology

Chung-Wei Lin
cwlin@csie.ntu.edu.tw

National Taiwan University

Eunsuk Kang
eskang@cmu.edu

Carnegie Mellon University

Shinichi Shiraishi
shinichi.shiraishi@tri-ad.global

Toyota Research Institute - Advanced
Development, Inc.

Douglas M. Blough
doug.blough@ece.gatech.edu

Georgia Institute of Technology

ABSTRACT
Emerging applications in connected vehicles have tremendous po-
tential for advances in safety, navigation, traffic management and
fuel efficiency, while also posing new security challenges such as
false information attacks. This paper targets the problem of secur-
ing critical information that is disseminated among nearby vehicles
for safety and traffic efficiency purposes through distributed con-
sensus. We present a consensus algorithm, which uses a "proof of
eligibility" test to establish that a group of vehicles are actually
within the vicinity of the information source. With the presence of
a limited number of compromised (Byzantine faulty) participants,
our algorithm provides correct consensus among healthy vehicles
in real time. The algorithm provides fast and reliable consensus
group formation and private key distribution without privileged
members, trusted setup, or leader election. In addition to proving a
safety property of our consensus algorithm, we have implemented
it on top of a widely-used vehicle simulation environment (SUMO,
OMNeT++ and Veins) and evaluated its performance on a model of
the streets in a real midtown area. Simulation results demonstrate
that the algorithm can reach consensus very efficiently (within 9.5s)
and with up to 30% of compromised vehicles in a given area. The
simulations also demonstrate the ability of our algorithm to more
quickly disseminate information about a traffic accident and more
efficiently route traffic around the accident site, as compared to
previous robust information dissemination approaches.

CCS CONCEPTS
•Networks→Application layer protocols; • Computing me-
thodologies → Distributed algorithms; • Security and pri-
vacy → Mobile and wireless security.

KEYWORDS
connected vehicles, distributed system, security

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSWiM ’19, November 25–29, 2019, Miami Beach, FL, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6904-6/19/11. . . $15.00
https://doi.org/10.1145/3345768.3355910

ACM Reference Format:
Huiye Liu, Chung-Wei Lin, Eunsuk Kang, Shinichi Shiraishi, and Douglas M.
Blough. 2019. A Byzantine-Tolerant Distributed Consensus Algorithm for
Connected Vehicles Using Proof-of-Eligibility. In 22nd Int’l ACM Conference
onModeling, Analysis and Simulation ofWireless andMobile Systems (MSWiM
’19), November 25–29, 2019, Miami Beach, FL, USA. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3345768.3355910

1 INTRODUCTION
Connected vehicle technologies are changing the ways we commute
and communicate. The automotive industry is being completely
reshaped by emerging communication technologies (V2V, V2X,
V2I, etc.), mobility apps, electric vehicles, and vehicle automation.
This provides an opportunity to reorganize our transportation in-
frastructure, improving safety, security, traffic efficiency, human
comfort, and energy efficiency. For example, a connected vehicle
can be informed if an emergency vehicle is approaching far away
or a smart intersection can consider the estimated arrival times
of connected vehicles to schedule those vehicles and increase the
intersection throughput.

However, security becomes a paramount concern for connected
vehicles, as they inevitably make control decisions based on infor-
mation from other vehicles and external sources. In this scenario,
the vehicular network is especially vulnerable to false information
attacks. Fake messages can create problems like longer time re-
quired to reach destination, more gas consumption than needed,
traffic jams, and even collisions. For instance, taking advantage
of the connectivity, an attacker may compromise vehicles to lie
about its own vehicle’s position and speed, to make false warnings
about a non-existent accident thus leaving an empty street for itself
to freely pass through, or to report fake arriving time to a traffic
signal control system causing congestion/traffic jams or even to
ease criminals’ getaways from crime scenes [28].

To date, research in automotive security has addressed many
different perspectives. The goals include secure communication
protocols integrated with existing standards and protocols at the
external network layer, Intrusion Detection Systems (IDSs) and
firewalls at the gateway layer, lightweight message authentication
and encryption at the in-vehicular network layer, and Hardware
Security Modules (HSMs), secure boot, and secret key control at
the component layer.

Nevertheless, even with good security mechanisms at each of
those layers, it is necessary to address security at the application

Session: Connected Vehicles MSWiM ’19, November 25–29, 2019, Miami Beach, FL, USA

225

https://doi.org/10.1145/3345768.3355910
https://doi.org/10.1145/3345768.3355910

layer, especially for application information. In this paper, we ad-
dress this issue through Byzantine-tolerant distributed consensus
on application information. Several example use cases include:

Dynamic maps: weather condition, parking availability, EV
charging station availability, etc. are all important information
comprising a powerful dynamic map. Information reported by a
single device/vehicle is not complete and reliable.

Traffic alerts: to provide trust in traffic condition warnings such
as collision, congestion, and emergency vehicle(s) approaching, and
to avoid inappropriate reactions, distributed consensus can be used
to provide trusted alert dissemination.

Intersection management: the next-generation transporta-
tion system such as Intelligent Traffic Signal System (I-SIG) relies
on vehicles’ reported speed and location information to estimate the
queuing line, and assigns green/red light time as needed. However,
attacks [8] have been found to potentially cause serious problems.

Despite the conceptual appeal of this approach, realizing dis-
tributed consensus poses many challenges in connected vehicle
systems. One challenge is safety-critical operation in the face of
real-time constraint. For example, if an emergency vehicle needs to
take priority at an intersection, this information is only important
when it is approaching the intersection. After the vehicle passes,
the information is no longer useful. However, forcing consensus
within a short period of time could lead to incorrect decisions that
may make the situation worse than without connected vehicle sys-
tem. The second challenge is the high mobility and communication
loss/delay, which could significantly affect the ability to reach con-
sensus among devices. The third major challenge is the lack of trust
in connected vehicle systems. Compromised vehicles with valid
credentials will appear as trusted entities [1], which is a difficult
situation to handle. Moreover, it is not necessary for compromised
vehicles to always behave incorrectly. They may behave as healthy
devices at one time and act incorrectly at another time, thus making
it hard to rely on reputational trust. To address these challenges,
we introduce a distributed consensus algorithm based on Proof-of-
Eligibility (PoE). To the best of our knowledge, this is the first work
addressing distributed consensus in the face of the challenges listed
above. Contributions of the paper include the following:

• We introduce the concept of Proof-of-Eligibility Challenge, which
limits the impact of compromised vehicles from outside of an
event area by preventing them from participating in the consen-
sus process.

• We present the Byzantine-fault-tolerant consensus algorithm for
connected vehicles (BFCV) to ensure information security among
vehicles, without requiring privileged members, leader election,
nor trusted shared key distribution. The algorithm also provides
dynamic consensus group formation in an environment without
a known pre-defined set of consensus participants.

• We report on the implementation of a BFCV prototype and simu-
lation of it in a realistic environment built on top of Veins, SUMO
and OMNet++. Evaluation results show that BFCV provides fast
consensus satisfying both safety and liveness requirements.

The remainder of the paper is organized as follows. Section 2
discusses a motivating example, elaborating how the BFCV algo-
rithm can be applied to a real-world problem. Problem formulation,

FG AD C BE

I

K

J

L

H
M

crossing x

Warning A
Accident at
crossing x

Figure 1: Example Scenario of a Fake Report

FG AD C BE

I

K

J

L

H

M

crossing x

Event Report C
Accident at
crossing x

Y N N N Y N

N

N

N
N

N

Figure 2: Example Scenario of a Fake Report with BFCV
(where vehicles B, G, and K are compromised)

assumptions, threat model, and system model are provided in Sec-
tion 3. We present the BFCV Algorithm in Section 4 and provide
a proof sketch of its safety property. In Section 5, we present a
concrete implementation of BFCV with details of environment set
up, design of the experiments, and simulation results. Related work
is discussed in Section 6 and we conclude in Section 7.

2 MOTIVATING EXAMPLE
In this section, we use dissemination of an accident alert as an
example to illustrate how our proposed PoE-based consensus al-
gorithm tackles the information security problem in connected
vehicle systems. Figure 1 demonstrates a fake warning reported
by compromised vehicle K. Each vehicle is labeled with letters
as its name. Vehicles in green and yellow, representing different
brands of vehicles, are honest nodes following the protocol and
vehicles in red representing compromised nodes are trying to at-
tack. Without a cooperative evaluation approach, a vehicle can only
rely on its received data and local plausibility check as discussed
in [15, 22, 31, 32] to make local decisions. Vehicles that are not able
to "see" the crossing, may believe the false alert and could poten-
tially reroute and transmit false information to further vehicles, if
K is a compromised vehicle with valid credentials.

Our algorithm approaches this problem by using the concept
of event reports, whose content could be an unconditional lane
shift, slowing speed/congestion, observation of emergency vehicles,
crashed vehicles, abnormal behaviors of neighboring vehicles, etc.
In order for a created event report to be accepted by other vehicles
in the network, a consensus group is formed with a group of eligi-
ble vehicles, who can solve a Proof-of-Eligibility (PoE) puzzle, to
cooperatively evaluate the report content and reach consensus on
whether or not the report is true. Only after that, the true report will
be broadcast with group members’ signatures. Upon receiving the

Session: Connected Vehicles MSWiM ’19, November 25–29, 2019, Miami Beach, FL, USA

226

signed report, other vehicles will react accordingly after verifying
the attached signatures.

As depicted in Figure 2, after vehicle K broadcasts an event report
about an accident at crossing x, all vehicles within communication
range (A-L) are able to receive the report. They try to solve a PoE
puzzle attached in the event report to obtain a shared secret key. PoE
is a set of consistency checks, which aims to prove that a vehicle is
authentically relevant and eligible to participate in the cooperative
evaluation of a reported event. The PoE puzzle is based on the local
environment and can, therefore, only be solved by vehicles that
are within close range of the event. PoE lessens the difficulties and
shortens the delay of distributing shared keys among a temporarily
formed group of moving vehicles. Let us consider a worst case
scenario that both compromised vehicles B and G are able to solve
the PoE puzzle and join the consensus group. During the consensus
stage, compromised vehicles send false opinions agreeing with the
fake report that there is an accident at crossing x while the honest
vehicles dispute the report. Compromised vehicles B and G may
also drop the consensus message received from other members to
affect the group evaluation. However, as we will see later, with a
minority of compromised vehicles participating, false consensus
can never be reached with the BFCV Algorithm. In most cases, the
group of honest vehicles will reach agreement that the report is
false and disseminate a signed message repudiating the report.

In the above, the BFCV Algorithm description has been simpli-
fied to briefly introduce the general concept. A detailed algorithm
description is provided in Section 4.

3 PROBLEM FORMULATION
3.1 Assumptions
In this paper, we assume active (engine-on) vehicles communicating
with each other wirelessly. Vehicles routinely exchange information
and monitor the environment, following these four steps: Detection
– a vehicle detects new events (traffic condition, abnormal behavior,
etc.) by receiving data from on-board sensors and surrounding vehi-
cles. Dissemination – if a detected event is critical, a vehicle creates
and broadcasts an event report to other nearby vehicles. Decision
– upon receiving an event report, a vehicle evaluates the content
of the report and makes a decision to accept it or not. Reaction –
if an event report is accepted, a vehicle takes the corresponding
action(s) such as to brake, accelerate, switch lanes, change routes,
disseminate the event report, etc.

We mainly focus on dissemination and decision stages, which
are the cornerstones of achieving reliable final reactions. Our goal
is to identify potential security violations when attackers have the
ability to tamper with information in messages and to mitigate the
impact in a timely way. Before describing the threat and system
models, we first state some assumptions: (1) The distributed sys-
tem is asynchronous (unbounded communication delays) and we
ensure the safety of our consensus protocol. However, liveness is
not guaranteed unless enough messages are received within a time
upper bound. (2) An attacker may exhibit compromised behavior
at any point in time and remain benign at another time i.e., any
vehicle in the network at time period [ti , ti+1] can be compromised,
even if it is behaving normally at time period [0, ti]. (3) We assume
that adversaries have limited computing power so that they cannot

break the encryption and digital signatures. In other words, the
cryptographic algorithms adopted are computationally secure. (4)
Vehicles have public key certificates signed by trusted entities such
as NHTSA [23] and/or vehicle manufacturers. (5) Private keys can-
not be obtained by an attacker without a physical attack. However,
by compromising a vehicle through software, an attacker can use
an API to sign fake messages but does not know the actual key.
This prevents remote attackers from stealing a valid private key
from one vehicle and using it within a different vehicle or device.

3.2 System Model
We consider a set of vehicles that communicate by sendingmessages.
We assume an unreliable communication medium where messages
can be lost or delayed. A vehicle cannot receive other vehicles’
messages if they are outside of the communication range (e.g., 200–
300 meters for DSRC). Each vehicle can identify the sender of every
message it receives by the sender’s unique public key.

We assume that consensus begins with a vehicle generating an
event report about conditions it observes on the road. The challenge,
as expressed earlier, is for a set of vehicles nearby the event, that
were previously unknown to each other, to form a group and reach
consensus on whether the event report is accurate in a timely
fashion despite the presence of compromised vehicles in the event
area. Each vehicle that is nearby the reported event can form an
opinion about whether the event report is accurate. We assume that
non-compromised vehicles can correctly determine the accuracy
of a report most of the time but occasionally a non-compromised
vehicle might produce a wrong evaluation due to inaccurate or
ambiguous sensing. We refer to vehicles that are not compromised
but produce a wrong evaluation of an event report as incorrect. In
this situation, it is useful for vehicles to learn a group opinion of the
report accuracy to verify that their local sensor values are correct.

3.3 Threat and Fault Models
We are primarily concerned with attackers who compromise ve-
hicles with valid credentials, and exploit improper/incomplete au-
thorization checks. We adopt a very general threat model, where a
compromised vehicle behaves arbitrarily (known as the Byzantine
fault model), i.e. it may arbitrarily deviate from the protocol exe-
cution and can influence the data sent to communication channel.
Through compromised software running on a vehicle, an attacker
can broadcast any random or customized false data to the network,
but cannot modify others’ signed messages or otherwise interfere
with others’ message creation. In the most basic form, after success-
fully compromising a vehicle, typical exploits include withholding
messages and sending out false data or irregular messages to others.
Such attacks are successful when attackers can obtain compro-
mised vehicles’ valid certificates and credentials. Otherwise, the
sent information cannot pass the authentication checks.

We assume that the number of compromised or incorrect vehi-
cles within a small area is limited. To be specific, we assume that
f < umin/3, where f is the number of vehicles in an area that
are compromised or incorrect and umin is a configurable param-
eter. Later, we will discuss how PoE puzzles can be used to limit
participation in the consensus procedure to only those vehicles
that are within the vicinity of the reported event area. This helps

Session: Connected Vehicles MSWiM ’19, November 25–29, 2019, Miami Beach, FL, USA

227

to limit the number of compromised vehicles that can influence
the consensus, allowing f and umin to remain fairly small. This, in
turn, improves the overall efficiency of the consensus operation
and allows consensus to be completed faster, as compared to larger
consensus groups that would be required for higher values of f .
This also allows the total number of compromised vehicles in the
network, beyond the vicinity of the reported event area, to be much
larger than f .

Sybil attacks, first introduced in [11], are also a critical prob-
lem. An attacker launches a Sybil attack by creating multiple non-
existent vehicles with valid identities spreading false information
in the network. Various Sybil detection methods have been stud-
ied in the past, for example based on: directional antennas [29],
received signal strength indicator (RSSI), fingerprinting [35], and
interference-aware RSSI-based localization [12]. We assume that
Sybil attacks are prevented by existing methods and so we do not
consider them herein.

We also assume that there is no large-scale prearranged collusion
between compromised vehicles to share answers to PoE puzzles.
So, for example, a compromised vehicle does not predetermine
PoE puzzles and distribute the answers to large numbers of other
compromised vehicles. However, within a consensus group, com-
promised vehicles can collude arbitrarily (the Byzantine fault model,
including collusion, applies within a consensus group).

3.4 Consensus Properties
Let Π represent a set of vehicles running a consensus algorithm on
some event reportR and letvi be some vehicle inΠ. Let x denote the
correct evaluation result of R and x̄ denote the opposite (incorrect)
evaluation result. Finally, let Six = {vj : vi has heardx fromvj },
let Si x̄ = {vj : vi has heard x̄ fromvj }, and let Si = Six ∪ Si x̄ . Six
contains the vehicles from which vi has an evaluation result of x ,
Si x̄ contains the vehicles from which vi has an evaluation result of
x̄ , and Si contains the vehicles that vi knows about.
(1) False Consensus occurs when the following condition holds:

FC: ∃Q ⊆ Π such that |Q | > 2umin
3 and ∀vi ∈ Q , |Si x̄ | > 2 |Si |

3
and |Si | ≥ umin and ∀vi ,vj ∈ Q , i , j, Si = Sj .

Condition FC occurs when there is a group of vehicles of size
greater than 2umin

3 that all have heard the wrong evaluation
result from more than 2/3 of the vehicles they have heard from
and that also agree on the group membership at the end of
algorithm execution. If this situation occurs with our BFCV
algorithm presented later, a false event report will be dissemi-
nated. It is important to prevent this outcome.

(2) Correct Consensus occurs when Condition FC does not hold and
the following condition holds:

CC: ∃Q ⊆ Π such that |Q | > 2umin
3 and ∀vi ∈ Q , |Six | > 2 |Si |

3
and |Si | ≥ umin and ∀vi ,vj ∈ Q , i , j, Si = Sj .

Condition CC occurs when Condition FC does not occur and
there is a group of vehicles of size greater than 2umin

3 that all
have heard the wrong evaluation result from more than 2/3 of
the vehicles they have heard from and that also agree on the
group membership at the end of algorithm execution. Note that

if there are two large enough groups formed where one group
agrees on the incorrect result and the other group agrees on
the correct result, we still consider this to be false consensus.
So, correct consensus is a large enough group agreeing on the
correct result and the membership while no other large enough
group agrees on the incorrect result. This is the ideal outcome
for a protocol.

(3) No Consensus occurs when ∄Q ⊆ Π, satisfying Condition CC
or Condition FC.

This describes the situation where there is no consensus reached
on either the evaluation result or the group membership or
both at the end of algorithm execution. This situation would
apply to algorithms that need a result within a certain time
bound and terminate algorithm execution if it takes too long
without reaching consensus. No consensus is preferable to false
consensus but is still an outcome we would like to minimize.
If the rate of no consensus is too high, valid event reports will
not reach vehicles in a timely way, and this could potentially
cause systemic problems.

4 BFCV ALGORITHM
4.1 Design Overview
BFCV has three features that differ from existing consensus algo-
rithms that are targeted at connected vehicle systems.

First, it provides fast, reliable consensus group formation and
shared key distribution without privileged members. The algorithm
does not require trusted set up or leader election and only relies
on very basic cryptographic assumptions. Each vehicle running on
streets is considered as an untrusted entity equipped with valid cre-
dentials and some shares of knowledge describing the environment
(traffic, weather, pedestrian, road-signs, etc.). Based on the assump-
tion that at run time, the system does not know which entity is
trustworthy and which is not, we do not follow the leader-election
paradigm to construct evaluation groups. Instead, we use a set of
challenge problems to perform plausibility checks, only allowing
entities with sufficient proof of related knowledge and presence
nearby the event location to join the cooperative evaluation.

Second, in most cases, BFCV guarantees all participating healthy
vehicles reach agreement on the information being disseminated.
In cases where the number of healthy vehicles is small or there is a
very high rate of message loss, no consensus will be reached but
false consensus will not occur (see Section 4.6 for a proof sketch).

Third, BFCV is agnostic to wireless communication technology
as long as it supports inter-vehicle communication and underlying
applications. No additional functionality such as remote cloud for
computing, secure channel for message exchange, or trusted entities
is required – it is fully distributed and self-maintained.

We next present the BFCV algorithm, which is divided into four
phases: Report Generation, Proof-of-Eligibility, Evaluation Group
Consensus and Report Verification. Notations used in the following
sections are defined in Table 1.

4.2 Event Report Generation
An event report RE = (RID,E,EType,Certi ,Q,H(A), tR ,Tq), is
generated and broadcast when a vehicle detects an unreported new

Session: Connected Vehicles MSWiM ’19, November 25–29, 2019, Miami Beach, FL, USA

228

Table 1: Notation Table

vi Vehicle i
K+i , K

−
i Public and private key of vi

Cer ti Certificate of vi
Di Perception data of vi

Si
Hash table that records consensus status
of vi for different types of event reports

Pi Event look-up table of vi
Fi Set of PoE challenge problem functions of vi
E An event

EID An event’s ID
EType An event’s type (collision, congestion, etc.)

R An event report
RID An event report’s ID
Q PoE challenge problems
A Event Reporters’ Answers to Q

H(A) Hash of A
tR Time stamp of report creation time
X Signature
Tc Time bound for reaching consensus
Tq Time bound for solving Q , Tq < Tc

umin Minimum consensus group size
ui Membership list of vi

event, where RID is the report ID, E is the event content, including
location and estimated event life time based on criticalness, EType
is the event type, Certi is the vehicle’s certificate, Q is the PoE
challenge problem, H(A) is the hash of computed answers to Q
generated by the reporting vehicle, tR is the event report time, and
Tq is the time bound allowed for solving puzzle Q .

In real life scenarios, it is rare that within 200-300 meters, mul-
tiple critical events of the same type (such as rear-end collision,
vehicle roll-over, etc.) exist. To improve the system efficiency and
discourage compromised vehicles from flooding the network with
fake reports, we allow only one event report for one EType of event
to be created and broadcast at a time. Once a report is broadcast, the
reporter can neither join a different consensus group of the same
event type, nor create another event report of the same type until
the time bound of the consensus protocol for its current report is
reached. If a vehicle does not follow the protocol and broadcasts a
new event report before finishing the consensus time period, the
inconsistency can be easily caught by other honest vehicles when
they are solving the PoE challenge.

4.3 Proof-of-Eligibility
Before an event report can be accepted by other vehicles, it needs a
valid group of vehicles to approve it. How vehicles are selected to
form a valid evaluation group is the key to our proposed algorithm.
We introduce the the concept of Proof-of-Eligibility to address this.

PoE challenge is powerful, but very application specific. In gen-
eral, there is a large challenge problem pool pre-installed in vehicles.
Let Φ denote the pool stored in vehicles, Q denote a selected chal-
lenge problem set fromΦ, and function f denote a single problem in
Q . Every time an event report is created, a Q will be automatically
selected from Φ based on the event type, the event reporter’s sensor

data, the event time, and a randomly generated nonce. Each set Q
must consist of problems of the following types:

View - this type of problem proves the vehicle’s proximity to the
target position and whether it has a potential view of the event. For
instance, even if two vehicles are geographically close in distance,
the two vehicles might be on two sides of a big building. Then if
an accident happens on one side A, the vehicle on the other side
is very unlikely to detect it. Thus, we consider that the vehicle
on the other side has a close enough position but does not have
a qualified view. Problems in this category use features such as
position, speed, acceleration, speed limit, moving direction, colors
of a nearby building, number of stop signs, etc.

Knowledge - this type of problem proves whether the vehicle
has a certain amount of knowledge about the event of interest. For
example, if the vehicle itself is at street Sa and the event is about
whether the green vehicle moving on street Sa is compromised. If
the vehicle does not even observe a green vehicle on Sa , it definitely
has no knowledge of the event. Problems in this category include
true or false questions such as whether the vehicle received a BSM
(basic safety message) from location A or whether the vehicle’s
current speed is below 60 mph.

Consistency - this proves the consistency of a vehicle. Even if
a vehicle gets all problems from category 1 and category 2 correct,
its answers could have been lucky guesses. This type of problem
aims to ask a sequence of true or false questions to further check
whether the answers have inconsistencies. For example, questions
in category 1 may ask the color of a building and a moving direction.
Then question in this category may ask whether the vehicle can see
another building of another color. However, the vehicle cannot see
this color unless it moves in the opposite direction. If the vehicle’s
answer is true, then it fails the consistency test.

Algorithm 1: Proof-of-Eligibility Challenge
1 vehicle vj receives RE = (RID, E, Cer ti , Q, H(A), tR, X) from vi ;
2 while (vj is operating) ∧ (sj [EType] = idle) do
3 if (t − tR) < Tq and X is correct then
4 A′ = RID ;
5 for f ∈ Q do A′ = concatenateBits(A′, f (D j)) ;
6 if (H(A′) = H(A)) ∧ (t < Tq) then
7 obtain shared key K−

R = KeyGen(A
′);

8 set Sj [EType] to busy until (t − tR) > Tc or consensus
is reached;

9 else drop RE ;

In the proposed algorithm, once an event report is received by a
vehicle, it tries to solve the puzzle Q within time bound Tq ; in the
end, qualified vehicles are able to obtain a seed to feed into their
local key generation function thus obtaining a shared secret keyK−

R .
Vehicles then use the obtained K−

R to initiate a Hello message to
other group members. By using the PoE puzzle, evaluation groups
are able to form at run time without a selected leader, which saves
the time spent on leader election and avoids the risk of granting
privileges to a compromised leader. In our proposed model, all
group members have the same privilege. The procedure of proof-
of-eligibility is presented in Algorithm 1.

In practice, not all of the above problem types can be easily im-
plemented, due to limitations of current vehicles. In our prototype,

Session: Connected Vehicles MSWiM ’19, November 25–29, 2019, Miami Beach, FL, USA

229

we only implemented category 1 and 2 problems, excluding prob-
lems that require a camera and image processing. In our prototype,
only problems that can be answered from existing sensors such
as speed, acceleration, GPS location, etc., are implemented. Better
PoE challenge design is the subject of future research. Emerging
technologies will likely help with this. For example some newly
emerged light flashing techniques [33] produce light not visible to
drivers but allow vehicles equipped with cameras to capture it, and
these techniques will work very well for PoE applications.

4.4 Evaluation Group Consensus
Reaching consensus in dynamic vehicular networks in a timely
fashion is the key feature of our proposed algorithm. As described
in the last subsection, a vehicle that successfully solves the PoE
challenge broadcasts an encrypted hello message, MH , with below
format, to establish connections with other members:

MH = Enc(K−
R ,Certi ,RE ,xi , Siдn(K

−
i ,RE ,xi), (1)

where xi is vi ’s local opinion of the event report value.
Once some connections among group members are established,

encrypted consensus messages, MC , with below format are sent to
initiate voting consensus among members:

MC = Enc(K−
R ,Certi ,RE ,ui ,xi ,

Siдn(K−
i ,RE ,xi), Siдn(K

−
i ,ui), (2)

where ui is the known-member list by vi . Each member in ui is
represented by its public key. The signature of Siдn(K−

i ,xi) denotes
attesting of the opinion by the sender, and Siдn(K−

i ,ui) denotes
attesting of the sender’s recognized group member list.

Traditional consensus algorithms require fixed and known mem-
bership. However this is extremely hard to obtain in a highly dy-
namic vehicular network. We perform consensus on the group
membership list G and the opinion list O simultaneously, instead
of first agreeing on group membership and then initiating opinion
consensus among agreed-upon members. Each element in G and
O is uniquely linked to a group member which had its hello mes-
sage received. For example, if a vehicle vk receives a hello message
from vehicle vj , vj is added to vk ’s membership list, then Gk [j] is
initialized to 0 indicating that vj is now a known member of vk .
Ok gets updated with Ok [j] = 1 if vj agrees with vk , otherwise,
Ok [j] = 0. Moreover, Gk [j] is set to 1 if the membership list of vj
is the same as that of vk . This is realized by comparing the mem-
bership list obtained from MH with vk ’s local membership list. A
consensus is reached when more than 2/3 of the vehicles in one
vehicle’s membership list agree both on the membership and the
report value (opinion). The more than 2/3 requirement satisfies the
well-known bound for Byzantine agreement. At this point, if the
group membership size is at least as large as the minimum group
size, then a decision message is broadcast to the network.

A time bound for consensusTc is set to ensure the effectiveness of
the algorithm in vehicular networks. If consensus is reached before
Tc , the consensus process terminates with a decision message being
broadcast. If consensus is not reached before Tc , the consensus
process terminates and the related event report is dropped.

Additionally, we introduce a time variable tstep such that for
every tstep, the vehicle broadcasts a messageMC even when there

are no consensus messages or hello messages received. This is
important when the vehicle’s previously sent messages suffer from
packet loss and the vehicle becomes disconnected from the other
members. The detailed procedure is presented in Algorithm 2.

Finally, in order to tolerate packet loss, delay, and Byzantine
behavior, we allow a vehicle to add another vehicle to its group
list when it observes the vehicle in enough other vehicles’ group
lists even if it did not receive a hello message from the vehicle. The
threshold we set for this is more than 1

3 of the minimum group size
to ensure that at least one healthy vehicle has heard a hello message
from the new vehicle. In order to keep the code description fairly
simple, we do not show this aspect in the pseudocode.

Algorithm 2: Evaluation Group Consensus
10 vk obtained K−

R by solving PoE challenges;
11 vk receives a message M from vj (j , k), set t ′ = t ;
12 while (t − tR) < Tc∧ (consensus is not reached) do
13 if t ≥ (t ′ + tstep) then set t ′ = t , create and broadcast MC ;
14 if M can be decoded using K−

R and verified then
15 if M is a hello message ∧ vj < uk∧ !Πsync then
16 add vj to uk ;
17 if x j , xk , then Ok [j] = 0, otherwise Ok [j] = 1;
18 t ′ = t , create and broadcast MC ;
19 else if M is a consensus message ∧ vj ∈ uk then
20 if ! Πsync then
21 if vk < uj then send hello message MH ;
22 if x j , xk then Ok [j] = 0;
23 else Ok [j] = 1;
24 if uj , uk then Gk [j] = 0;
25 else Gk [j] = 1;

26 if | {l | Gk [l] = 1, Ok [l] = 1, l ∈ uk } | >
2 |uk |

3
∧ |uk | ≥ umin ∧ (t − tR) > Tq then

27 Πsync = true and set consensus flag to true;
28 create and broadcast decision message;

29 else Πsync = false;

4.5 Event Report Verification
A decision message is created if more than 2/3 of the vehicles
agree on the same value and on the group membership. A decision
message is denoted by:

MD = (RE ,α ,CERTs, SIGs), (3)

where α is the decision result, CERTs is a set of certificates of the
groupmembers, and SIGs is a set of signed opinions of the members
in u such that for each vi , Siдi = Siдn(Ki ,xi).

When a vehicle receives a decision message and either it is not
part of the consensus group or it is part of the consensus group
but has not yet reached a decision, it examines the attached signa-
tures. If the group size is at least umin, all signatures are valid, and
more than 2/3 of the signed values agree with the decision value,
the vehicle accepts the decision. In this way, vehicles that are not
compromised but have the incorrect value will accept the group
decision about the event’s status. Any message with one or more
invalid signatures or a group size less than umin will be discarded.
If multiple different decision messages regarding the same event re-
port are received by a vehicle, it accepts the valid decision message
with the longest signature chain and rejects the others.

Session: Connected Vehicles MSWiM ’19, November 25–29, 2019, Miami Beach, FL, USA

230

4.6 Proof Sketch of Protocol Correctness
As is typical for distributed consensus protocols in challenging
environments, the PoE protocol guarantees safety but not liveness.
However, liveness is demonstrated through our simulation experi-
ments described in Section 5.

Our main safety property is that false consensus does not occur
as long as less than 1/3 of the vehicles in the vicinity of the event
are compromised or incorrect. Thus, the only possible outcomes
of the protocol are correct consensus and no consensus. This is
detailed in the following claim and proof sketch.

Claim: Let the minimum consensus group size be umin. As long as the
number of compromised vehicles and incorrect vehicles in the area of
an event report RE (t) between the time of the report t and the time
t +Tc is less than umin/3, then false consensus cannot occur.

Proof Sketch:
The proof of eligibility challenge plays a fundamental role in

ensuring safety. Only vehicles that can observe the area of the event
report are capable of passing the challenge. This prevents compro-
mised vehicles from outside of the event area from participating in
the consensus. Thus, only compromised vehicles within the area of
the report during the time that the consensus protocol is executed
need be considered.

Additionally, we assume that the number of healthy vehicles in
the event area that do not correctly verify the status of an event
report is very small so that the total of compromised and incorrect
vehicles in the vicinity of the report is less than umin/3.

False consensus requires agreement on the wrong value of an
event report (e.g. "no accident" when an accident has actually oc-
curred) and agreement on group membership. This could possibly
occur in two situations: 1) when a vehicle correctly reports an event
but enough compromised and incorrect vehicles within the formed
consensus group conclude the event did not occur, or 2) when
a compromised or incorrect vehicle falsely reports an event and
enough other vehicles support the false report during the consensus
procedure.

In either situation, there are two possibilities; either a consensus
group of size at least umin is formed for the event report or no large
enough group is formed. If no large enough group is formed before
time t + TC , then no healthy node can broadcast a decision (see
Lines 29–32 of Alg. 2 pseudocode) and the event report is dropped
(this is a no consensus outcome).

If a large enough consensus group is formed, this means there
are fewer than umin/3 compromised or incorrect nodes within the
group that support the wrong event status. Thus, there are sim-
ply not enough nodes to broadcast the false evaluation value for
any healthy node to accept it, since that would require more than
2umin/3 false evaluations to be broadcast by distinct nodes. In this
situation. If enough nodes that receive more than 2umin/3 correct
evaluation results also agree onmembership of the consensus group,
the result is correct consensus but if there are not enough nodes
that agree on the membership, the result is no consensus. However,
in neither case, can false consensus occur.

Figure 3: Evaluation Scenario - Urban

5 EVALUATION
5.1 Implementation
We implemented a prototype of BFCV in C++, which can simulate
different scenarios by changing the map and system parameters. It
is build on top of Veins [30] which provides a comprehensive suite
of models of IEEE 802.11p, IEEE 1609.4 DSRC/WAVE and obstacle
shadowing. We add additional layers to simulate packet loss/delay,
cypto schemes supporting 128, 192, and 256 bit ECDSA keys for
encryption, signing and verification, SHA-256 as the hash function.
Our prototype consists of approximately 3500 lines of written code.
Experimental maps are obtained from OpenStreetMap (OSM) [26])
with manual corrections of speed limit, traffic lights, number of
lanes on the road, etc. to improve the accuracy. Vehicle mobility
and routes are computed based on demand definition and shortest
path algorithm using SUMO [17].

Different from previous works, the prototype includes realistic
aspects of the vehicle dynamics (safe distance, mass, dimensions,
vehicle types, braking distance, traffic lights, etc.), detailed model-
ing of the communication network, and real-life street maps with
varying scales.

5.2 Simulation Results
Experiment Scenario:Our evaluation is conducted in a simulated
midtown area of a major city in the U.S. with a capacity of around
700 moving vehicles (see Figure 3). We simulate a worst-case sce-
nario where compromised vehicles behave honestly when there is
no event to be reported. Thus, it is very hard for honest vehicles
to catch bad behaviors prior to an event report. In the simulation
scenario, a collision happens at a random time, and honest vehi-
cles that detect the event create and broadcast "collision occurred"
event reports leaving others to evaluate them.We also have compro-
mised vehicles broadcast conflicting event reports saying "collision
cleared" at the same time. Thus, there can be several consensus
executions happening at the same time among different groups of
vehicles to try to reach agreement to accept one of these conflicting
reports. We also have compromised vehicles drop, delay or not send
messages, and submit wrong opinions for evaluation.

BFCV Evaluation Results: Unless otherwise noted, the follow-
ing parameters were used in all experiments: Tq = 5s , Tc = 14s ,
umin = 7, vehicle density = 250 and beacon message frequency
= 10Hz. Natural packet loss and delay (not including compromised
vehicles’ behavior) were simulated such that messages were ran-
domly dropped at receiving vehicles with a drop rate of 15% and

Session: Connected Vehicles MSWiM ’19, November 25–29, 2019, Miami Beach, FL, USA

231

packets were randomly delayed within a range of 100ms - 1500ms.
The communication range among vehicles was set to 300m based
on NHTSA’s proposed rule [24]. We use the following two metrics
to evaluate the latency of BFCV:

• Consensus Time: the time spent on reaching consensus on a single
event report. This starts from the event report creation time and
ends when there is a decision message received by every member
of the group contained in the message.

• Decision Time: the time spent on ultimately reaching consensus.
This starts from the first event report creation time and ends
when there is a decision message received by every member of
the group contained in the consensus message. Note that this
could involve multiple consensus attempts if the first attempt
does not produce a consensus.

We first evaluated how BFCV’s performance varies with mini-
mum group size and vehicle density.We ran simulations with 10% of
vehicles compromised, varied umin from 4 to 10 with an increment
of 1, and varied vehicle density from 50 to 450 vehicles with an
increment of 100. 50 simulation runs were done for each parameter
combination, where a single consensus period was simulated in
each run. The possible results of each run are: Correct Consensus
(CC), False Consensus (FC) and No Consensus (NC). Note that, as
described above, there can be multiple consensus executions hap-
pening concurrently for "collision occurred" and "collision cleared"
event reports. In case multiple large enough consensus groups suc-
ceed in reaching consensus, we record the result as FC as long as
at least one of the groups agreed on "collision cleared". The results
are shown in Figure 4.

Figure 4(a) shows the average consensus time in seconds vs.
minimumgroup size and vehicle density. Note that NC outcomes are
not included in the average, because there is no definite termination
of the consensus in those cases. Not surprisingly, consensus time
increases with both minimum group size and vehicle density since
an increase in either parameter will cause the number of messages
exchanged by the algorithm to increase. Figure 4(b)(c)(d) shows the
different consensus outcomes vs. the two parameters. Note that, if
the minimum group size is too small, compromised vehicles can
form a group and reach false consensus. Also, if the vehicle density
is too low, there are not enough vehicles in the event area to form
a consensus group, and this leads to a high rate of NC outcomes.
However, for a fairly wide range of group sizes and vehicle densities,
there are zero FC results and a very low rate of NC outcomes. These
results demonstrate that the choice ofumin should be based on both
adversarial assumptions and expected vehicle density.

We also evaluated BFCV’s performance versus the percentage
of compromised vehicles with umin = 7 and a vehicle density of
250. For percentages from 5% to 40% with 5% increments, we re-
peated the simulation 50 times. The results are shown in Table 2.
From the table, we can see that as the percentage of compromised
vehicles increases, the percentage of CC decreases from 100% to
79%. However, even with 40% of the vehicles in the network being
compromised, the BFCV Algorithm did not experience a single false
consensus outcome.

We also evaluated how well BFCV handles failure to reach con-
sensus (NC outcomes). Instead of stopping the simulation imme-
diately after the single-round consensus timeout, Tc , occurred, we

Table 2: Performance vs % of Compromised Vehicles

Mal_V CC FC NC AvgConsensusTime
5% 100% 0% 0% 5.228s
10% 99% 0% 1% 5.701s
15% 99% 0% 1% 6.206s
20% 99% 0% 1% 6.718s
25% 97% 0% 3% 8.542s
30% 93% 0% 7% 9.325s
35% 88% 0% 12% 10.446s
40% 79% 0% 21% 13.118s

extended the simulation if consensus was not reached the first time.
If a report evaluation fails to reach consensus within time Tc , then
our algorithm drops the report. However, if this occurs in the sim-
ulation, another honest vehicle nearby will submit a new event
report for consensus. By extending the simulation time, we exam-
ined whether the BFCV algorithm can recover from NC outcomes.
In this case, we recorded the final decisions, i.e. whether there
was ultimately a correct decision made after an event happened,
possibly after more than one consensus attempt.

Figure 5 shows the average decision time for different com-
promised vehicle percentages and different vehicle densities with
umin = 7. When the percentage of compromised vehicles was low,
the decision was made very quickly with an average that is well
below the single-round consensus time bound Tc . However, as the
percentage of compromised vehicles was increased, the time spent
on evaluation rose. Note that, in some cases, the average decision
time was close to or exceeded Tc = 14s , implying that more than
one round of consensus was some times needed for those cases.

Comparison Results: We also simulated two related protocols,
DC [27] and PoR [5], and evaluated them under the same experi-
ment conditions. These protocols both use threshold-based voting,
which is the most widely-used prior approach. Two metrics are
introduced to compare the results:
• Percentage of Vehicles Taking Action: the percentage of vehicles in
the network that reach a correct decision about the event report
and take action to avoid the accident location

• Average Commute Time: the average simulation time that vehicles
take to reach their destinations (vehicles not taking action to
avoid the accident location experience a longer commute time
due to backups around the accident site)

There was no explicit method described in [5] to set the threshold
for the PoR algorithm. However, it should be based on the report
criticality and the network status, which is similar to the mini-
mum group size in our proposed algorithm. Therefore, we set both
of these parameters to 7 in these simulations. The DC algorithm
provides an explicit method for dynamically adjusting its thresh-
old value, which we adhered to in our DC implementation. Other
parameters of BFCV were the same as in the previous experiments.

Figure 6 depicts the percentage of vehicles taking action as the
simulations progressed when 5% and 15% of vehicles were com-
promised, respectively. There are two main reasons why BFCV
performed better than DC and PoR. First, with BFCV, vehicles make
a group decision and act accordingly. For DC and PoR, each vehicle

Session: Connected Vehicles MSWiM ’19, November 25–29, 2019, Miami Beach, FL, USA

232

Figure 4: Consensus Time and Consensus Result vs. Minimum Group Size and Vehicle Density

Figure 5: Decision Time vs % Compromised Vehicles

Figure 6: Vehicles Taking Action (%) vs Simulation Time

makes its own decision when enough endorsements from other
vehicles are collected and, thus, not all vehicles make the same
decision. In particular, since there are both "collision occurred"
and "collision cleared" reports being circulated at the same time,
some vehicles collect enough votes for "collision cleared" and reach
the wrong decision even though most vehicles reach the correct
decision. Second, BFCV uses PoE, which prevents compromised
vehicles from outside the event area from participating. Since DC
and PoR cannot verify location information of vehicles, they cannot
filter out fake reports from compromised vehicles anywhere in the
network that falsely report their location as being near the event,
which increases the chances that enough votes can be collected to
accept a fake report.

Table 3 depicts average commute time versus percentage of
compromised vehicles ranging from 5% to 20%. For vehicles that
were stuck in the simulation area at the end of the simulation, for the
purposes of computing an average, we assigned them a commute
time of 300 sec. From the table, we see that BFCV produced 15-22%
lower commute times than PoR and 10-40% lower times than DC.
As the percentage of compromised vehicles increased, most of the

Table 3: Avg. Commute Time vs. % of Compromised Vehicles

Mal_V DC(s) PoR(s) BFCV(s)
5% 171 179 155
10% 194 197 162
15% 244 223 183
20% 286 248 203

vehicles actually ended up being stuck for the DC Algorithm (avg.
commute time approached 300 sec.), and a significant number were
also stuck with PoR, while most of the vehicles actually reached
their destinations during the simulated interval with BFCV.

6 RELATEDWORK
In this section, we first review the existing approaches proposed
for information security in connected vehicles. Node centric meth-
ods such as reputation systems [9, 10, 21, 31] inspect the past and
present behavior of nodes and use this to predict the future mis-
behavior, which assumes that the nodes who behave well in the
past are more likely to behave well in the future. However, smart
adversaries may only initiate attacks at critical times, which is a
fundamental problem that reputation systems cannot handle.

Data centric methods focus on analyzing transmitted data among
nodes and information verification. Vehicles that use local methods,
e.g. [13, 20, 31], verify information locally without relying on other
vehicles’ cooperation. Though these methods are light-weight, easy
to scale and can tolerate intermittent communication, they heavily
rely on location information and have a limited view of what is
happening on the road, which reduces their accuracy. Cooperative
schemes, as surveyed in [2], are more accurate than local methods
with lower false positive and false negative rates. Nevertheless, they
are more vulnerable to packet loss/delay and the ratio of compro-
mised to honest vehicles. Threshold-based voting has been adopted
in PoR [5], DC [27] to filter false data that honest vehicles only ac-
cept a report when they receive more thanX signatures attesting to
it. PoR improves the efficiency of communication by using growth
codes, but the performance is sensitive to a preset threshold, while
the DC method in [27] dynamically sets the threshold based on the
criticality and the density of the network. However, [27] assumes 1-
D communication, detection, and reaction, primarily limiting its use
to highway scenarios. Moreover, threshold voting does not provide
true consensus, because each vehicle decides independently and,
therefore, different honest vehicles can reach different decisions.

Session: Connected Vehicles MSWiM ’19, November 25–29, 2019, Miami Beach, FL, USA

233

True consensus algorithms satisfying termination, agreement,
and validity properties have been well studied in other contexts.
Paxos[18] and Raft [25] are well known algorithms to achieve con-
sensus among unreliable nodes, but they do not address Byzantine
faults [19]. Traditional Byzantine agreement protocols, e.g. [3, 6, 16]
do not handle highly dynamic network connectivity such as occurs
in vehicular networks. In general, traditional consensus algorithms
require heavy computation, frequent message exchanges, and/or a
fixed wired network, making them hard to be adapted to vehicular
networks. While efforts have been made to adapt traditional consen-
sus algorithms for dynamic and intermittent topologies in MANETs,
e.g. [4, 7, 14, 34], none of these efforts address both unreliable links
and Byzantine faults.

Although information security in vehicular networks has been
previously studied, efficient collaborative methods that guarantee
all healthy nodes make the same decision have not been developed
to date. Our work presented herein provides an algorithm that pro-
vides timely and efficient consensus while supporting vehicles’ high
mobility as well as intermittent connections. In addition to achiev-
ing true consensus, our algorithm makes use of a novel proof of
eligibility concept that prevents compromised vehicles from outside
of an event report area from participating in decisions about the
event. Prior approaches could not limit the participation of compro-
mised vehicles in this way and were thus much more susceptible to
intentional manipulation. As demonstrated in Section 5, our BFCV
algorithm is the first to achieve true consensus with low latency in
realistic vehicular scenarios with 1

3 or more of the vehicles in the
entire simulated area acting in a Byzantine faulty manner.

7 CONCLUSION
We presented BFCV, a distributed consensus algorithm based on
"proof-of-eligibility", which achieves Byzantine agreement with un-
known group membership and unreliable communication channels
and is targeted at vehicular network environments. BFCV leverages
the unique characteristics of moving vehicles and cryptographic
primitives to prevent a large number of compromised and unre-
lated vehicles from joining the consensus group. This significantly
speeds up the consensus procedure, providing a new paradigm of
Byzantine-tolerant fast consensus for connected vehicles.

8 ACKNOWLEDGEMENT
This work is partially supported by Ministry of Education (MOE) in
Taiwan under Grant Numbers NTU-107V0901 and NTU-108V0901
and Ministry of Science and Technology (MOST) in Taiwan under
Grant Number MOST-108-2636-E-002-011.

REFERENCES
[1] M. Al-Kahtani. 2012. Survey on security attacks in Vehicular Ad hoc Networks

(VANETs). In Signal Processing and Communication Systems (ICSPCS), 2012 6th
International Conference on. IEEE.

[2] M. Arshad, Z. Ullah, N. Ahmad, M. Khalid, H. Criuckshank, and Y. Cao. 2018. A
survey of local/cooperative-based malicious information detection techniques in
VANETs. EURASIP Journal on Wireless Communications and Networking 1 (2018).

[3] J. Augustine, G. Pandurangan, and P. Robinson. 2013. Fast byzantine agreement
in dynamic networks. In Proceedings of the 2013 ACM symposium on Principles of
distributed computing. ACM.

[4] Abdulkader B., Pascale L., and Frédéric G. 2015. Solving Consensus in Oppor-
tunistic Networks. In ICDCN.

[5] Z. Cao, J. Kong, U. Lee, M. Gerla, and Z. Chen. 2008. Proof-of-relevance: Filtering
false data via authentic consensus in vehicle ad-hoc networks. In INFOCOM
Workshops 2008, IEEE. IEEE.

[6] M. Castro, B. Liskov, et al. 1999. Practical Byzantine fault tolerance. In OSDI,
Vol. 99.

[7] D. Cavin, Y. Sasson, and A. Schiper. 2004. Consensus with unknown participants
or fundamental self-organization. In International Conference on Ad-Hoc Networks
and Wireless. Springer.

[8] Q. Chen, Y. Yin, Y. Feng, Z M. Mao, and H. Liu. [n. d.]. Exposing Congestion
Attack on Emerging Connected Vehicle based Traffic Signal Control. ([n. d.]).

[9] Q. Ding, X. Li, M. Jiang, and X. Zhou. 2010. Reputation management in vehicular
ad hoc networks. In Int’l Conf. on Multimedia Technology. IEEE.

[10] F. Dotzer, L. Fischer, and P. Magiera. 2005. Vars: A vehicle ad-hoc network
reputation system. InWorld of Wireless Mobile and Multimedia Networks, 2005.
WoWMoM 2005. Sixth IEEE International Symposium on a. IEEE.

[11] J. Douceur. 2002. The sybil attack. In International workshop on peer-to-peer
systems. Springer.

[12] T. Garip, H. Kim, P. Reiher, and M. Gerla. 2017. INTERLOC: An interference-
aware RSSI-based localization and Sybil attack detection mechanism for vehicular
ad hoc networks. In 14th Annual Consumer Comm. & Networking Conf. IEEE.

[13] M. Ghosh, A. Varghese, A. Gupta, A. A Kherani, and S. Muthaiah. 2010. Detecting
misbehaviors in VANET with integrated root-cause analysis. Ad Hoc Networks 8,
7 (2010), 778–790.

[14] F. Greve and S. Tixeuil. 2007. Knowledge connectivity vs. synchrony requirements
for fault-tolerant agreement in unknown networks. In Dependable Systems and
Networks, 2007. DSN’07. 37th Annual IEEE/IFIP International Conference on. IEEE.

[15] J. Grover, Nitesh. Prajapati, V. Laxmi, and Manoj. Gaur. 2011. Machine learn-
ing approach for multiple misbehavior detection in VANET. In International
Conference on Advances in Computing and Communications. Springer.

[16] R. Guerraoui, F. Huc, and A. Kermarrec. 2013. Highly dynamic distributed
computing with byzantine failures. In Proceedings of the 2013 ACM symposium
on Principles of distributed computing. ACM.

[17] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker. 2012. Recent Development
and Applications of SUMO - Simulation of Urban Mobility. International Journal
On Advances in Systems and Measurements 5, 3&4 (December 2012).

[18] L. Lamport et al. 2001. Paxos made simple. ACM Sigact News 32, 4 (2001).
[19] L. Lamport, R. Shostak, and M. Pease. 1982. The Byzantine generals problem.

ACM Transactions on Programming Languages and Systems (TOPLAS) 4, 3 (1982).
[20] T. Leinmüller, E. Schoch, F. Kargl, and C. Maihöfer. 2010. Decentralized position

verification in geographic ad hoc routing. Security and communication networks
3, 4 (2010).

[21] Z. Li and C. Chigan. 2014. On joint privacy and reputation assurance for vehicular
ad hoc networks. IEEE Transactions on Mobile Computing 13, 10 (2014).

[22] N. Lo and H. Tsai. 2007. Illusion attack on vanet applications-a message plausi-
bility problem. In Globecom Workshops, 2007 IEEE. IEEE.

[23] NHTSA. [n. d.]. Federal Motor Vehicle Safety Standards; V2V Communica-
tions. https://www.federalregister.gov/documents/2017/01/12/2016-31059/
federal-motor-vehicle-safety-standards-v2v-communications#h-1

[24] NHTSA. 2017. FederalMotor Vehicle Safety Standards; V2VCommunications. Re-
trieved May 20, 2019 from https://www.federalregister.gov/documents/2017/01/
12/2016-31059/federal-motor-vehicle-safety-standards-v2v-communications

[25] D. Ongaro and J. Ousterhout. 2014. In search of an understandable consensus
algorithm.. In USENIX Annual Technical Conference.

[26] OpenStreetMap contributors. 2017. Planet dump retrieved from
https://planet.osm.org . https://www.openstreetmap.org.

[27] J. Petit and Z. Mammeri. 2011. Dynamic consensus for secured vehicular ad hoc
networks. InWireless and Mobile Computing, Networking and Communications
(WiMob), 2011 IEEE 7th International Conference on. IEEE.

[28] C. Qi and M. Z. Morley. [n. d.]. Connected cars can lie, pos-
ing a new threat to smart cities. https://theconversation.com/
connected-cars-can-lie-posing-a-new-threat-to-smart-cities-95339

[29] K. Rabieh, M. Mahmoud, T. N Guo, and M. Younis. 2015. Cross-layer scheme for
detecting large-scale colluding Sybil attack in VANETs. In 2015 IEEE International
Conference on Communications (ICC). IEEE.

[30] C. Sommer, R. German, and F. Dressler. 2011. Bidirectionally Coupled Network
and Road Traffic Simulation for Improved IVC Analysis. IEEE Transactions on
Mobile Computing 10, 1 (January 2011). https://doi.org/10.1109/TMC.2010.133

[31] R. van der Heijden, S. Dietzel, and F. Kargl. 2013. Misbehavior detection in vehicu-
lar ad-hoc networks. 1st GI/ITG KuVS Fachgespräch Inter-Vehicle Communication.
University of Innsbruck (2013).

[32] R. van der Heijden, S. Dietzel, T. Leinmüller, and F. Kargl. 2016. Survey on
misbehavior detection in cooperative intelligent transportation systems. arXiv
preprint arXiv:1610.06810 (2016).

[33] L. Wu and H. Tsai. 2013. Modeling vehicle-to-vehicle visible light communication
link duration with empirical data. In Globecom Workshops, 2013. IEEE.

[34] W. Wu, J. Cao, and M. Raynal. 2008. Eventual clusterer: A modular approach
to designing hierarchical consensus protocols in manets. IEEE Transactions on
Parallel & Distributed Systems 6 (2008).

[35] Y. Yao, B. Xiao, G. Wu, X. Liu, Z. Yu, K. Zhang, and X. Zhou. 2019. Multi-channel
based Sybil attack detection in vehicular ad hoc networks using RSSI. IEEE
Transactions on Mobile Computing 18, 2 (2019).

Session: Connected Vehicles MSWiM ’19, November 25–29, 2019, Miami Beach, FL, USA

234

https://www.federalregister.gov/documents/2017/01/12/2016-31059/federal-motor-vehicle-safety-standards-v2v-communications#h-1
https://www.federalregister.gov/documents/2017/01/12/2016-31059/federal-motor-vehicle-safety-standards-v2v-communications#h-1
https://www.federalregister.gov/documents/2017/01/12/2016-31059/federal-motor-vehicle-safety-standards-v2v-communications
https://www.federalregister.gov/documents/2017/01/12/2016-31059/federal-motor-vehicle-safety-standards-v2v-communications
 https://www.openstreetmap.org
https://theconversation.com/connected-cars-can-lie-posing-a-new-threat-to-smart-cities-95339
https://theconversation.com/connected-cars-can-lie-posing-a-new-threat-to-smart-cities-95339
https://doi.org/10.1109/TMC.2010.133

	Abstract
	1 Introduction
	2 Motivating Example
	3 Problem Formulation
	3.1 Assumptions
	3.2 System Model
	3.3 Threat and Fault Models
	3.4 Consensus Properties

	4 BFCV Algorithm
	4.1 Design Overview
	4.2 Event Report Generation
	4.3 Proof-of-Eligibility
	4.4 Evaluation Group Consensus
	4.5 Event Report Verification
	4.6 Proof Sketch of Protocol Correctness

	5 Evaluation
	5.1 Implementation
	5.2 Simulation Results

	6 Related Work
	7 Conclusion
	8 Acknowledgement
	References

