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ABSTRACT

Millimeter-wave (mmWave) communications have been regarded as

one of the most promising solutions to deliver ultra-high data rates

in wireless local-area networks. A significant barrier to delivering

consistently high rate performance is the rapid variation in quality

of mmWave links due to blockages and small changes in user loca-

tions. If link quality can be predicted in advance, proactive resource

allocation techniques such as link-quality-aware scheduling can be

used to mitigate this problem. In this paper, we propose a link qual-

ity prediction scheme based on knowledge of the environment. We

use geometric analysis to identify the shadowed regions that sepa-

rate LoS and NLoS scenarios, and build LoS and NLoS link-quality

predictors based on an analytical model and a regression-based

approach, respectively. For the more challenging NLoS case, we use

a synthetic dataset generator with accurate ray tracing analysis to

train a deep neural network (DNN) to learn the mapping between

environment features and link quality. We then use the DNN to

efficiently construct a map of link quality predictions within given

environments. Extensive evaluations with additional synthetically

generated scenarios show a very high prediction accuracy for our

solution. We also experimentally verify the scheme by applying

it to predict link quality in an actual 802.11ad environment, and

the results show a close agreement between predicted values and

measurements of link quality.
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1 INTRODUCTION

With the emergence of various bandwidth-intensive applications in

recent years, e.g. virtual reality, online gaming, high-definition (HD)

video streaming and holographic projection, wireless data traffic has

been exponentially increasing, which places stricter requirements

on throughput, reliability, and latency of wireless networks. In

this regard, millimeter-wave (mmWave) communication is widely

regarded as a key technology for future wireless networks, which

can potentially achieve an order of magnitude higher data rate

as compared to communication at sub-6 GHz frequencies. Several

standardization efforts, such as IEEE 802.11ad/ay, are focused on 60

GHz mmWave communications for wireless local-area networks

(WLANs) [1, 2] with a goal of achieving multi-Gbps data rates to

satisfy bandwidth-hungry applications.

However, the shorter wavelengths at higher frequencies makes

mmWave networks susceptible to link failures or rapid link quality

decreases due to blockages in the environment. The susceptibil-

ity of links to blockage effects from obstacles such as walls and

furniture items makes it difficult to predict link performance (e.g.,

signal-to-noise ratio) since small changes in the distribution of

obstacles or the location of a client device can have a dramatic

impact on the quality of a mmWave link. In mmWave WLANs,

maintaining continuously high link quality is essential to meet the

requirements of emerging applications, thus having the knowledge

of link quality at locations of interest will significantly enhance

network management. To be specific, the quality of service experi-

enced by mobile users may be able to be significantly enhanced if

information about future link quality along the users’ routes is used

for proactive resource allocation [3, 4]. Typically, a high-quality

mmWave link must use a line-of-sight (LoS) path between sender

and receiver [5]. However, when objects made of highly reflective

materials such as metal are present in the environment, reflected

paths can be found to maintain high link quality even when no LoS

path exists between the two endpoints. Thus, a major difference in

link quality prediction for mmWave networks is that knowledge

of the environment, e.g., the locations and reflective properties of

obstacles, is essential to perform accurate prediction.

The fundamental difference between link quality in the mmWave

bands compared to lower frequencies is the stark difference between

LoS and non-LoS (NLoS) cases. The LoS path component is pre-

dominant over NLoS components even in the presence of obstacles,

and therefore the link quality under these scenarios is typically

high and mainly dependent on the separation distance between the

transceiver. Therefore, the primary challenge is to predict link qual-

ity under NLoS conditions where, as mentioned earlier, the quality
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is highly dependent on the locations of surrounding obstacles and

their reflectivity properties.

In this work, we propose a link quality prediction scheme for

mmWave WLANs that takes into account the environment charac-

teristics. We first use a geometric method to separate the LoS and

NLoS areas in a given network scenario based on knowledge of

obstacles’ sizes and locations. We then propose LoS and NLoS link-

quality predictors based on an analytical model and a regression-

based approach, respectively. To be specific, for the more challeng-

ing NLoS scenarios, we generate a large data set with obstacles of

varying sizes, locations, and material properties in different scenar-

ios. Then, a ray-tracing technique is used to estimate ground-truth

data on link quality for different locations in each data set instance.

Measurement studies have demonstrated that the signal profiles

produced by ray-tracing techniques are quite close to real measure-

ments in mmWave scenarios [6]. Based on this, we use these data to

train an artificial neural network to predict link quality given an ob-

stacle scenario and user location. The derived link quality predictor

is then used to construct a map of link quality predictions within

the intended mmWave access point (AP) coverage area. Note that

our prediction approach addresses blockages due to static obstacles

to permit link quality prediction several seconds into the future to

facilitate proactive resource allocation. Existing techniques address

short-term predictions due to environment dynamics such as body

blockages [7, 8] but allow less time for optimizing resources to deal

with link quality changes.

The main contributions of this work are as follows.

• We propose the design of a mmWave link quality prediction

framework that includes predictors for both LoS and NLoS lo-

cations. This framework can be used to efficiently construct

a complete map of link quality predictions within a given

environment, which could provide a basis for the develop-

ment of anticipatory network management with proactive

resource-allocation schemes.

• We develop for the first time a method to synthetically gen-

erate high-quality training data covering a wide range of

fine-grained WLAN scenarios, which is then used to develop

a machine learning and regression-based approach to link

quality prediction for the challenging NLoS case. This pro-

vides the first link quality prediction scheme that is capable

of predicting quality at arbitrary locations, i.e. not only at

locations that have been previously visited and measured.

• We perform both simulations and real-world experiments to

evaluate our link quality prediction scheme, which shows

very good agreement with both synthetic data and actual

measurements. This demonstrates that mmWave link qual-

ity can be accurately predicted through the use of detailed

environment information.

2 RELATED WORK

Recent studies mainly considered the problem of blockage predic-

tion with the aim of predicting when blockages will occur, and to

proactively initiate countermeasures [9]. For example, [10, 11] used

sub-6 GHz channels to predict blockages in the mmWave bands,

and [7, 12] adopted recurrent neural networks to learn the spatio-

temporal correlation of blockages. Furthermore, [13–15] used the

visual information from cameras or videos to increase the accuracy

of such predictors, where the effective prediction interval is limited

to the duration of these visual features. A limitation of these ap-

proaches is that blockages do not always cause a substantial drop

in mmWave link performance as sometimes opportunistic NLoS

paths can be found that maintain a high link quality, e.g. when

highly reflective obstacles are present. By contrast, our work herein

focuses on link quality prediction since that is what drives network

management decisions, e.g., AP association/handover and resource

allocation.

Link forecasting involves predicting the quality and/or specific

parameters of thewireless channel at a given location. Conventional

approaches, e.g. [16, 17], measure the channel state information

(CSI) of neighbouring APs to estimate link quality, which is an

appropriate technique for sub-6 GHz frequencies. However, CSI-

based link quality prediction is not a suitable approach in mmWave

networks since the instantaneous CSI is not always attainable and

applicable to predict the link quality at new locations. Several prior

works predict path loss using analytical methods, e.g. [18] uses

information about height and location of nearby buildings to pre-

dict the shadowing component of path loss, while other works,

e.g. [19, 20], use path loss measurements at certain locations to

predict path loss at other locations for conventional cellular or ad

hoc networks. The latter approaches, however, are not suitable for

mmWave-specific networks especially under NLoS conditions. As

link quality is strongly dependent on client location, some prior

works have considered joint prediction of link quality and mobility,

e.g. [21, 22].

Several papers have discussed mmWave-specific link quality

prediction [8][23][24]. In [8], the authors use a long short term

memory based method to predict link quality from measurements

in past time steps but the predictions work only for the next time

step. Longer-term predictions based on mobility patterns and fixed

obstacles are considered in [23] using a measurement-based ap-

proach. This work is discussed in detail below. In [24], a data driven

model was employed to parameterize the path loss for mmWave

channels in a given environment. However, this work only predicts

link quality from separation distance based on the estimated pa-

rameters and, therefore, it does not account for the specific obstacle

environment at a given location as our prediction model does.

The primary challenge we consider herein is to predict link

quality for mmWave networks under NLoS conditions, where the

quality is highly dependent on the locations of surrounding ob-

stacles and their reflectivity properties. The only existing work

we are aware of that addresses this problem is [23]. As mentioned

earlier, this work adopts a measurement-based approach where link

quality measurements are taken as clients move around to different

locations and then those measurements are used as predictions for

future transmissions at the same locations. While even a very small

change in the locations could cause a big difference on the quality

of mmWave link, it is impractical to measure every location of a

scenario beforehand, thus this approach suffers from not being able

to predict link quality at unknown locations. Also, it requires a

period of preparation time to collect current measurement data for

future prediction. By contrast, our approach can predict link quality

at any location by capturing the details of the environment such

as locations of obstacles and their reflectivities as well as room/AP
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configurations. This then enables a complete map of link quality

predictions to be efficiently constructed within a given scenario.

3 SYSTEM OVERVIEW

In mmWave WLANs, the diffraction ability of mmWave signal

is much weaker and less reliable due to its smaller wavelength,

which means that deployed objects in the environment have a

significant impact on link performance. While these objects are

prone to become obstacles blocking high-rate LoS links between

APs and users, they also can act as reflectors to create alternative

path components that might be useful when LoS transmission is

blocked.

LoS path

Blocked LoS path

NLoS path

Blocked NLoS path

Figure 1: Path components in WLAN environments.

Motivating Example: Fig. 1 shows potential path components

between an access point and user device, including blocked and

unblocked LoS/NLoS paths. While the quality of a link under NLoS

condition could drop substantially as compared to a LoS path, the

AP can potentially avoid the blockage if there is a highly-reflective

object nearby, which allows a high link quality to be maintained.

However, reflection paths are also not reliable, because they may

be blocked by other surrounding objects. Thus, the complex path

distribution makes link quality extremely sensitive to node loca-

tions and environmental characteristics, e.g., room configuration,

geometrical layouts and sizes as well as reflectivities of objects.

The objective of this work is to construct an accurate mapping of

the link quality at all locations within a given scenario based on

knowledge of the deployed environment and without an extensive

measurement campaign.

Technical Challenge: The major challenges in solving this prob-

lem are: 1) Due to the stark difference between link quality in LoS

and NLoS cases in mmWave bands, the knowledge of the envi-

ronment is essential to perform accurate prediction. However, it

is analytically intractable to determine link quality from environ-

ment details; 2) Although machine learning techniques could be

used to make link quality predictions, it is challenging to collect a

sufficient volume of training data in real environment covering a

complex range of WLAN scenarios. In particular, collecting large

labeled datasets in the real world is prohibitively expensive and

even impractical over a wide range of scenarios as it would require

enormous human effort and complex infrastructure to accurately

capture environment features and link quality; 3) Considering the

potentially dramatic variation on link performance with even a

small change in the location of a transmitter or receiver, there is

no clear way to predict link quality at new locations that do not

have prior measurements, especially being able to efficiently derive

a complete map of link quality including locations that have not

been previously visited.

3D-SRS

algorithm

Shadowing-region map:

LoS area vs. NLoS area

Link-quality map

LoS predictor:

Derived analytical model

NLoS predictor:

Environment-aware DNN model

Gridding scheme

...

...

Figure 2: Architectural overview of environment-aware link

quality prediction.

Solution Overview: Fig. 2 gives an overview of our environment-

aware link quality prediction (ELP) framework that addresses the

above challenges. First, a 3-dimensional shadowing-region search

(SRS) approach is proposed to determine the LoS and NLoS areas

of a given network scenario. Second, the region of the entire en-

vironment space is partitioned into groups of LoS and NLoS grid

locations, which are then fed into the analytical model and trained

deep neural network (DNN), respectively. In particular, we design

a novel approach to generate high-quality network data for both

training and evaluations. After obtaining the predicted link quality

at each location, the complete set of link-quality maps are generated

for deployed APs and all possible device heights. It is worth noting

that the predicted link-quality maps pave the way to design antici-

patory networking approaches for future wireless systems [25], e.g.,

performing proactive AP association/handover combining the link

quality prediction with the user mobility information, and/or allow-

ing the scheduler to adaptively schedule links when their quality

is expected to be high. We will leave these promising directions

as the future work, and in what follows, we discuss the details of

technical components in our ELP framework.

4 LOS/NLOS AREA DETERMINATION

The fundamental difference between link quality in the mmWave

bands compared to lower frequencies is the sharp difference be-

tween the LoS and NLoS cases. As a first step shown in Fig. 2, we

use geometric analysis to identify the shadowed regions in an area

that correspond to definite LoS/NLoS cases. Based on knowledge

of the sizes and locations of obstacles (i.e., furniture items) in the

indoor environment, we propose a 3D shadowing-region search

(3D-SRS) approach to efficiently determine the LoS and NLoS areas

in a given scenario, where a set of shadowing-region maps (see

Fig. 3) are generated with respect to �푁�푎 APs and �푁�푏 height bases.

Algorithm 1 summarizes the steps of 3D-SRS algorithm. First, a

floor plan of room �푆 at each device height basis ℎ�푖 is partitioned

into �푁�푔 equal-sized grids with the gridding length of �푙�푐 , where⋃�푁6

�푖=1 �푔�푖 = �푆 and
⋂�푁6

�푖=1 �푔�푖 = ∅. Considering all �푔�푖 in �푆 at different

device heights (Lines 1-5), the 2D grid set �퐺 and the shadowing-

region (SR) mapmatrix�푀�푎�푝 are initialized. Next, the virtual heights

of obstacles and AP are calculated with respect to different device

height bases (Lines 7-8), and then we use the geometric analysis
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Figure 3: The schematic of LoS/NLoS areas determination.

to determine the shadowing-grid set �푆�퐺�푖 given the information of

obstacles and AP (Line 9). This geometric algorithm is based on a

grid-based shadowing search (GSS) method [26], where the main

idea is to check if the center point of a grid element exists in a

shadowing polygon formed by an AP and known obstacles. To find

all non-overlapped shadowed grids caused by different obstacles,

the shadowed-grid set of each obstacle is first derived, and then the

intersected grids over different shadowed-grid sets are eliminated.

After traversing all known obstacles, the union of �푆�퐺 is obtained.

Finally, we add these shadowed (i.e., NLoS) grids into �푆�푅-�푀�푎�푝 for

each height basis ℎ�푖 (Lines 10-13). The algorithm is terminated after

all height bases are traversed.

Algorithm 1: 3D-SRS: 3D Shadowing-Region Search

Input: �푂�푏�푠 , �푙�푐 , �푝�푟�푚, �푁�푔 , �퐻 , �푎�푝
Output: �푆�푅-�푀�푎�푝

1 for each height (ℎ�푖 = �퐻�푚�푖�푛 + �푖 ∗ �푙�푐 ) & (ℎ�푖 <= �퐻�푚�푎�푥 ) do
2 �퐺 (�푖, :) = [all zeros in floor plan at height ℎ�푖];

3 ▽ init 3D map with all LoS grids

4 �푆�푅-�푀�푎�푝(�푖 ,:) = ®�푣(all zeros, size = �푁�푔);

5 end

6 for each height ℎ�푖 do
7 �푂�푏�푠 .height = max{�푂�푏�푠 .height - ℎ�푖 , 0}; ⊲ change the

device height basis
8 �푎�푝 .height = �푎�푝 .height - ℎ�푖 ; ⊲ get the virtual height of

AP w.r.t device height basis
9 �푆�퐺�푖 = FindSGset(�푂�푏�푠, �푎�푝,�퐺, �푙�푐 ); ⊲

⋃
�푚∈�표�푏�푠

�푆�퐺�푖,�푚

10 for each �푗 ∈ �푆�퐺�푖 do

11 �푘 = �푆�퐺�푖 ( �푗);
12 �푆�푅-�푀�푎�푝(�푖 , �푘) = 1; ⊲ NLoS grid location

13 end

14 end

15 return �푆�푅-�푀�푎�푝;

5 LINK QUALITY PREDICTION

After determining LoS and NLoS scenarios, we present our link

quality prediction scheme that separates LoS and NLoS cases. We

first introduce an analytical method to estimate the link quality

in LoS cases, and then propose a regression-based approach to

predict link quality at NLoS locations by capturing the details of

the environment.

5.1 LoS link-quality predictor

Aswe know, LoS path component contributes to the majority of link

quality at mmWave frequencies (e.g., 60 GHz), which is predomi-

nant over NLoS components in the presence of obstacles. Therefore,

the link performance under these scenarios is not highly depen-

dent on surrounding obstacles, but instead, depends more on the

distance between sender and receiver. Thus, we perform LoS link-

quality predictions based on a 3GPP mmWave channel model with

parameters chosen for indoor LoS scenarios [27]. To be specific, the

path-loss model is derived as:

�푃�퐿 = 32.4 + 17.3 · log10 (�푑3�퐷 ) + 20 · log10 (�푓�푐 ) + �푆�푓 , (1)

where �푑3�퐷 is the separation distance between the transceiver, �푓�푐 is

the center frequency normalized by 1 GHz, and �푆�푓 is the shadowing

factor that follows the normal distribution N (0, �휎�푆�퐹 = 3.0 dB). In

this way, signal-to-noise ratio (S) can be further derived to quantify
the link quality as:

S = �푃�푡 ·�퐺�푡 ·�퐺�푟 · (10�푃�퐿/10 · �푁�푇 )−1, (2)

where �푃�푡 is the transmit power, �퐺�푡 and �퐺�푟 are antenna gains at

transmitter and receiver, respectively, �푃�퐿 is the path loss in Eq. (1),

and �푁�푇 is the power of thermal noise. For any given LoS scenarios,

we use this log-distance based LoS predictor to estimate the link

quality in mmWave WLANs. We also evaluate the prediction per-

formance of this analytical model with both simulations and actual

measurements in Sec. 6-7.

5.2 NLoS link-quality predictor

When no LoS path exists, the quality of a mmWave is highly depen-

dent on the node placements, locations of surrounding obstacles

and their reflectivity properties. Treating these environmental pa-

rameters as independent variables and link quality as the dependent

variable, a regression-based prediction approach naturally fits this

situation. Accordingly, we develop and evaluate a machine learning

and regression-based approach to prediction for these cases. Briefly,

we first explore a framework to generate a large training data set

with synthetically generated obstacles of varying sizes, locations,

and material properties over a wide range of WLAN scenarios. Sec-

ond, a mmWave ray tracer is used to produce ground-truth values

of link quality at different locations of each scenario. Finally, we

use this data to train a deep neural network (DNN) to predict link

quality under NLoS scenarios.

1) Dataset generation framework

Here we introduce the fine-grained dataset generation (FDG)

framework as shown in Fig. 4, which generates a large amount of

high-quality training data across a wide range of WLAN scenarios.

Specifically, we first randomly generate various scenario cases

with the following features: 1) the lengths, widths, and heights of

rectangular room follow uniform distributions L�푟 ∼ U(10.0, 20.0),

W�푟 ∼ U(5.0, 10.0), and H�푟 ∼ U(2.4, 4.5); 2) Objects deployed in

the room are modeled as cuboids and placed on the floor, where

the center of each obstacle follows a Poisson point process with a

specific density �휆 ∼ U(0.04, 0.3), the widths, and lengths follow the

truncated normal distributions W∼ TN (0.56, �휎�푤 , 0.25, 1.25) and L∼
TN (1.08, �휎�푙 , 0.5, 1.75), where �휎�푤 ∼ U(0.01, 0.38) and �휎�푙 ∼ U(0.08,

0.58). Their heights and orientations follow uniform distributions
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mmWave ray

tracer

Random NLoS cases...

...

Input:

environment
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Append reflectivity values for

obstacles, walls, and floors

Q-D channel model
Output:

SNR values

Figure 4: FDG framework overview.

Θ ∼ U(0, �휋 ) and H ∼ U(0.3, 2.3)); 3) each scenario case includes

around 50 NLoS user locations, where each randomly-located client

(i.e. wireless device) is viewed as a random point, and its height

follows the uniform distribution U(0.1, 2.0). These parameters are

derived by using a real-life office/lab environment as a guiding

example, and all length units of parameters are in meters.

Second, we feed all generated scenario cases into our quasi-

deterministic (Q-D) mmWave ray tracer [28], and do the following

procedures. First, we assign the reflectivity values for obstacles,

walls and floor in each scenario, where every obstacle material’s

reflection loss (dB) �푅�표 follows the uniform distributionU(0.5, 30.0),

the reflection loss (dB) of wall or floor is randomly chosen from the

set {5.0, 15.0, 25.0}. The reflectivity parameters are derived based

on the actual experiment measurements at 60 GHz from [29–31].

Next, these assigned reflectivity values are integrated with the

environment information generated from the first step, thus all

environment features of each scenario is obtained. In parallel, Q-

D ray tracer is used to capture the geometrical properties of the

channel for each transceiver and generate the profile of delay �휏 ,

path gain, angle of departure (AoD) �휃�푡 , angle of arrival (AOA) �휃�푟 ,

etc, for the path components in each NLoS case. Any small change

in the location of a node translates into changes in these captured

profiles.

Lastly, the output results from the ray tracer are directly used as

input to a Q-D mmWave channel. Specifically, the Q-D mmWave

channel can be characterized using a set of strong reflections and

scattering rays, and the channel impulse response is defined as:

ℎ(�푡) = ∑
�휏

∑
�휃C

∑
�휃A

�푌�푡�푥 (�휃�푡 ) · �푌�푟�푥 (�휃�푟 ) · ℎ(�푡, �휏, �휃�푡 , �휃�푟 )

=

�푁−1∑
�푖=0

10−�푃�퐿8/20�푒 �푗�휙8 · (�푌�푟�푥8 · �푌�푡�푥8 ) · �푒
−�푗2�휋 �푓 �휏8

,
(3)

where �푁 is the number of generated rays from ray tracer, �푃�퐿�푖 (dB)

and �휙�푖 are the path loss and phase shift of ray �푖 , and �푌�푡�푥8 and �푌�푟�푥8
are the radiation pattern of the transmitter and receiver array at ray

�푖 , respectively. To be specific, a power spectral representation of the

60 GHz signal is implemented, where the entire channel is divided

into a number of equally spaced sub-bands, and each of them has

the size of 5.156 MHz corresponding to the sub-carrier spacing

for an orthogonal frequency division multiplexing (OFDM) PHY,

while in single-carrier (SC) PHY mode, the power is divided equally

across all the sub-bands over the entire bandwidth. With the input

of the Q-D trace files from mmWave ray tracer, we parse these path

profiles to obtain the spatial matrix between every transceiver pair.

Specifically, the received power per sub-band �푅�푥�푖 is computed and

turned into a scalar value to represent the total energy apparent

to the receiver by applying RF filtering as in [32], thus the overall

received power is obtained by accumulating �푅�푥�푖 over all sub-bands,

and SNR value is further derived for each NLoS case.

Based on this FDG framework, we can effectively generate a

large amount of training data including both detailed environment

characteristics and SNR values, which is then used in a regression-

based prediction model, discussed next.

2) SNR regression: a deep learning framework

We propose a DNN-based approach to predict NLoS link quality

in mmWave WLAN, which takes into account the environment

details as input features, and the problem to predict link quality

for a NLoS scenario case is represented and solved in a supervised

fashion.

a) Input feature and output label: We consider the availability of

environment information including room configuration, obstacle

sizes and locations, reflectivity information, the location of AP and

client. The input data of DNN model is presented in the format

of a concatenated vector �푉�푒 including all environment details. As

shown in Eq. (4), for each sample case, the 3D Cartesian coordinates

are used to indicate the client position U, AP position A, and

room size R.N�표 represents the number of obstacles and O includes

the locations, sizes, as well as reflectivities of obstacles. We use

the zero-padding method to flatten the obstacle information O
in different scenario cases. Note that the maximum number of

generated obstacles �푁�푚 is equal to (�휆�푚 · �푅�푙< · �푅�푤<
), where �휆�푚 ,

�푅�푙< , and �푅�푤<
are the maximum obstacle density and room’s length

and width as defined in Sec. 5.2-1. By factoring in all environment

details, the input feature vector V�푒 is obtained by concatenating

above environment information with the size of (6�푁�푚 + 12). On
the other hand, the output label (ground truth) S�푟 used in DNN

model is represented in the format of a SNR value. Finally, we

post-process the input features and output values through a max-

min normalization, which aims to eliminate the impact of scale

differences among different features on the regression model.

V�푒 = { U(�푥,~,�푧) , A (�푥,~,�푧) , R (�푥,~,�푧) , N�표 , O1(�푥,~,�푤,�푙,ℎ,�푟�푒 �푓 ) , ...,

O�푛−1(�푥,~,�푤,�푙,ℎ,�푟�푒 �푓 ) , O�푛 (�푥,~,�푤,�푙,ℎ,�푟�푒 �푓 ) , W�푟�푒 �푓 , F�푟�푒 �푓 }.
(4)

b) Network configuration: We use a deep neural network with the

number of hidden layers and neurons configured to work across

different network scenarios. The flattened input feature vectorV�푒

of size �푛�푖�푛 (�푁�푚 = 60) is fed to a fully connected network with 4

hidden layers as shown in Fig. 5. The �푙�푡ℎ hidden layer has a total of

�푛�푘 neurons. The �푘�푡ℎ neuron in (�푙 − 1)�푡ℎ layer is connected to �푗�푡ℎ

neuron in �푙�푡ℎ layer with a weight of�푤�푙
�푗�푘
. �푏�푙�푗 represents the bias of
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Figure 5: Model overview with data inputs (green), neural network model (blue), and output (red).

the �푗�푡ℎ neuron in the �푙�푡ℎ layer. The activation of the �푗�푡ℎ neuron in

the �푙�푡ℎ layer, i.e. �푎�푙�푗 , is calculated through the forward propagation

rule as:

�푎�푙�푗 = max{
∑

�푘

�푤�푙
�푗�푘
�푎�푙−1
�푘

+ �푏�푙�푗 , 0}, (5)

Next, we use a sigmoid layer before the output layer to transform

the output logits to normalized values. The model is trained through

the backpropagation rule using a mean-squared error loss function.

With the available training data bank,�퐷�퐵 = {(V�푒1 ,S�푟1 ), (V�푒2 ,S�푟2 ),
. . . (V�푒# ,S�푟# )}, of �푁 samples, the loss function is minimized us-

ing adaptive moment estimation optimization algorithm [33]. In

particular, a batch of �퐵 training samples is randomly selected out

of �푁 training NLoS sample cases, and the weights�푤 �푗 and biases �푏 �푗
are updated through the following backpropagation rule:

�휃�푡+1 := �휃�푡 −
�훼 ·�푚�푡√
�푣�푡 + �휀

(6)

�푚�푡 =
�훽1�푚�푡−1 + (1 − �훽1)�푑�휃

1 − �훽1
�푡

, �푣�푡 =
�훽2�푣�푡−1 + (1 − �훽2)�푑�휃2

1 − �훽2
�푡

(7)

where a fraction of the gradient in the previous iteration �푡 is re-

tained with the coefficient of momentum, and the hyper-parameters

�훽1, �훽2 and �휖 are set as 0.9, 0.999 and 10
−8, respectively. The learning

rate �훼 is initialized as 0.05 and decreased over time with decay

factor of 0.9 for each 2,000 iterations, which aims to optimize pre-

diction performance and increasing the convergence rate of the

algorithm. In addition, the batch normalization technique is used

to accelerate our deep network training with standardizing V�푒 to

a layer for each batch, which dramatically reduces the number of

training epochs required to train our predictor and also provides

some regularization for reducing generalization error.

Note that the intuition behind this learning solution is that

mmWave link quality is discoverable through the detailed environ-

ment information. Our properly-constructed network architecture

with all tuned hyper-parameters is capable of learning from differ-

ent scenarios and performing accurate prediction on link quality in

unseen scenarios.We demonstrate this through detailed evaluations

in Sec. 6.

In summary, based on the proposed link-quality predictors that

separate LoS and NLoS scenarios, all predicted values at different

locations and device heights can be eventually integrated into a

combination of 2-dimensional link-quality maps as shown in Fig. 2.

Note that, although the offline training process for the DNN model

is time consuming due to the large amount of data needed to achieve

good prediction accuracy, the online prediction process is fairly

fast for both the analytical LoS model and trained NLoS regression

model, thereby making our ELP solution less time-demanding. We

report on link-quality map construction time in the next section.

6 EVALUATION RESULTS

In this section, we evaluate the performance of our approach to

predict link quality inmmWaveWLANs, which includes predictions

for both LoS and NLoS scenarios.

6.1 Performance of LoS link quality predictor

First, we evaluate the performance of our analytical LoS prediction

model. We generate various LoS cases and obtain the ground-truth

SNR values by using the mmWave ray tracer and Q-D channel

realization. Then, we use the approach derived in Sec. 5.1 to estimate

the link quality for each LoS case, and the results are reported in

Fig. 6.

Fig. 6 shows the comparison between the predicted SNR and

ground truth at different user locations. As expected, we observe

that link quality values are fairly high under LoS conditions, falling

within a narrow range of 40–50 dB. On the other hand, it is noted

that the gap between the predicted results and ground truths is quite

small – the average SNR results are 45.54 dB and 46.12 dB, respec-

tively (power of thermal noise is 7.04 × 10−12 Watts). This result

demonstrates the feasibility of the log-distance based model to esti-

mate link quality in LoS scenarios of mmWave WLAN, because the

LoS path dominates the link quality at mmWave frequencies, which

makes it mainly dependent on the separation distance between the

sender and receiver rather than on the surrounding obstacles.
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Figure 6: Link quality prediction comparison for LoS cases.

6.2 Performance of NLoS link quality predictor

Here, we evaluate our link quality prediction approach for the chal-

lenging NLoS cases, which are highly dependent on environment

characteristics. We spent several months generating 600,000 data

samples using our dataset generator (see Sec. 5.2-1)1, split the data

1Note that this data generation time is not a serious issue, because it only has to be
done once to generate the model and then it can be used as many times as needed for
different room and obstacle environments.
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into two sets, and conducted cross validation, where the training

set was comprised of 90% of the data to learn the neural network

parameters, and the remaining 10% of the dataset was used for vali-

dation and testing. We used TensorFlow and an NVIDIA P100 GPU

to implement our DNN-based regression model, which was then

used to predict the link quality in new instances, and we calculated

the performance difference ratio (PDR) to measure the difference

between the predicted values and ground truths. The PDR is de-

fined as |S�푝�푟�푒�푑 − S�푡�푟�푢�푡ℎ |/(Smax − Smin), where the denominator

represents the difference between the maximum SNR and minimum

SNR observed across all test data samples.
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Figure 7: Prediction accuracy vs. number of training epochs.

First, we evaluate the prediction accuracy with varying error tol-

erance rate (ETR), where the predicted link qualityS�푝�푟�푒�푑 is accepted

as an accurate result when the PDR is less than the given ETR. Fig. 7

shows the prediction accuracy vs. the number of training epochs

for different ETRs. As expected, the accuracy becomes higher as the

number of epochs used to train the DNN model increases, where

the prediction accuracy can achieve 93.86%, 97.89% and 98.54% for

different ETRs with a sufficiently large number of epochs. On the

other hand, a larger ETR provides a higher prediction accuracy

and converges faster, which indicates that most predicted values

can efficiently approximate the ground truth during the regression

process.

To show finer-grained results, we evaluated the prediction ac-

curacy vs. ETR, where the neural networks were trained until the

accuracy performance of the test set did not improve for 300 epochs.

We also show how many epochs were needed to reach the given

accuracy. We note that a prediction accuracy of around 94% is

achieved for an ETR of 0.01, which means that 94% of predicted

values have a PDR of less than 0.01 as compared to the ground truth,

which corresponds to a SNR difference of only 0.5 dB. In addition,

almost 99% of predicted values can achieve a PDR of 0.035, which

means the prediction is within 1.75 dB of the ground truth value.

Second, we evaluate the performance of our predictor for dis-

crete instances within a mmWave WLAN. Here, we also report

results for the log-distance based (LD) model from 3GPP Release 16

[27] as a comparison point. Fig. 9 shows the link quality results at

different user locations. As compared to the results of LoS cases in

Fig. 6, we observe that link quality fluctuates within a wider range

due to its high environment dependency. When we examine the

results of 3GPP LD model, the estimated link quality typically falls

within a relatively narrower range of 15–35 dB, and over 70% of

data instances underestimate the link quality in evaluated cases.
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Figure 8: Prediction accuracy vs. ETR.

However, the predicted link quality from our predictor matches

the ground-truth data well since it accounts for the environment

characteristics.
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Figure 9: Link quality prediction comparison.

Lastly, we investigate the relative importance of different envi-

ronment features on link quality prediction. Here we estimate the

feature importance by using a weight-based analysis method [34],

where the percentage of hidden nodes’ weights attributable to a

particular input node are computed to measure the importance of

that input feature.
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Figure 10: Importance of different environment features to

NLoS link quality.

Fig. 10 shows the feature importance vs. different environment

features, and we conclude several key insights on which features

have more impact on the link quality variation under NLoS condi-

tions: 1) The position of the obstacle is the most impactful factor for

NLoS link quality, because a small change in any obstacle’s location

could easily block or create the potential path components that

impact overall link quality. 2) Considering the obstacle’s dimen-

sions, the height has more impact than the length and width. This

is reasonable since APs are deployed on the ceiling so that taller

obstacles are closer to the AP, which could more easily impact the

distribution of NLoS components. 3) Comparing the reflectivity
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of obstacle, wall and floor, we observe that the reflectivity of wall

and floor are more impactful, and this is because most stronger

NLoS paths, e.g., the first-order reflection path, usually bounce off

the wall or floor, as validated in [35], which makes their material

reflectivities more critical in determining the overall link quality

performance.

6.3 Link-quality map construction

In this part, we evaluate the performance of our end-to-end frame-

work (see Fig. 2) to produce link-quality maps for a given network

scenario. Fig. 11(a) shows a WLAN scenario with several obstacles

and two APs deployed. We run our ELP framework to generate

2-dimensional link-quality maps for each AP and each possible

device height. Fig. 11(b) and Fig. 11(c) show the two corresponding

link-quality maps for a device height of 0.8m. With the maps of

link quality, one can easily find the link quality at any location of a

given scenario.

It is worth noting that, using our ELP framework, only 10.58

minutes are needed to generate the complete set of link-quality

maps for two APs and all possible device heights (with gridding

length of 0.1m) in the evaluated scenario.2 In contrast, to generate

one 2-Dmap, i.e. for one AP and one device height, a full ray-tracing

calculation took more than two weeks. Therefore, constructing all

maps using ray tracing is not practical since this would require

more than 3 years of computation time for the given scenario.

(b) (c)

(a)

AP1

AP2

Figure 11: (a) Scenario example; (b)-(c) Link-quality maps for

AP1 and AP2 (device height is 0.8m).

6.4 Discussion of required environment
information

Our link quality predictor requires the input of some environment

details, including locations, sizes, and material reflectivities of sur-

rounding objects in a given scenario. In practice, objects’ locations,

sizes, and material types could be obtained in a variety of ways,

e.g., through camera-based sensing, but it is non-trivial to get the

2The running time is evaluated on an Intel(R) Core(TM) i5-6200U 2.3GHz CPU work-
station with 2 cores and 4 logical processors.

exact reflectivity values of different objects. The reflectivity index

can be estimated based on the knowledge of object material types

from reported measurements, e.g. [29–31]. Because these values

will not always match the actual reflectivities of objects in a given

environment, in this subsection, we evaluate the robustness of our

prediction framework to deviations of the reflectivity values.

Here, we add random noise to the reflectivity values of obstacles,

walls, and the floor. The noise, which follows a normal distribution

N∼(0, �푣�푎�푟 ) in dB units, is added to the actual reflectivity loss chosen

as described in Sec. 5.2. The disturbed reflectivity values combined

with other required information are fed into our predictor while

the undisturbed values are used for the ground truth calculation.

We re-ran the accuracy evaluations from Sec. 6.2 to see how the

variation of reflectivity values affects the link quality predictions.

Fig. 12 shows the prediction accuracy vs. different variances for

the reflectivity noise values. Compared to the baseline with 0 dB

variance, we observe that there is almost no impact on the accuracy

performance with 1 dB of noise variance. When increasing �푣�푎�푟 to

3 dB and 5 dB, the accuracy performance only degrades 1.6%–3%

for ETR of 0.01 and 0.5%–2.5% for ETR of 0.03, respectively, which

validates the robustness of our prediction method to the reflectivity

inaccuracies. Thus we conclude that our proposed approach can

tolerate reasonable deviations on the estimated reflectivity values,

and maintain a good prediction accuracy without the need for exact

reflectivity information.
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Figure 12: Prediction accuracy vs. reflectivity variance.

6.5 Discussion of impact of dynamic obstacles

Our proposed prediction approach deals with blockages due to

static obstacles, which aims to permit link quality prediction several

seconds into the future in a relatively stable environment. To inves-

tigate the feasibility of our predictor in scenarios with low-density

dynamic obstacles (i.e., humans), here we conduct an evaluation

with randomly moving humans inside of a room to see how they

affect prediction accuracy. To be specific, we adopt the obstacle and

mobility models of humans from [36], and then evaluate 5 different

scenarios with a total of 500 locations. In each case, we evaluate

the link quality variation due to moving obstacles at specific time

instances, where the variation is quantified as the percentage dif-

ference between our predicted link quality and the ground-truth

link quality with the human obstacles.

Fig. 13 shows the histogram of link quality variation under low

human obstacle densities �휆ℎ (/m2). We observe that the gap between

our link quality prediction and ground truth remains unchanged or

varies within 2% (i.e., variation interval is [0, 2%]) for 80%-95% of

both LoS and NLoS cases when �휆ℎ is less than 0.1 (i.e., less than 10
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humans in the 12m×8m room). This result validates the potential

use of our prediction method in common office/lab scenarios with

a relatively low density of dynamic obstacles.

To handle real-time link quality prediction in environments with

a higher density of moving obstacles, our prediction approach could

be augmented with dynamic prediction techniques, e.g. [7, 8] that

address short-term predictions due to environment dynamics such

as body blockages. To be more specific, based on our predicted

link-quality map (e.g., Fig. 11), short-term prediction could be used

to dynamically “cool down” “hot” areas (ones with higher link

qualities) where dynamic obstacles are present, whereas in lower

link-quality areas, the predictions would remain unchanged since

moving obstacles will not help improve the link quality that has

already been deteriorated by static obstacles. We leave a detailed

evaluation of this augmented prediction approach as future work.

D
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Figure 13: Distribution of variation in predicted and ground-

truth link qualities during human obstacles in (a) LoS cases

and (b) NLoS cases.

7 EXPERIMENTAL VALIDATION

To further validate the performance of our link quality prediction,

we performed real-world measurements of link quality in an actual

network environment and compared them to the predicted values.

Fig. 14(a) and (b) give an overview of the laboratory setup.

Specifically, we conducted the experimental measurements in a

10m×6m×3m laboratory environment, and a TP-link Talon ad7200

router [37] mounted on the ceiling was used as the AP. The Talon

router contains the QualcommQCA9500 chipset, which implements

the IEEE 802.11ad standard. Then, we used an Acer Travelmate

P648 laptop [38] as a client device to communicate with the AP. We

measured the PHY-layer link quality (SNR) at different locations

using the Linux iperf3 and iwconfig tools. The entire laboratory

scenario was precisely modeled with a number of cuboid-based

obstacles as shown in Fig. 14(c), and we extracted the required

environment features as the inputs to our link-quality predictor,

which then generated the predicted values. We considered 20 user

locations that consisted of 5 LoS cases and 15 NLoS cases. The per-

formance comparisons between the prediction and measurement

are reported in Fig. 15 and Fig. 16.

Fig. 15 shows the results of LoS scenarios, and it is observed that

the predicted values are very close to the actual measurements at

different LoS locations, with differences of only around 0.5–2 dB.

This result is not surprising since the link quality is consistently

high when there is a LoS path between the AP and the client.

For the NLoS cases in Fig. 16, we observe that the link quality is

typically different at each location due to the changes in surround-

ing obstacles, but our predicted results can still achieve a good

agreement with the measurement data. For instance, at locations

#1, #5 and #12, high link quality is predicted since the client is

located near a metal cabinet in the scenario. While extremely low

link quality is predicted and observed at locations #2, #8 and #9

due to the long distance and lack of highly reflective objects nearby.

Here the predicted values fairly consistently overestimate the link

quality by about 3–5 dB, and we think this is due to the lack of a

precise transmission power given in the specifications of the Talon

AP used in the measurement. For prediction purposes, we chose

a middle value within the specified transmission power range to

train our predictor. However, with a calibration of around 4 dB, the

differences can be reduced to achieve very close agreement with

the actual measurement results.

8 CONCLUSION

In this paper, we studied link quality prediction inmmWaveWLANs.

By capturing the details of the environment such as locations of

obstacles and their reflectivities, we separate the LoS and NLoS

scenarios and propose an environment-aware prediction approach

to predict link quality at any location of the scenario. In particular, a

DNN-based regression model was trained to predict the link quality

in difficult NLoS cases by using our synthetically generated data set.

Both simulations and experiment measurements were performed

to show that our approach can achieve high prediction accuracy

and the predicted values are in close agreement with the actual

measurements.
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