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ABSTRACT
Anticipating user mobility can be a critical feature for to-
day’s mobile systems. We introduce a novel location predic-
tor which incorporates knowledge of a user’s potential future
locations to improve prediction accuracy. Such future knowl-
edge is often available through contextual sources such as a
user’s calendar, e-mail, or instant messaging conversations.
Simulation results show that our future knowledge leverag-
ing location predictor can improve prediction accuracy by
3% to 95% over history-only Markov predictors, depending
on the amount of future knowledge that is available and the
type of mobility exhibited by users.

Categories and Subject Descriptors: H.4. [Informa-
tion Systems Applications]: Miscellaneous

General Terms: Algorithms, Experimentation, Measure-
ment, Performance

Keywords: mobility prediction, location prediction, mobil-
ity management

1. INTRODUCTION
The ability to track and predict a mobile user’s location is

a critical need for today’s mobile systems and applications.
To support the growing need for accurate location prediction
in mobile applications, we have designed and implemented a
location prediction system built upon a novel location pre-
dictor that leverages knowledge about a user’s potential fu-
ture locations in determining its predictions. The notion
of locations is abstract in nature and can be configured in
the system (e.g. access points, IP addresses, etc.). Taking
the popular and relatively simple order-k (O(k)) Markov
predictor [7] as a baseline example, we demonstrate how
future knowledge derived from contextual sources such as
a user’s calendar can be utilized to improve prediction ac-
curacy. We believe our techniques are applicable as well
to other history-based location prediction schemes such as
those utilizing Bayesian networks and neural networks [2,3].
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2. RELATED WORK
Our work falls under the class of domain-independent lo-

cation predictors which do not require any semantic inter-
pretation of their locations, and in general, observe past
movements in order to form predictions [1,6–8]. They oper-
ate on the premise that there is temporal regularity in the
movements of nodes and that by accurately modeling these
patterns, future movements can be predicted.

Several history-based predictors [1,8] have been proposed
that are based on a text compression algorithm by Ziv and
Lempel [9]. The LZ parsing algorithm assumes that move-
ments are generated by a finite-state Markov source–where
the next symbol is dependent only on the current state–and
constructs an LZ tree with nodes comprised of substrings
produced by parsing the sequence of locations visited by a
user [7]. Predictions of a user’s next locations can then be
derived by traversing the LZ tree and searching for the most
frequently seen substring given the current state.

The O(k) Markov family of predictors can be seen as
a simplified class of LZ-based predictors where the finite-
state Markov source is constrained to a specific k. Song
et al. evaluated in [7] several O(k) Markov predictors with
an empirical set of traces collected on the Dartmouth cam-
pus wireless network. Their findings show that with a fall-
back optimization–which recursively uses the result of the
O(k− 1) predictor when no prediction was produced by the
O(k) predictor–the predictor performed as well as or bet-
ter than their LZ-based relatives. It was also observed that
the O(2) predictor with the fallback optimization provided
the best accuracy as higher order Markov predictors suffered
from an increasing number of prediction misses.

All of the LZ-based and Markov-based predictors cited
base their predictions on past movement histories only. We
introduce a predictor that utilizes future information about
a user in order to improve prediction accuracy and evaluate
our predictor’s performance with real world traces of various
location granularities which, to the best of our knowledge,
has not been previously performed. Our results indicate
that in many cases, significant performance gains can be
achieved by incorporating potential future knowledge into
the predictor.

3. BACKGROUND
In this section, we discuss the nature of location predic-

tion, provide a general model for the order-k Markov-based
family of predictors, and define the metrics used to evalu-
ate the predictors. We adopt the notation and terminology
of [7].



3.1 Location prediction
At at any point in time, a user is deemed to be in a given

location. A location can refer to a number of actual locales—
an access point, a building, a subnet—but is represented by
a symbol a drawn from a finite alphabet A, the set of all
possible locations in which a user can reside. The user may
move between any of the locations at any point in time. A
location history Ln = a1a2...an is attributed to a user and
consists of a sequence of location symbols drawn from A
representing the first n locations held by the user since the
start of observation. The goal of location prediction is to
accurately predict an+1, the next location a user will reside
at, given a location history Ln.

3.2 Order-k Markov predictors
The O(k) Markov family of predictors attempt to predict

the next location from a current context comprised of the k
most recent symbols in the location history Ln. The current
context is defined to be c = an−k+1, ..., an and represents a
state in the Markov model. Transitions from states represent
the possible next locations a user may take. Let a user’s
location be the random variable X and let X(i, j) be the
sequence of random variates XiXi+1...Xj for any 1 ≤ i ≤
j ≤ n. The O(k) Markov predictor operates by assuming
for all a ∈ A and i ∈ 1, 2, ..., n that,

P (Xn+1 = a|X(1, n) = Ln)

= P (Xn+1 = a|X(n− k + 1, n) = c)

= P (Xi+k+1 = a|X(i + 1, i + k) = c)

where P (Xi = ai|...) denotes the probability that Xi takes
the value ai.

Since the transition probabilities are not known ahead of
time, on-line predictors maintain running estimates of these

probabilities, bP , from the current history Ln and the current
context according to the equation,

bP (Xn+1 = a|Ln) =
N(ca, Ln)

N(c, Ln)

where N(s1, s2) denotes the number of times the substring
s1 occurs in the string s2.

For Ln = a1a2 . . . an, let Ln(i, j) = ai . . . aj . The tran-
sition probabilities can be represented by a matrix M , where
rows are indexed by length-k strings from Ak and the columns
are indexed by symbols from A so that P (Xn+1 = a|X(1, n) =
Ln) = M(s, a) where s = c = Ln(n− k + 1, n) and a is the
next location. The predictor operates by examining the row
indexed by the current context c and selecting the column
indexed by location a with the highest probability.

3.3 Fallback optimization
The fallback optimization involves recursing to an O(k−1)

Markov predictor when the O(k) predictor fails to make a
prediction. For the remainder of this paper, references to
the O(k) predictor will imply a basic O(k) predictor with
the fallback optimization.

3.4 Predictor operation and metrics
The location predictor operates by tracking a user’s move-

ments and predicting the user’s next location whenever his/her
current context changes. Prediction attempts can result in
three outcomes: a correct prediction, an incorrect prediction,
and a prediction miss. When a prediction is made and is

equivalent to the actual next location of a user, a correct pre-
diction has been made; otherwise it is deemed an incorrect
prediction. If the predictor is unable to make a prediction,
a prediction miss occurs. A predictor’s accuracy is defined
to be the number of correct predictions divided by the num-
ber of locations visited by a user. A predictor’s performance
is taken to be its prediction accuracy. The conditional ac-
curacy of a predictor is the number of correct predictions
divided by the number of predictions made. Conditional ac-
curacy reveals how accurate a predictor is when it does make
a prediction as prediction misses are ignored.

4. FUTURE-ENHANCED PREDICTION
Current O(k) Markov predictors operate only on states

derived from past user movements. Our future-enhanced
Markov predictor utilizes knowledge of a user’s potential
presence at a future location at a specified future time; we
refer to each record of such information as a future event.
Future event information can be amassed from a number of
readily available sources such as Microsoft Outlook, Lotus
Notes, and Google Calendar. We incorporate future events
into the context of an O(k) Markov predictor, enriching the
states in the underlying Markov model.

4.1 Basic O(k, f) predictor
In this subsection, we define the basic O(k, f) Markov pre-

dictor, which extends the formal model of an O(k) Markov
predictor to incorporate future events. For a given step n
in the location history, we define the future location list,
FL(m,n) = b1b2 . . . bm, where bi ∈ A, 1 ≤ i ≤ m. FL(m,n)

represents the sequence of possible future locations that are
in the user’s calendar (or other future information source)
when the location history is Ln. Note that there is a differ-
ent future location list for each possible point in the location
history.

Let FL(m,n)(i, j) = bi . . . bj . We redefine the context to
include some locations from the current location history and
some locations from the future location list. For an O(k, f)
Markov predictor, we define the context to be c = Ln(n −
k+f +1, n), FL(m,n)(1, f), i.e. the last k−f locations from
the location history and the first f locations from the future
location list. Just as before, the states of the Markov model
are the possible contexts and the transitions from a current
context (state) represent the possible next locations.

As in the O(k) Markov predictor, we keep a running es-
timate of transition probabilities over time as the predictor
executes. Now,

bP (Xn+1 = a|Ln, FL(m,n)) =
N(ca, Ln, FL(m,n))

N(c, Ln, FL(m,n))

where N(ca, Ln, FL(m,n)) represents the number of times
that the context c occurs in the pair (Ln, FL(m,n)) and the
next location is a, and N(c, Ln, FL(m,n)) represents the total
number of occurrences of the context c in (Ln, FL(m,n)).

4.2 Optimizations
We describe a number of variations to the basic O(k, f)

predictor that aim to increase the likelihood that available
future knowledge can be utilized in a prediction attempt.

4.2.1 Fallback to O(k) predictor
When the future-enhanced O(k, f) Markov predictor fails

to make a prediction, the predictor defaults to using the



history-only O(k−f) Markov predictor. This fallback allows
the predictor to take advantage of the greater conditional
accuracy of the O(k, f) predictor without sacrificing overall
accuracy because of prediction misses by the more selective
O(k, f).

4.2.2 Fallback f

If a prediction miss results with the O(k, f) predictor,
fallback recursively to the O(k − 1, f − 1) predictor.

4.2.3 Wildcard
The wildcard optimization provides a regular expression

type of operation on contexts. When searching for predic-
tion candidates, rather than requiring that the current con-
text exactly match a row’s index in M , the future portion of
the current context, FL(1, f) = b1b2...bf , is treated as a reg-
ular expression FLwildcard(1, f) = A∗b1A

∗b2A
∗...A∗bfA∗.

If FLwildcard(1, f) matches a row’s index context, elements
in that row will be considered prediction candidates. The
wildcard optimization is used in conjunction with the fall-
back f optimization so that as fallback occurs with an O(k, f−
i) predictor, FLwildcard(1, f − 1) is used to match the row
indices in M .

4.3 Hybrid O(k, f) predictor
One potential weakness of the O(k, f) predictor is that it

assumes future knowledge is available consistently through-
out a user’s history. To mitigate this issue, we propose a
hybrid O(k, f) predictor that does not require future in-
formation to be consistently present in the states of the
Markov model. We represent Markov states in the tran-
sition matrix M as contexts of an O(k + f) history-only
Markov predictor. The current context remains ccurrent =
L(n − k + 1, n), FL(1, f). To make a prediction, ccurrent is
treated as a single sequence and matched against the row
indices in M as a normal O(k) predictor would operate.
The intuition behind such a mechanism is that when future
information has not been consistently available, it will be
more likely to find matches between a user’s current O(k, f)
context and his/her O(k + f) history contexts. The hybrid
O(k, f) predictor can make use of the same optimizations as
its basic analogue.

5. EVALUATION
In this section, we evaluate the performance of our future-

enhanced predictors in comparison with their history-only
counterparts. The median accuracy is defined as the median
prediction accuracy of all users in a trace set.

5.1 Future-enhanced prediction
The accuracy of the basic O(k, f) predictor and its op-

timizations are examined by running the predictors on the
Dartmouth movement traces [4]. It can only be beneficial to
fallback to the history-only O(k) predictor when no predic-
tion can be made by a future-enhanced O(k, f) predictor, so
all O(k, f) predictors utilize this fallback. To facilitate di-
rect comparisons with the results in [7], we utilize the same
data set which contains only user traces with more than 1000
movements. There are 2,195 users in this trace set.

Since users’ movements are re-enacted through traces, syn-
thetic future information must be created for each user. p%
of the movements found in a user’s trace are randomly ex-
tracted and inputed as future events to the predictor.
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Figure 1: Median accuracies of the basic O(3, f) and
hybrid O(3, f) predictors
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Figure 2: Median accuracies of the basic O(3, f) and
hybrid O(3, f) predictors with fallback f

The performance of the basic O(k, f) predictor is shown
in Figure 1 for k = 3, f = 1, 2, 3, 4, and p = 100, 80, 60, 40.
For comparison purposes, the median accuracies of the O(3)
and O(2) predictors have been included; the O(2) predictor
was the highest performing predictor in [7]. Clearly, the use
of future information has results in greater prediction ac-
curacy as the basic O(k, f) predictor outperforms the O(k)
predictor for all parameters shown. For the basic O(k, f)
predictor, median accuracy is highest at f = 1 and declines
linearly for increasing values of f . The decreasing median
accuracy can be attributed to prediction misses resulting
from the increased amount of state that must be matched
for successful prediction. The amount of future information
available to the predictor is the significant factor for predic-
tion performance. Note that p = 100 represents the optimal
case in which the predictor has complete future knowledge
of all of a user’s movements.

Figure 2 shows the performance of the basic O(k, f) pre-
dictor with fallback f . Note that at f = 1, this predictor
degenerates into the basic O(k, f) predictor since no fall-
back on f can occur. Though the fallback f optimization
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Figure 3: Median accuracies of basic O(3, f) and hy-
brid O(3, f) predictors with wildcard

does not improve upon the best accuracy achieved at f = 1,
the fallback f allows the predictor to mitigate prediction
misses when higher values of f are used by falling back to
predictors requiring less matched state. The slight losses
in accuracy when higher values of f are used is a puzzling
result we discuss in Section 6.

Figure 3 shows the performance of the basic O(k, f) pre-
dictor with wildcard. Intuitively, the wildcard optimization
should reduce the number of prediction misses by allowing
close, but imperfect matches to occur. Also note that the
wildcard optimization automatically requires the fallback f
optimization in order to operate. The results show however,
that the wildcard optimization is not effective in improving
performance as the median accuracy actually falls signifi-
cantly for increasing values of f , i.e. the situations in which
wild cards take effect. In Section 6, we discuss several mod-
ified schemes which we believe might better leverage the
potential benefits of the wildcard optimization.

We then evaluate the performance of our hybrid O(k, f)
predictor, which should provide better performance when
lower levels of future knowledge are available, i.e. p. Fig-
ures 1, 2, and 3 compare the performances of the hybrid
O(3, f) predictor and its optimizations with their basic O(3, f)
analogues. The hybrid predictor continuously outperforms
the basic version, especially for values of p lower than p =
100. Our intuition that the hybrid predictor can operate
with lower levels of future knowledge is confirmed.

We conclude that the best performing predictor is the the
hybrid O(3, 1) predictor. Note that when f = 1, the fallback
f and wildcard optimizations have no effect. Performance
gains ranging from 6% to 30% are achieved by using the
hybrid O(3, 1) predictor as opposed to the O(3) and O(2)
predictors. The amount of available future knowledge is the
key factor affecting performance improvement, though even
at moderate levels of future knowledge (p = 60), accuracy
improvements of roughly 14% are achieved.

Thus far, our simulations have assumed that for a given p,
all future knowledge available was correct. In reality, users
may not have completely accurate information in their calen-
dars. We define the parameter w to represent the percentage
of future events that are incorrect, i.e. the wrong location
noted in a user’s calendar or other contextual source. Fig-
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Figure 4: Effect of incorrect future information on
the basic and hybrid O(3, 1) predictors for p = 60

ure 4 shows the decline in median accuracy of the basic and
hybrid O(3, 1) predictors for p = 60 for various values of
w. Even when a significant portion of the future events are
incorrect (w = 25), the basic and hybrid O(3, 1) predictors
continue to outperform the O(3) and O(2) predictors. Only
when half of the reported future events are incorrect does the
use of future knowledge hinder the accuracy of prediction.

5.2 Traces with ping-pong effects removed
Up to this point, all simulations have been performed us-

ing the set of access point traces used in [7]. As noted
by [5], these traces contain many ping-pong transitions—
frequent re-associations between two or three access points
in a short period of time. The authors of [5] believe the
removal of ping-pong transitions from the traces provides
a more accurate portrayal of user movements across wire-
less networks. Given these concerns, we have processed the
Dartmouth traces in the same fashion as [5] to remove ping-
pong transitions and “OFF” locations.

We are interested in how a different and potentially more
realistic trace set will affect our hybrid O(k, f) predictor’s
performance. Figure 5 shows the improvement possible by
the hybrid O(3, 1) predictor when compared to a O(2) pre-
dictor. Optimally, a 95% performance increase is possible
when p = 100, but even for lower values of p = 80, 60, 40,
we see improvements of 73%, 52%, and 31%, respectively.
Note that these large improvements of the hybrid predictor
over the history-only predictor are a result of the poor per-
formance of the history-only predictor. Much of the regular-
ity that the history-only predictor relies on for its accuracy
disappears with removal of the ping-pong effects. These re-
sults demonstrate that the relative performances of future-
enhanced and history-only predictors depend not only on
the amount of future information available, but also on the
nature of the mobility patterns.

5.3 Location granularity
We evaluate how the hybrid O(k, f) predictor performs

with regard to various location granularities; the predictors
are run through trace sets representing movements between
buildings and between subnets across the internet.
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5.3.1 Reduced Dartmouth traces
We have processed the Dartmouth user traces so that

movements between access points in the same building are
coalesced into a single location bearing the building’s name.
The “OFF” location has also been eliminated. The result is
the Buildings trace set.

Figure 5 illustrates that with coarse-grained locations, the
hybrid O(3, 1) predictor continues to outperform the O(2)
predictor.

5.3.2 Mobitrack traces
We have implemented the Mobitrack agent to collect move-

ments across the Internet of four users over a seven month
period. For each user, the agent runs in the background
on the laptop, reporting to the server each time the laptop
associates with a new sub-net or loses network connectivity.

The significance of these traces is that they are host-
centric, offering a log of movements from the user’s view-
point. Other traces such as those collected on the Dart-
mouth campus wireless network are domain-centric as they
reflect all of the movements of users observed while on the
Dartmouth network only. For pervasive applications, host-
centric traces are critical in providing the application an
accurate picture of users’ total movement patterns.

Figure 5 reveals that both predictors—the O(2) and the
hybrid O(3, 1)—perform very well on the Mobitrack traces.
However, the hybrid O(3, 1) predictor still provides some im-
provement in median accuracy. While the number of users is
small and the trace lengths are relatively short (due primar-
ily to coarser location granularity), these preliminary results
indicate that host-centric movements tend to be more easily
predicted than domain-centric ones. This is likely due to the
high degree of regularity in work day patterns, where users
move regularly between office and home locations.

6. DISCUSSION & FUTURE WORK
Our evaluations show that the hybrid O(k, f) predictor

consistently outperforms the best history-only O(k) Markov
predictor. More importantly, the hybrid O(k, f) predictor
maintains good accuracy across varying location granular-
ities. We were surprised to find that larger values of f—
reflecting the use of more future information—and the wild-

card optimization were not helpful to performance. The in-
creased number of prediction misses due to the more strin-
gent matching criteria cannot fully explain why predictor
performance fails to increase even when the fallback f opti-
mization is incorporated to mitigate these misses. We spec-
ulate that an optimization providing greater weight to the
first future event as compared to subsequent future events
could potentially leverage larger f values more effectively, es-
pecially when the wildcard optimization is utilized. We also
plan to incorporate information about the scheduled times of
future events into the prediction schemes, which might help
to identify cases where the use of wildcards can improve pre-
diction performance. The element of time was not included
in our initial evaluation, primarily because we first wanted
to provide a direct comparison of future-enhanced Markov
versus history-only Markov predictors, which is not possible
if time is included. However, knowledge of scheduled event
times is clearly an untapped source of highly relevant infor-
mation, which has the potential to boost the accuracy of
future-enhanced prediction significantly.
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