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ABSTRACT
Cooperative cell-based strategies have been recently pro-
posed as a technique for extending the lifetime of wireless ad
hoc networks, while only slightly impacting network perfor-
mance. The effectiveness of this approach depends heavily
on the node density: the higher it is, the more consistent
energy savings can potentially be achieved. However, no
general analyses of network lifetime have been done either
for a base network (one without any energy conservation
technique) or for one using cooperative energy conservation
strategies. In this paper, we investigate the lifetime/density
tradeoff under the hypothesis that nodes are distributed uni-
formly at random in a given region, and that the traffic is
evenly distributed across the network. We also analyze the
case where the node density is just sufficient to ensure that
the network is connected with high probability. This anal-
ysis, which is supported by the results of extensive simula-
tions, shows that even in this low density scenario, cell-based
strategies can significantly extend network lifetime.
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1. INTRODUCTION
Wireless ad hoc networks are networks where multiple

nodes, each possessing a wireless transceiver, form a network
amongst themselves via peer-to-peer communication. An ad
hoc network can be used to exchange information between
the nodes and to allow nodes to communicate with remote
sites that they otherwise would not have the capability to
reach. Wireless ad hoc networks are usually multi-hop net-
works because, as opposed to wireless LAN environments,
messages typically require multiple hops before reaching a
gateway into the wired network infrastructure.

Since nodes in a wireless ad hoc network are battery-
powered, energy conservation is important to extend the
functional lifetime of both individual nodes and the network.
Much of the prior work on energy conservation in wireless
ad hoc networks has focused on energy-conserving routing
protocols, e.g. [4, 5, 12, 21]. However, the maximum energy
savings, and hence lifetime extension, that can be achieved
through routing algorithm optimization could be quite lim-
ited. This is because the energy used by standard wireless
interfaces just to sense the channel can be nearly as much
as that used in receiving a message and about 60% of the
energy used in transmitting [8].

A few prior works have proposed more aggressive strate-
gies for energy conservation in which some nodes’ trans-
ceivers are completely shut down for some period of time [6,
14, 22]. This type of approach has the potential to reduce
energy consumption dramatically and, therefore, to increase
network lifetime significantly. However, no general analyses
of network lifetime have been done either for a base network
(one without any energy conservation techniques) or for one
using an aggressive energy conservation technique.

In this paper, we analyze quantitatively the increase in
network lifetime that results from using an idealized version
of the cell-based energy conservation technique described
in [22]. Indeed, what is investigated here is the potentiality
of the class of energy conserving techniques based on a sub-
division of the deployment region into non-overlapping cells,
under the assumption that nodes are distributed uniformly
at random. To this purpose, we will make a series of assump-
tions, aimed at simplifying the analysis on one hand, and
at studying the achievable lifetime extension under the best
possible conditions on the other hand. Our analysis can thus
be used as an assessment framework for cell-based energy
conservation techniques, similarly to the MERIT framework



for routing protocol assessment presented in [7]. An exam-
ple of application of our assessment framework to the GAF
protocol presented in [22] will be described in Section 6.

As expected, our analysis has shown that the lifetime of a
network employing a cell-based energy conservation tech-
nique depends on the density with which nodes are dis-
tributed throughout the region where the network is de-
ployed. In particular, the analysis has shown that when
the node density is large enough to ensure that the result-
ing network is connected with high probability, the network
lifetime is very likely to be extended by a multiplicative
factor of at least h, with respect to the case where no en-
ergy conservation is used. The multiplicative factor h is
primarily a function of the region’s dimension. The results
of our simulations have shown that h is about 3.5 for one-
dimensional networks and 1.8 for two-dimensional networks.
Furthermore, our analysis suggests that cell-based coopera-
tive strategies have the potential to scale well with node den-
sity: the scaling is more than linear in the one-dimensional
case and almost linear in the two-dimensional case.

Our analytical results are based on the application of oc-
cupancy theory to the distribution of nodes over a region.
These results are supported by extensive simulations, which
validate our analysis. Both the analytical results and the
simulations demonstrate quite clearly the potential benefits
of aggressive cell-based energy conservation techniques ap-
plied to wireless ad hoc networks.

2. DEFINITION OF NETWORK LIFETIME

2.1 Discussion
Nodes in a wireless ad hoc network are usually powered by

a limited capacity battery. As nodes’ batteries are drained
and they stop functioning, the wireless ad hoc network will
eventually cease to be usable. Informally speaking, we refer
to the length of the time that the network operates prior to
becoming unusable as the network lifetime.

A formal definition of network lifetime is not straightfor-
ward and may depend on the application scenario in which
the network is used. In the literature, network lifetime has
often been defined as the time for the first node to die (e.g.,
in [4, 5, 12, 21]), or as the time for a certain percentage of
network nodes to die (as in [22]). Alternatively, network life-
time has been defined in terms of the packet delivery rate [6]
or in terms of the number of alive flows [3], thus accounting
for the “quality of communication” the alive nodes achieve.

We believe that the definitions above do not satisfactorily
capture the intuition behind the concept of network life-
time, i.e. its “being usable”. On one hand, referring only
to the number of nodes fails to capture the operational as-
pect of the network: if a few nodes in strategic positions
die, the network could become disconnected, thus impairing
dramatically its functionality. Conversely, defining network
lifetime in terms of the time for the first node to die is often
pessimistic, since it is very likely that the surviving nodes
remain connected, thus not impairing the network function-
ality. However, a definition of network lifetime expressed
solely in terms of the “quality of communication” is not suf-
ficient either. For example, if a large number of sensors
in a given region of a wireless sensor network suddenly die
because of a catastrophic event, the surviving sensors are
very likely to remain connected, but the network function-
ality (which, in this specific case, should also be expressed in

terms of the amount of the region covered by the network)
is impaired.

The discussion above outlines that a good definition of
network lifetime should refer to the capability of the net-
work to provide the services it was designed for, and hence
depends on the application scenario. An example of a def-
inition in this sense can be found in [1], where the lifetime
of a sensor network is defined as the time to the first loss of
coverage1. However, this definition does not take connectiv-
ity into account, and a disconnected sensor network is most
likely unusable.

Summarizing, in a very broad sense we can distinguish
the following scenarios:

- ad hoc networks, whose primary goal is to provide con-
nectivity to the nodes participating in the network;

- sensor networks, in which the requirement for connec-
tivity must be complemented with the requirement for
coverage; i.e., all the monitored region (or at least a
significant percentage of it) must be covered by the
sensors.

In the first case, the (minimal) service that the network must
provide is connectedness, hence network lifetime should be
defined as the time to the first disconnection. This definition
can be refined with the further requirement that a minimum
number of nodes remain alive. This accounts for the fact
that a network composed by, say, 20% of the initial nodes,
although connected, is very likely to be unable to provide
the services for which it was designed.

In the second scenario, the definition of network lifetime
should account also for coverage, and can thus be expressed
as the time to the first loss of coverage or connectedness.
Also in this case, we can impose the further requirement on
the number of alive nodes.

Both definitions can be weakened, declaring the network
dead when the size of the largest connected component or
the percentage of the region covered drop below a certain
threshold. We call these properties fractional connectivity
and fractional coverage, respectively. This accounts for dif-
ferent dependability requirements the network must satisfy:
if it is used for safety-critical applications, connectedness
and coverage are vital requirements, and even a limited loss
of coverage (or connectedness) cannot be tolerated. How-
ever, in less critical applications a small percentage of dis-
connected units (or of the region uncovered) can be toler-
ated, especially if this is counterbalanced by an extended
lifetime.

Note that in the discussion above we have implicitly as-
sumed that the nodes are stationary. If nodes are mobile, a
network which is disconnected at time t1 may become con-
nected at time t2 > t1. In the case of sensor networks, the
network coverage may display a similar behavior. Hence,
defining lifetime in mobile networks is much more compli-
cated than in the stationary case and is beyond the scope of
this paper.

1The definition of coverage usually is based on the sensing range
of nodes. In a simplified but widely used model, all the nodes
sense a circular area of radius rs, and the monitored region R is
covered if every point of R is a distance of at most rs from at
least one sensor.



2.2 Formal definition
The network is composed by a set V of nodes, with |V | =

n. Each node is equipped with a radio transceiver and is
powered by a limited capacity battery. We assume that all
the nodes in the network are homogeneous, i.e. equipped
with devices with the same features. Hence, all the nodes
have the same transmitting range and batteries with the
same initial capacity.

Nodes are placed in a d-dimensional region R called the
deployment region, with d = 1, 2, 3. For the sake of simplic-
ity, we assume that R is of the form [0, l]d, where l is the
length of a side of the region. Given the node positions in
R and the transmitting range r, the communication graph is
defined as G = (V, E), where edge (u, v) is in E if and only
if d(u, v) ≤ r, and d(u, v) denotes the Euclidean distance
between u and v. Observe that, since all the nodes have
the same transmitting range, the communication graph is
undirected.

We are now ready to give a general definition of network
lifetime for the cases of general ad hoc networks and sensor
networks.

Definition 1 (Ad hoc networks lifetime). Let
G(t) = (V (t), E(t)) be the communication graph of the ad
hoc network at time t, where V (t) is the set of alive nodes at
time t. Assume that G(0) is connected, and denote with n(t)
the cardinality of V (t), with n = n(0). The network lifetime
is defined as the minimum between t1 and t2, where t1 is
the time it takes for the cardinality of the largest connected
component of G(t) to drop below c1 · n(t), t2 is the time it
takes for n(t) to drop below c2 · n, and 0 ≤ c1, c2 ≤ 1.

Definition 2 (Sensor networks lifetime). Let
G(t) = (V (t), E(t)) be the communication graph of the sen-
sor network at time t, where V (t) is the set of alive nodes at
time t. Assume that G(0) is connected and covers the deploy-
ment region R = [0, l]d, and denote with n(t) the cardinality
of V (t), with n = n(0). The network lifetime is defined as
the minimum between t1, t2 and t3, where t1 is the time it
takes for the cardinality of the largest connected component
of G(t) to drop below c1 ·n(t), t2 is the time it takes for n(t)
to drop below c2 · n, t3 is the time it takes for the volume
covered to drop below c3 · ld, and 0 ≤ c1, c2, c3 ≤ 1.

The definitions above are very general, and can be reduced
to most existing definitions by appropriately choosing the
values for c1, c2 and c3. For example, in the case of general
ad hoc networks setting c1 = 0 and c2 = 1 corresponds to
defining lifetime as the time it takes for the first node to
die, while setting c1 = 1 and c2 = 0 corresponds to defining
lifetime as the time to network disconnection.

In the following, we will restrict our attention to the case
of general ad hoc networks, leaving the analysis of sensor
networks lifetime for future research.

3. AN IDEALIZED MODEL FOR
CELL-BASED TECHNIQUES

Consider a wireless ad hoc network composed by n nodes,
where all the nodes are equipped with batteries with the
same initial capacity and have the same transmitting range
r. The energy consumption for an individual node is de-
pendent on how much traffic is routed through it and so it
depends on the routing algorithm and traffic model. Several

energy conserving routing algorithms have been proposed in
the literature [4, 5, 12, 21]. However, the maximum energy
savings, and hence lifetime extension, that can be achieved
through routing algorithm optimization could be quite lim-
ited. This is because the energy used by standard wireless
interfaces just to sense the channel can be nearly as much
as that used in receiving a message and about 60% of the
energy used in transmitting [8]. Thus, to achieve order of
magnitude reductions in energy consumption, more aggres-
sive measures, which we call cooperative strategies, should
be considered.

Cooperative strategies are based on the following idea:
assume that a given set S of nodes provides a functional-
ity F to the rest of the system; instead of keeping all the
nodes in S operative, a representative node u can be se-
lected, and the remaining nodes can be turned off in order
to save energy. The representative node selection is obtained
as the result of a negotiation protocol executed by nodes in
S, which is repeated when u dies, or after a certain wake-up
time. This way, considerable energy savings can be poten-
tially achieved. Observe that the exact definition of the
cooperative strategy depends on the kind of functionality
we are interested in. For example, F could be defined as
the capability of nodes in S to relay messages on behalf of
the remaining nodes, without compromising network con-
nectivity (i.e., nodes are equivalent from the point of view
of a routing protocol). In the case of sensor networks, F can
be alternately defined as the capability of sensing a given
sub-region of the deployment region R.

Examples of cooperative strategies can be found in [6, 22].
In [6], the authors present a coordination algorithm, called
SPAN, aimed at reducing power consumption while pre-
serving both the network capacity and connectivity. SPAN
adaptively elects coordinators from all nodes in the network,
which are left active, while non-coordinator nodes are shut
down. The coordination algorithm is transparent to the
routing protocol, and can be integrated in the IEEE 802.11
MAC layer. In [22], the deployment region R is divided
into an appropriate number of non-overlapping cells, with
the property that all the nodes in the same cell are equiva-
lent from the routing protocol point of view. Nodes in the
same cell elect a representative, which is left active, while
the transceivers of non-representative nodes are shut down.
Periodically, the representative election phase is repeated to
balance power consumption and to deal with mobility.

A similar aggressive approach to reducing power consump-
tion has been presented in [14], where the authors define a
transport level protocol for shutting down and restarting
the network interface. However, this work is intended for a
mobile host communicating with a single base station and,
therefore, does not address the network-wide issues that
must be dealt with in a wireless ad hoc network.

The effectiveness of a cooperative strategy depends heav-
ily on the node density. Intuitively, if node density is low,
almost all the nodes must stay up all the time, and no energy
saving can be achieved. Considering the overhead required
for coordination of nodes, the actual network lifetime could
actually be reduced with respect to the case where no co-
operative strategy is used. Conversely, if node density is
high, consistent energy savings (and, consequently, exten-
sion of network lifetime) can be achieved. This behavior is
displayed by the GAF protocol of [22], while the energy sav-
ings achieved by SPAN does not increase with node density.



This is due to the fact that the overhead required for coor-
dination with SPAN tends to “explode” with node density,
and thus counterbalances the potential savings achieved by
the increased density. For this reason, in the following we
will focus our attention mainly on the GAF strategy.

We remark that our investigation can be directly applied
to any cooperative strategy based on the subdivision of the
deployment region into non-overlapping cells. To date, GAF
is the only representative of this class of protocols, but, given
the effectiveness of this approach, new cell-based energy con-
serving protocols are likely to be implemented. Thus, our
analysis can be used to compare the energy savings achieved
by a cell-based cooperative strategy with the “best possible”
savings achievable in optimal conditions. Although in a less
direct way, our analysis can also be used to assess general
cooperative strategies that rely on node density to increase
lifetime. For example, the scalability analysis of Section 5.2
shows that for two-dimensional networks, network lifetime
has the potential to increase almost linearly with node den-
sity. Although this analysis is cell-based, it is reasonable to
assume that any good cooperative strategy should display a
similar behavior.

Observe that the positive effect of an increased node den-
sity on network lifetime could be counterbalanced by its
detrimental effect on the network capacity. In fact, it is
known that, at least in the stationary case, the network ca-
pacity does not scale with node density, and the end-to-end
throughput achievable at each node goes to 0 as the den-
sity increases [11]. Furthermore, increasing node density
entails a higher network cost. On the other hand, node den-
sity cannot be too low, since otherwise network connectivity
would be impaired. Hence, the tradeoff between node den-
sity, network lifetime, and capacity/cost must be carefully
evaluated. As a first step in this direction, in the following
we investigate the relation between the expected benefit of
the utilization of cooperative strategies and the node den-
sity, under the following simplifying hypotheses:

a1. nodes are distributed uniformly and independently at
random in R = [0, l]d, with d = 1, 2, 3;

a2. nodes are stationary;

a3. F is defined as the capability of nodes in S to relay
messages on behalf of the remaining nodes, without
compromising network connectivity. To this end, R
is divided into non-overlapping d-dimensional cells of
equal side r

2
√

d
[2]2. The total number of cells is then

N = kdld

rd , where kd = 2ddd/2;

a4. we consider an ideal cooperative strategy, in which the
overhead needed to coordinate nodes amongst them-
selves is zero. Hence, the energy savings derived in the
following can be seen as the best possible a cooperative
strategy can achieve;

a5. node density is sufficient to achieve connectedness with
high probability;

2This ensures that a node in one cell can communicate with all
nodes in the complete neighborhood of cells surrounding it. Note
that the side of the cell as defined here is slightly different from
that used in the GAF protocol [22], which ensures that nodes
residing in a cell can communicate with all the nodes in the upper,
lower, left and right cell. However, this slight difference does not
impair the validity of our analysis for the GAF protocol.

a6. network lifetime is defined in terms of connectedness,
i.e. setting c1 = 1 and c2 = 0 in Definition 1;

a7. the traffic is balanced over all cells;

a8. the energy consumed by other components of a node
is negligible compared to the energy consumption of
its transceiver.

Observe that, by assumption a7, all the cells are subject to
the same load. If this load must be handled by a single node,
it will die at the baseline time T ; however, if a cell contains
h nodes, the load can be evenly divided among them, and
the last node in the cell will die at time hT . Hence, a lower
bound to the network lifetime can be obtained by evaluat-
ing the probability distribution of the minimum number of
nodes in a cell, and occupancy theory [13] can be brought
to bear on the problem.

4. A LOWER BOUND TO NETWORK LIFE-
TIME FOR THE IDEALIZED APPROACH

In this section we will use the standard notation regarding
the asymptotic behavior of functions, which we recall. Let
f and g be functions of the same parameter x. We have:

- f(x) = O(g(x)) if there exist constants C and x0 such
that f(x) ≤ C · g(x) for any x ≥ x0;

- f(x) = Ω(g(x)) if g(x) = O(f(x));

- f(x) = Θ(g(x)) if f(x) = O(g(x)) and f(x) = Ω(g(x)).
In this case, we also use the notation f(x) ≈ g(x);

- f(x) = o(g(x)) if f(x)
g(x)

→ 0 as x → ∞;

- f(x) � g(x) or g(x) � f(x) if f(x) = o(g(x)).

The probability distribution of the minimum number of
nodes in a cell can be evaluated using some results of the
occupancy theory [13], which studies properties of the ran-
dom independent allocations of n balls into N urns3 when
n, N → ∞. Let η(n, N) be the random variable denoting the
minimum number of nodes in a cell. The form of the limit
distribution (i.e., of the probability distribution of η(n, N)
when n, N → ∞) depends on the asymptotic behavior of
the ratio α

ln N
, where α = n

N
. The following theorem holds

[13]:

Theorem 1. If α
ln N

→ 1 as n, N → ∞ and h = h(α, N)
is chosen so that h < α and Nph(α) → λ, where ph(α) =
αh

h!
e−α and λ is a positive constant, then:

- P (η(n, N) = h) → 1 − e−h

- P (η(n, N) = h + 1) → e−h

Theorem 1 states that if α
ln N

→1 as n, N →∞, then η(n, N)

is either h or h + 1 asymptotically almost surely4 (a.a.s. for
short), where h is such that Nph(α) → λ, for some posi-
tive constant λ. Similar results presented in [13] determine
the limit distribution of η(n, N) when α

ln N
→ x, for some

3For consistency, in the following we will use the words node and
cell instead of ball and urn, respectively.
4We say that an event Em, describing a property of a random
structure depending on a parameter m, holds asymptotically al-
most surely if P (Em) → 1 as m → ∞.



x > 1, or when α
ln N

→ ∞. However, for our purposes it is
sufficient to note that, denoting by η1(n, N), ηx(n, N) and
η∞(n, N) the value of η(n, N) for the three asymptotic cases,
it is η1(n, N) ≤ ηx(n, N) ≤ η∞(n, N) a.a.s. This follows im-
mediately by the fact that in the three asymptotic cases a
strictly increasing number of nodes are distributed into the
same number of cells.

Observe that Theorem 1 gives very precise information on
the asymptotic value of η(n, N), but gives no explicit value
of h. In the following, we derive the value of h under the
hypothesis that the network is a.a.s. connected.

It is known [2, 19, 20] that a sufficient condition for a.a.s.
connectedness when n nodes with transmitting range r are
distributed uniformly at random in R = [0, l]d is that rdn =
Θ(ld log l), and that this condition is also necessary for d =
1. However, these results give us only the magnitude of the
density which is sufficient to ensure a.a.s. connectedness. A
more precise result is stated in the following Theorem, the
proof of which is reported in the Appendix.

Theorem 2. Assume that n nodes, each with transmit-
ting range r, are distributed uniformly and independently
at random in R = [0, l]d, for d = 1, 2, 3, and assume that
rdn = kld ln l for some constant k > 0, with r = r(l) � l and
n = n(l) � 1. If k > d · kd, or k = d · kd and r = r(l) � 1,

then liml→∞ Pconn(l) = 1, where kd = 2ddd/2 and Pconn(l)
denotes the probability that the communication graph is con-
nected.

Proof. See Appendix.

Observe that the conditions on the magnitude of r = r(l)
and n = n(l) in the statement of Theorem 2 are not restric-
tive. In fact, if r = Ω(l), then every node is able to transmit
directly to most of the other nodes, and connectedness is
ensured independently of n. The condition n = n(l) � 1
is a straightforward consequence of the first condition, since
otherwise the probability of connectedness would be negli-
gible.

Theorem 2 specifies the values of the multiplicative con-
stant which are sufficient to ensure a.a.s. connectedness, and
is a generalization of the results presented in [10, 16, 17, 18],
where similar evaluations for the case of n nodes distributed
in a region of constant side, or under the assumption that
nodes are distributed in R with a given Poisson density δ,
are performed.

We are now ready to evaluate the value of h in the state-
ment of Theorem 1. Given the result of Theorem 2 and
assumption a3, we have rdn ≥ d · kdld ln l and N = kdld

rd . In
order to satisfy the hypothesis of the theorem, we must have
limn,N→∞ α

ln N
= 1, which, given the hypotheses r = r(l) �

l and n = n(l) � 1, is equivalent to liml→∞ α
ln N

= 1. We
have:

lim
l→∞

α

ln N
= lim

l→∞

k
kd

ln l

ln kdld

rd

= lim
l→∞

ln lk/kd

ln kdld

rd

(1)

Setting k = d · kd we obtain:

(1) = lim
l→∞

ln ld

ln kdld

rd

= 1

when rd = Θ(1).

Let now consider the expression Nph(α), which can be
rewritten as

kd

�
ln ld

�h

rdh!
(2)

Since rd = Θ(1), (2) ≈ (ln ld)h

h!
. Taking the logarithm, we

have:

ln

�
ln ld

�h

h!
= h ln

�
ln ld

�
− ln h! ≈ h ln

�
ln ld

�
− h ln h

It follows that Nph(α) → λ, for some positive constant λ, if
and only if h ≈ ln ld.

Based on the discussion above, we can conclude this sec-
tion with the following theorem:

Theorem 3. Assume that n nodes with transmitting range
r are distributed uniformly and independently at random in
R = [0, l]d, for d = 1, 2, 3, and assume that rdn ≥ d·kdld ln l,

where kd = 2ddd/2. If a cooperative strategy is used to alter-
nately shut down “routing equivalent” nodes, then P (NLl ≥
hT ) → 1 as l → ∞, where NLl is the random variable de-
noting network lifetime and h = d(1−ε) ln l, for any constant
ε such that 0 < ε < 1.

Proof. The proof follows by Theorem 1 and by the dis-
cussion above, and by observing that:

- when k = dkd and rd � 1, limn,N→∞ α
ln N

= ∞;

- when k > dkd, limn,N→∞ α
ln N

= ∞ if rd � 1, and
limn,N→∞ α

ln N
= x, for some x > 1, otherwise.

Theorem 3 gives a lower bound to an ad hoc network’s
lifetime under the hypothesis that the network is a.a.s. con-
nected. The value of h depends on the dimension of the
network and on the side of the deployment region. For ex-
ample, if r = 250 and l = 5000, network lifetime is extended
at least 2.99 times when d = 1, 5.99 times when d = 2,
and 8.98 times when d = 3.5 However, these bounds are
mainly of theoretical interest: in fact, simulations reported
in [20] have shown that, while the sufficient condition for
a.a.s. connectedness is tight for d=1, it becomes looser for
two and three-dimensional networks. For this reason, we
have performed extensive simulations to evaluate the actual
network lifetime when the minimal condition for connected-
ness holds. The results of these simulations are reported in
the next section.

It should also be observed that in the optimal case, i.e.
when the n nodes are evenly distributed into the N cells,
the network lifetime is exactly d · kd ln l. The result stated
in Theorem 3 is very important, since it states that, in the
case of nodes distributed uniformly at random, the network
lifetime differs from the optimal at most by a constant factor,
namely a factor of kd − 1 + ε, for some 0 < ε < 1. This
factor is dependent on the dimension d of the network: it
equals 1 + ε when d = 1, but it is rather large (≈ 40.5 + ε)
when d = 3. The quality of this result is confirmed by the
simulation results presented in the next section.

Finally, we observe that Theorem 3 can be used to lower
bound the network lifetime also when c2 in Definition 1 is

5In calculating h, l is measured as a multiple of r.



greater than 0. In fact, Theorem 3 actually lower bounds
the time for the first node to die under the hypothesis that
the network is a.a.s. connected.

5. SIMULATION RESULTS
In this section we present the results of extensive simula-

tions. The goal of these simulations was to:

- evaluate the actual network lifetime with the minimal
node density that achieves connectedness with high
probability;

- investigate the density vs. lifetime tradeoff;

- investigate the effect of the parameter c2 in the defini-
tion of lifetime;

- validate the theoretical analysis presented in the pre-
vious section.

The simulator distributes n nodes in R = [0, l]d accord-
ing to the uniform distribution and generates the commu-
nication graph assuming that all the nodes have the same
transmitting range r. The deployment region R is then di-
vided into the appropriate number of cells, and the number
of nodes in every cell is calculated. Next, the actual network
lifetime is evaluated: all the nodes contained in the cell(s)
with the minimum number of nodes are declared dead, and
the communication graph is modified accordingly. If it re-
mains connected and the number of alive nodes is at least
c2 · n, the process is iterated until one of the two conditions
is impaired. The current version of the simulator checks
for network connectivity rather than fractional connectiv-
ity. Thus, all results in this section are for c1 = 1.

The input parameters of the simulator are n, l, d, r and
parameter c2 of Definition 1, along with the number iter of
iterations to run. The output parameters are the percent-
age of connected graphs generated, the minimum number of
nodes in a cell after the initial node placement, and the num-
ber of nodes in the cell(s) whose death “kills” the network
(the terminating cell(s)). This number is the most impor-
tant output data of the simulation, since it determines the
network lifetime extension with respect to the baseline time.
The simulator also reports the number of nodes alive at net-
work death and, in case parameter c2 is not 0, whether the
network died because of disconnection or because of too few
nodes remaining alive. The results returned by the simula-
tor are averaged over the iter simulation runs.

One important point to note is that the simulator accepts
integer values for l and r, while the cell size in general is
not an integer. This means that smaller cells on the bound-
ary of the deployment region may exist. While values of l
and r generating equally-sized cells can be chosen in one-
dimensional networks, this is not possible for two and three-
dimensional networks, due to the

√
d term in the expression

for the cell size. Hence, for these networks we chose combi-
nations of the l and r values producing boundary cell sizes
that are nearly equal to the inner cell size. Since the bound-
ary cells are slightly smaller than those in the center, the
results reported by the simulator could be slightly different
from those that would be obtained if all cells were of equal
size. However, this inaccuracy is not critical, both because
it is quite small and because it can only cause our simulator
to underestimate the minimum number of nodes in a cell
and the network lifetime.
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Figure 1: Average number of nodes in the terminat-
ing cell for regions of increasing side l.

We simulated one-dimensional and two-dimensional net-
works with sides of length l ranging from about 400 to about
8100. For one-dimensional networks, we chose combinations
of l and r generating equally-sized cells, where r ≈ l

ln2 l
.

For two-dimensional networks, we chose l and r in order
to generate nearly equally-sized cells, where r ≈ l

ln l
. For

each combination of l and r, we experimentally calculated
the minimum number nmin of nodes to be distributed in
order to obtain 100% of connected graphs in 1000 simula-
tion runs6. This number gave us the minimal node density
δmin = nmin

ld
which was used as the baseline for our simula-

tions.
We performed separate sets of simulations to investigate

each of the above mentioned issues. Simulation results, all
averaged over 1000 runs, are reported in the following sub-
sections.

5.1 Network lifetime with minimal density
The first set of simulations was aimed at evaluating the

network lifetime with the minimal density δmin. In this
situation, the minimum number of nodes in a cell is very
small: it is 1.3–1.5 for d = 1, and it is 0 for d = 2. However,
this number only represents a lower bound to the actual
network lifetime.

Simulation results, which are reported in Figure 1, show
that even in this apparently unfavorable situation the net-
work lifetime is increased significantly on average. The av-
erage number of nodes in the terminating cell(s) (i.e., the
cell that “kills” the network) is about 3.5 for d = 1 and
about 1.8 for d = 2, and is far above the minimum num-
ber of nodes in a cell. This means that network lifetime is
extended on the average by 250% in one-dimensional and
by 80% in two-dimensional networks7. The larger exten-
sion for d = 1 than for d = 2 is a consequence of the fact
that in one-dimensional networks the minimal cell density is
higher than in two-dimensional networks: when n = nmin,
the average number of nodes in a cell is about 7 when d=1,

6nmin was found to range from 543 to 1180 in one-dimensional
networks, and from 284 to 797 in the two-dimensional case.
7Since the number of nodes in a cell is an integer, saying that
the network lifetime is extended on the average of 80% means
the following: for some networks (those in which there is only
one node in the terminating cell) there is no extension, while for
other networks the lifetime is doubled, or tripled, and so on. The
average of these extensions is 80%.
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Figure 2: Average number of nodes in the termi-
nating cell with increasing density for one and two-
dimensional networks.

while it is about 1 when d = 2. This happens because in
one-dimensional networks, two consecutive empty cells sep-
arating non-empty cells cause disconnection, while in two-
dimensional networks connectivity can be ensured by nodes
that “go around the hole” in one dimension. Hence, when
d=1 more nodes must be distributed in order to avoid the
occurrence of empty cells, which can be tolerated when d=2.

5.2 Density vs. lifetime
Since for the minimum connecting density and d=2, there

was a non-negligible percentage of networks that experi-
enced no lifetime extension, we also investigated how much
lifetime increases as the node density is increased beyond
the minimum level. We distributed β ·nmin nodes into one-
dimensional and two-dimensional networks of sides l = 400
and l = 1100, with β = 1, . . . , 6. The results of these simu-
lations are shown in Figure 2.

The average number of nodes in the terminating cell is
only marginally influenced by the length of a side of the
deployment region. For this reason, Figure 2 reports only
the data for the case l = 1100. The figure also reports the
expected number of nodes in the terminating cell, which is
simply β times the average number of nodes in the terminat-
ing cell when n = nmin. As shown in the figure, the actual
number is far above the expected number of nodes in the ter-
minating cell for d=1, while it is slightly below it for d=2.
This means that, if the node density is βδmin (with β ≥ 2)
and Tmin is the network lifetime when n = nmin, the average
network lifetime is far above βTmin in one-dimensional net-
works, while it is slightly below βTmin in two-dimensional
networks.

Another important aspect to consider is the relation be-
tween the number of nodes in the terminating cell and the
expected number of nodes in a cell, which accounts for the
case in which the nodes are perfectly distributed among the
cells. Figure 3 plots the ratio of these numbers for increas-
ing density. We considered one and two-dimensional net-
works, with l = 1100. As it is seen, this ratio tends to
converge towards the perfectly-distributed case in both one
and two-dimensional networks. Quite surprisingly, this ra-
tio is above 1 in two-dimensional networks, meaning that
a uniform node distribution is better than when nodes are
perfectly distributed. This is due to the fact that, as dis-
cussed above, two-dimensional networks are often connected
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Figure 3: Ratio between the average number of
nodes in the terminating cell and the expected num-
ber of nodes in a cell for increasing density.
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Figure 4: Average number of nodes in the terminat-
ing cell for different values of c2 in one-dimensional
networks.

even if many cells are empty. Hence, many cells must die
before the network becomes disconnected.

5.3 Varying c2
In previous simulations we had c1 = 1 and c2 = 0. In

this set of simulations, we have investigated the effect of a
different value of c2 on the network lifetime. We recall that
c2 > 0 forces there to be a minimum fraction of the original
nodes remaining alive in order for the entire network to be
considered alive. We considered one-dimensional and two-
dimensional networks of sides l = 400 and l = 1100.

Figure 4 refers to one-dimensional networks, and reports
the average number of nodes in the terminating cell when
n = nmin nodes are distributed, with c2 ranging from 0.7
to 0.95 in steps of 0.05. As it is seen, there is a significant
drop in network lifetime only for c2 = 0.95. This is due
to the fact that, in these conditions, the average number
of alive nodes when the network becomes disconnected is
0.926n when l = 400 and 0.931n when l = 1100. Thus,
below c2 = 0.95, the connectedness requirement dominates,
while above that, the c2 condition is significant.

Figure 5 refers to two-dimensional networks. In this case,
we distributed n = 2 ·nmin nodes, since the average number
of alive nodes at network disconnection when n = nmin is
about 0.34n. As it is seen, in this case the drop in network
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lifetime is for c2 ranging from 0.8 to 0.9.

5.4 Validating the theoretical analysis
The goal of the last set of simulations was to validate

the theoretical result of Theorem 3. In essence, Theorem 3
states that, if the condition for a.a.s. connectedness holds,
the minimum and the expected number of nodes in a cell
have the same magnitude Θ(ln l). Hence, the ratio ρ between
the minimum and the expected number of nodes in a cell
should remain constant as the the length l of a side of the
deployment region increases. Furthermore, since h in the
statement of the Theorem differs from d · kd ln l by a factor
that increases with the dimension of the network, the value
of ρ should be larger for d = 1 than for d = 2.

As shown in Figure 6, this behavior is actually displayed
by the results of our simulation. The plot for d = 1 refers
to the case in which nmin nodes are distributed, and shows
that the value of the constant is approximately 0.2. In two-
dimensional networks, more nodes must be distributed, since
the minimum number of nodes in a cell for n = nmin was al-
ways 0. Observe that Theorem 3 still applies, since it holds
not only for the minimal density ensuring a.a.s. connect-
edness, but also for larger densities. The plot reported in
the figure is obtained by setting n = 3 · nmin, and the value
of the constant is about 0.06. This value is far below 0.2,
which, on the other hand, was obtained with a lower node
density.

6. GAF ASSESSMENT
As an example of application of our assessment frame-

work to a realistic case, consider the GAF protocol of [22].
The authors have investigated the node density vs. life-
time tradeoff for a network using GAF, where network life-
time is defined as the time for the packet delivery rate to
drop below 80%. Nodes, each with a nominal transmitting
range of 250 meters, are distributed uniformly at random in
a 1500×300 meters area, and traffic is generated by sources
spreading the messages randomly among 10 traffic nodes,
which are not part of the simulation (i.e., their energy con-
sumption is not considered). The hypotheses of [22] are
slightly different from ours: network lifetime as defined in
[22] is clearly related to connectivity, but it is different from
the time to network disconnection. Furthermore, the aspect
ratio of the deployment region is in between the one and the
two-dimensional case, although it is probably closer to the
1-d case (in fact, the transmitting range almost covers the
entire smaller side of the region). Nevertheless, a fruitful
comparison between the performance evaluation presented
in [22] and our analysis can be done. When the node den-
sity is increased 4 times (with respect to a minimal density
which, although not explicitly stated, is sufficient to ensure
connectedness), the lifetime of a network using GAF is ex-
tended by approximately a factor of 4 (in the case that nodes
are stationary). This can be compared with the results of
our simulations, which have shown that the average lifetime
extension is slightly below 4 times the baseline lifetime when
d = 2, and it is about 20 times for d = 1. Another parameter
to be considered is the cell density, i.e. the expected num-
ber of nodes in a cell. This parameter is 4.4 for the highest
density scenario of [22]. With similar values of this param-
eter, the lifetime extension in two-dimensional networks in
our ideal analysis is about 6.34 times. Hence, GAF shows
very good scalability, but it leaves some room for further
improvement.

7. CONCLUDING REMARKS
In this paper we have investigated the node density vs.

network lifetime tradeoff for a cell-based energy conservation
technique in wireless ad hoc networks.

We have presented a lower bound to network lifetime that
holds under the assumption that nodes are distributed uni-
formly at random in a given region, that node density is just
sufficient to guarantee connectedness with high probability,
and that the traffic is evenly distributed among the cells.
This theoretical result has been validated by means of ex-
tensive simulations, which have complemented the theoreti-
cal (qualitative) with a quantitative analysis. In particular,
the results of our simulations have shown that even in the
minimal density scenario network lifetime can be extended
significantly with respect to the case where no energy con-
servation strategy is used. However, while the amount of
this extension for one-dimensional networks is large, in the
two-dimensional case the “best possible” extension is only
about 80%. This indicates that in this scenario even more
aggressive techniques could be considered.

For example, we could consider probabilistic instead of de-
terministic equivalence: in our analysis and in the GAF pro-
tocol, it is assumed that all the nodes in a cell are within the
transmitting range of all the nodes in the neighboring cells.
Hence, it is sufficient to leave one node up in every cell to



ensure connectivity. As an alternative, we could use slightly
larger cells, where nodes are within the range of almost all
the nodes in neighboring cells. This means that nodes in
the same cells are not “routing equivalent”, but “routing
equivalent with a given probability”, which depends on the
length of a cell’s side. The benefit of this technique would
be an increased cell density given the same node density,
which could result in an increased lifetime.

If weaker requirements on network connectivity (e.g., at
least 90% of nodes in the largest connected component) can
be tolerated, an alternative strategy to save further energy
would be to reduce the node transmitting range. In fact,
results presented in [2] for two-dimensional networks have
shown that halving the minimal transmitting range for con-
nectedness still yields a largest connected component con-
taining about 90% of the network nodes. However, reducing
the transmitting range would reduce the cell density (given
the same node density), and a detrimental effect on the ben-
efit of cooperative cell-based strategies could occur. Hence,
the adoption of a similar approach should be carefully eval-
uated. Observe that one difficulty in comparing the two
approaches stems from the fact that the analysis presented
in this paper refers to a baseline time, but if we consider
different transmitting ranges, the baseline time would be
different also. Thus, we should express network lifetime re-
ferring to an absolute time axis, rather than to a baseline
lifetime.

Regarding the “lifetime scalability”, the results of our sim-
ulations have shown that, as node density increases, network
lifetime increases more than linearly in one-dimensional net-
works, and almost linearly in two-dimensional networks. Hen-
ce, cell-based cooperative strategies have the potential to
“scale well” with node density.

Finally, further investigation is needed to gain insights on
how mobility affects the effectiveness of cell-based coopera-
tive strategies. The intuition as well as the theoretical and
experimental results presented in [9, 22] seem to indicate
that mobility has a positive effect, since the average number
of nodes in a particular cell over time tends to match the
expected number of nodes in a cell overall. However, the re-
sults of our simulation have shown that in two-dimensional
networks a uniform node distribution outperforms the “ideal
case” of evenly distributed nodes. Whether the same behav-
ior is displayed in presence of mobility or not is an interesting
issue, and is a matter of ongoing research.
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APPENDIX
Proof of Theorem 2. Let d = 1, and subdivide [0, l]

into N = 2l
r

non-overlapping cells of side r
2
. It is immediate

that if every segment contains at least one node, then the
resulting communication graph is connected. Let µ0(n, N)
be the random variable denoting the number of empty cells.
Since µ0(n, N) is a non-negative integer random variable,
then P (µ0(n, N) > 0) ≤ E[µ0(n, N)], where E[µ0(n, N)] is
the expected value of µ0(n, N) ([15], pp. 10-11). We have
[13]:

E[µ0(n, N)] = N

�
1 − 1

N

�n

We want to investigate the asymptotic value of E[µ0(n, N)]
as l → ∞, which, given the hypotheses r = r(l) � l and
n = n(l) � 1, is equivalent to the asymptotic for N, n → ∞.
Taking the logarithm, we obtain:

lnE[µ0(n, N)] =

ln N + n ln

�
1 − 1

N

�
= ln

2l

r
+ n ln

�
1 − r

2l

�
(3)

Since r/l → 0 as l → ∞, we can approximate the last term
of (3) with the first term of its Taylor expansion, obtaining:

(3) ≈ ln
2l

r
− nr

2l
(4)

Substituting the expression rn = kl ln l in (4), we obtain:

(4) = ln
2l

r
− k ln l

2
= ln

2

rlk/2−1

If k > 2, or if k = 2 and r = r(l) � 1, then

lim
n,N→∞

ln E[µ0(n, N)] = −∞ ,

hence limn,N→∞ E[µ0(n, N)] = 0 and liml→∞ P (µ0(n, N) =
0) = 1. It follows that each cell contains at least one node
a.a.s., which implies liml→∞ Pconn(l) = 1.
The proof for the cases d=2 and d=3 are similar, and are
obtained by subdividing R into non-overlapping d-dimen-
sional cells of side r

2
√

2
and r

2
√

3
, respectively.


