
330272-1732/04/$20.00 2004 IEEE Published by the IEEE computer Society

With advances in lithography, an
entire system fits on a single chip, in what the
industry calls a system on chip (SoC). Even
though this ever-increasing chip capacity
offers embedded-system designers much more
flexibility, the requirements of a contempo-
rary embedded system—high performance,
low power, real-time constraints, and fast
time-to-market—typically still restrain
designs. To meet these often contradictory
requirements, embedded processors continue
to evolve on both the programmable general-
purpose processor’s side (that of ARM and
MIPS) and the configurable processor’s side
(processors from ARC, Improv, and Tensili-
ca). Regardless of the embedded processor’s
evolutionary path, the application’s properties
dominate the design of SoC platforms, that is
processors are assigned based on the nature of
the required task.1

General-purpose processors target control-
centric and some signal processing tasks with
low-to-medium performance requirement. In
contrast, SoCs integrate application-specific
processors such as digital signal processors
(DSPs) to achieve high performance. Time-
critical tasks with extremely high-performance
demands, such as inverse discrete cosine trans-
form (IDCT) and fast Fourier transform
(FFT), typically require dedicated hardware.
To minimize time to market, designers com-
monly base designs on intellectual property
(IP). The heterogeneous demands of the
applications naturally lead to heterogeneous
multiprocessor and/or IP-based SoC platform
design. This design trend is already visible;
many multimedia, wireless, network, and
gaming systems have arisen from just such an
approach. For example, Texas Instruments’
OMAP 2, LSI’s DiMeNsion 8650, Analog

Taeweon Suh
Hsien-Hsin S. Lee

Douglas M. Blough
Georgia Institute

of Technology

THIS SYSTEMATIC METHODOLOGY MAINTAINS CACHE COHERENCY IN A

HETEROGENEOUS SHARED-MEMORY MULTIPROCESSOR SYSTEM ON A CHIP. IT

WORKS WITH ANY COMBINATION OF PROCESSORS THAT SUPPORT ANY

INVALIDATION-BASED PROTOCOL, AND EXPERIMENTS HAVE DEMONSTRATED

UP TO A 51 PERCENT PERFORMANCE IMPROVEMENT, COMPARED TO A PURE

SOFTWARE SOLUTION.

INTEGRATING CACHE COHERENCE
PROTOCOLS FOR HETEROGENEOUS

MULTIPROCESSOR SYSTEMS,
PART 1

Devices’ GSM baseband processor AD6525,
and Philips’ Nexperia pnx8500, to name a
few, are examples of such designs. Therefore,
it is imperative to provide an efficient and
effective design methodology to cover a het-
erogeneous processor system for embedded
SoC design. In academia, reflecting this trend,
various multiprocessor researches in embed-
ded systems are being actively conducted.2,3

The design complexity of integrating het-
erogeneous processors on SoCs is not trivial
since it introduces several problems in both
design and validation because of the various
bus interfaces and incompatible cache coher-
ence protocols. In this article, we focus on cache
coherence issues for heterogeneous multi-
processor SoCs. In addition, we also examine
two essential components of such systems: lock
mechanisms and real-time operating systems.

Related work
Large-scale heterogeneous multiprocessing

systems contain distributed shared memory.
Such a system can use a directory-based cache
coherence4 scheme for coherency among its
distributed shared memory. Directory-based
protocols address the intercluster coherence
issues of a distributed shared-memory system
while the bus-based snoop mechanism main-
tains intracluster coherence. The directory-
based protocol can also address the coherence
issue among homogeneous or heterogeneous
clusters. Snoop-based bus protocols, however,
fail to address the coherence problem for
intracluster heterogeneous processors because
of the distinct nature of each individual coher-
ence and bus protocol.

In the embedded-SoC domain, researchers
have proposed a design methodology for an
application-specific multiprocessor SoC that
uses the concept of a wrapper to overcome the
problem of incompatible bus protocols.5,6

Wrappers allow automatic adaptation of phys-
ical interfaces to a communication network.
Generic wrapper architectures and automat-
ic generation method can also facilitate the
integration of existing components.7

Integrating heterogeneous
processor platforms

Shared-memory multiprocessor architectures
employ cache coherence protocols to guarantee
data integrity and correctness when each proces-

sor shares data and caches data within itself.8

For example, IBM’s PowerPC 755 supports the
MEI (modified, exclusive, and invalid) protocol,
and Intel IA-32 processor family supports the
MESI (modified, exclusive, shared, and invalid)
protocol (http://developer.intel.com/design/
pentium4/manuals/245472.htm). Modern proces-
sors use several variants of MESI, such as Sun Ultra-
sparc’s MOESI protocol (exclusive modified, shared
modified, exclusive clean, shared clean, and invalid)
and the AMD 64’s slightly different MOESI pro-
tocol (modified, owned, exclusive, shared, and
invalid). DSPs, such as TI’s TMS320C621x,
C671, and C64x series also start to include snoop-
ing capabilities even though the snooping function
is somewhat limited. For instance, their snooping
function only maintains the coherence between the
CPU and the enhanced direct memory access to
the level-2 cache (http://focus.ti.com/docs/
apps/catalog/resources/appnoteabstract.
jhtml?abstractName=spru609b).

Like its homogeneous multiprocessor coun-
terpart, the heterogeneous multiprocessor
platform is in need of cache coherence sup-
port to enable data sharing in memory. How-
ever, because of the incompatibility of the
distinct coherence protocols, designers need
to use special design techniques during inte-
gration. The lock mechanism for critical sec-
tions also requires special consideration
because the functionality and interface signals
of the supported instructions for atomic access
differ for different instruction set architec-
tures. Finally, the real-time properties of many
embedded systems demand a real-time oper-
ating system (RTOS). Because heterogeneous
processors could share system objects such as
semaphore, queue, and mailboxes, RTOS sup-
port for the heterogeneous environment is
essential. These three primary issues—cache
coherence, lock mechanisms, and RTOS for
heterogenous multiprocessor systems will be
discussed subsequently.

Integrating coherence protocols
There are two main categories of cache

coherence protocols: update-based protocols
and invalidation-based protocols. In general,
invalidation-based strategies are more robust,
therefore, most vendors use a variant based on
such a strategy as their default protocol. We
also focus on them in this article.

We can classify heterogeneous processor

34

EMBEDDED SYSTEMS

IEEE MICRO

platforms into three classes in terms of the
processors’ cache coherence support, as Table
1 shows. In this table, we illustrate a dual-
processor platform for brevity, although our
proposed approach is easily extendible to plat-
forms with more than two processors. PF1
and PF2 need special hardware, and the result-
ing coherence mechanism has a limitation,
which will be discussed in Part 2. For PF3, as
we will discuss shortly, simple hardware sup-
port can maintain the cache coherence.

Integrating processors with different coher-
ence protocols restricts the usage of protocol
states; only the states that the distinct protocols
have in common are preservable. For example,
when integrating two processors with MEI and
MESI, the final coherence protocol must elim-
inate the S state. We present systematic inte-
gration methods that work for any
combinations of invalidation-based protocols.
These methods assume that the cache-to-cache
sharing is implemented only in processors sup-
porting the MOESI protocol, as most com-
mercial processors do. The proposed methods
include read-to-write conversion and/or
shared-signal assertion and deassertion when
integrating processors with four different
major protocols: MEI, MSI, MESI, and
MOESI. Furthermore, we show that a snoop-
hit buffer can improve the cache coherence
performance. We also propose a region-based
cache coherence to use lost states of the pro-
tocols to further enhance performance.

Read-to-write conversion. Integrating the MEI
protocol with others requires the removal of
the shared state for coherency. To illustrate the
problem with the shared state, we use the
example in Table 2, assuming that processor
1 supports the MESI protocol, and processor
2 supports the MEI protocol, with the oper-
ation sequence �a , �b, �c , and �d executed for

the same cache line C.
Operation �a changes the state from I to E

in P1 as a result of the read. Operation �b
changes the state from I to E in P2 and from
E to S in P1. Since C is in the state E in P2,
Operation �c does not appear on the bus even
though P1 has the same line in the S state. It
invokes the state transition from E to M in
Processor 2. However, the state of the cache
line in P1 remains the same. Therefore, Oper-
ation �d accesses the stale data, which should
have been invalidated during �c .

Figure 1 depicts our proposed method to
remove the shared state. Since the transition
to the shared state occurs when the snoop
hardware in the cache controller observes a
read transaction on the bus, the way to
remove the shared state is simply to convert
a “read” operation to a “write” operation
within the wrappers of snooping processors.
The memory controller should see the actu-
al operation, so it can access the memory cor-
rectly when it needs to.

Using the MESI protocol as an example, the
state change from E to S occurs only when the
snoop hardware in the cache controller sees a
read transaction on the bus for the cached line
of the E state. Therefore, to remove the shared
state, it is sufficient for the wrapper to convert
every read transaction on the bus to a write
during snooping. When the snoop hardware in
the cache controller sees a write transaction on
a cache line in an M or an E state, it writes back

35JULY–AUGUST 2004

Table 1. Heterogeneous platform classes.

Cache coherence hardware
Platform Processor 1 Processor 2
PF1 No No
PF2 Yes (no) No (yes)
PF3 Yes Yes

Table 2. Problem and solution with MEI and MESI.

 Without proposed solution With proposed solution
Operation on C state in C state in C state in C state in

Sequence cache line C P1 (MESI) P2 (MEI) P1 (MESI) P2 (MEI)

�a P1 reads I → E I I → E I
�b P2 reads E → S I → E E → I I → E
�c P2 writes S (stale) E → M I E → M
�d P1 reads S (stale) M I → E M → I

the cache line if it is dirty and invalidates the
line. This action thus excludes the shared state
in the controllers’ state machines. The last two
columns of Table 2 illustrate the state transi-
tions with our proposed solution. Transaction
�b invokes the state transaction from E to I in
P1, since P1 observes a write operation on the
bus. Transaction �d changes the state from M
to I in P2, since a snoop-hit on an M-state
cache line causes the state change to I in the
MEI protocol.

A write miss in a write-back cache initiates
a bus-exclusive read (BusRdX) on a bus as
explained in a later section on region-based
cache coherence. In general, the way to gen-
erate the BusRdX information differs,
depending on bus protocols. Thus, we use the
generic signal, BusRdX, for cost estimation.
The implementation requires us to assert the
BusRdX signal to snooping processors with-
in a wrapper even in a normal read by a bus
master processor. We used Synopsys Design
Compiler for evaluating our implementation
using the 0.18-micron Taiwan Semiconduc-

tor Manufacturing Corp. library. The syn-
thesized result shows that implementing read-
to-write conversion using BusRdX requires
only two gates.

Shared-signal assertion and deassertion. In inte-
grating MSI and MESI protocols, the E state
is not allowed. Suppose that P1 supports the
MSI protocol, P2 supports the MESI proto-
col, and P1 and P2 execute the operations in
Table 3 for the same cache line C.

Operation �a changes the state from I to S
in P1. Operation �b makes the state transition
from I to E in P2 because P1 cannot assert the
shared signal,4 while P1’s cache line status
remains unchanged. Operation �c invokes
only the E to M transition in P2. As a result,
P1 reads the stale data in �d because of a cache
hit indicated by the S state. Therefore, the E
state should not be allowed in the protocol.
Our technique for removing the E state from
the MESI protocol is to assert the shared sig-
nal whenever a read miss occurs. With this
technique, Operation �b invokes the state
transition from I to S in P2, and Operation �d
changes the state from M to S in P2.

The implementation of the shared-signal
assertion requires asserting the shared signal
to a bus master within a wrapper whenever a
read miss occurs. The synthesis result of our
Verilog implementation shows that shared-
signal assertion requires 1.3 gates; shared-
signal deassertion shows the same result.

We discuss the details of these integration
methods in an earlier work, including varia-
tions such as MEI with MSI/MESI/MOESI,
MSI with MESI/MOESI, and MESI with
MOESI.9

Snoop-hit buffer. Consider the situation where
a processor initiates a read or write transac-
tion and a snoop hit occurs in a modified

36

EMBEDDED SYSTEMS

IEEE MICRO

Bus

Processor 2
(MESI)

Wrapper

Read/write

Write

Memory
controller

Processor 1
(MEI)

Wrapper

Figure 1. Method to remove the shared state.

Table 3. Problem and solution with MSI and MESI.

 Without proposed solution With proposed solution
Operation on C state in C state in C state in C state in

Sequence cache line C P1 (MSI) P2 (MESI) P1 (MSI) P2 (MESI)

�a P1 reads I → S I I → S I
�b P2 reads S I → E S I → S
�c P2 writes S (stale) E → M I S → M
�d P1 reads S (stale) M I → S M → S

block. Then, the processor that originally
requested the transaction can access the block
from memory after the snoop-hit processor
writes the corresponding dirty block to mem-
ory. In a homogeneous multiprocessor plat-
form, where the cache coherence protocol is
MOESI, the cache-to-cache sharing could
occur in the same situation if the cache coher-
ence scheme supports the function.

However, for heterogeneous multiprocessor
platforms with a different protocol combina-
tion, the cache-to-cache sharing cannot occur
because of our initial assumption that it only
occurs in processors supporting the MOESI
protocol. Therefore, each snoop-hit requires
back-to-back bursts of external memory
accesses: one for the dirty write-back and one
for the read request. Because these two access-
es are for the same memory location, we pro-
pose a snoop-hit buffer that keeps the
snoop-hit line during a write-back transaction
and supplies the line to the requesting proces-
sor for the successive read. Memory is updat-
ed simultaneously with the dirty lines’
buffering into the snoop-hit buffer.

This simple, additional, hardware block can
improve access latency and power consump-
tion because reads need not activate external
address and data pins. Once-filled buffer data
are valid until a processor encounters any of
the following conditions: the next snoop-hit,
a write-miss for the same line address, or a
dirty-line replacement of the same line
address. In a write-back cache, a write-miss
appears on a bus as BusRdX, and in write-
through cache, it appears as a write operation.
A dirty line replacement appears as a write
operation. Therefore, a line in the snoop-hit
buffer becomes invalidated during the detec-
tion of a snoop-hit or write invalidation (Bus-
RdX or write operation) on a bus, depending
on the cache policies.

Figure 2 illustrates the system with a snoop-
hit buffer. This block sits on a bus and has a
single buffer structure that stores a single cache
line. It is accessible by all subsequent read
requests from other processors until the next
snoop-hit or a write invalidation occurs.

We can further improve performance by
employing a double buffer structure. Similar to
the double buffering in a video frame buffer, a
double snoop-hit buffer consists of front and
back buffers for keeping two cache lines. It

varies from a single buffer in that the memo-
ry is not updated until the next snoop-hit of a
different line address (sh_diff) occurs. When
this happens, the logic in snoop-hit buffer
copies the line in the front buffer to the back
buffer. Then, the back buffer updates the
memory, and the front buffer buffers a line of
sh_diff simultaneously. The back buffer
becomes invalidated when it finishes updating
memory. However, the front buffer becomes
invalidated only when detecting a write inval-
idation of the same line address on a bus. A
double buffer can remove unnecessary mem-
ory update transactions, which could occur in
the single buffer. These unnecessary transac-
tions occur when

• other snoop-hits for the same line address
before the sh_diff or

• write invalidations for the same line
address before the sh_diff

follow a snoop-hit in the single buffer.
Our Verilog implementation of the snoop-

hit buffer consists of a single 32-byte line
buffer; a state machine for writing a snoop-
hit line and reading from the snoop-hit buffer;
and a memory-mapped programmable regis-
ter to enable the snoop-hit buffer. The syn-
thesized result reports 2,987 gates.

Region-based cache coherence. Even though the
techniques previously described guarantee
cache coherency for a heterogeneous multi-
processor environment, there is a potential
performance loss caused by the lost protocol

37JULY–AUGUST 2004

Bus

Memory
controller

Snoop-hit buffer

Single-line buffer

Processor 1
(MEI)

Wrapper

Processor 2
(MESI)

Wrapper

Figure 2. Snoop-hit buffer.

states, such as the S state. In Table 4, we sum-
marize Splash2 and Multiprog simulation data
from Culler, Singh, and Gupta;10 these simu-
lations used the MESI protocol.

As shown, the M state accounts for the
majority of protocol state transitions, followed
by the S state. Our integration techniques
always preserve the M state, regardless of the
protocol combination. However, they remove
the S state in most cases of integrating differ-
ent protocols. For example, our techniques
remove the S state when integrating MEI with
other protocols; they prohibit entrance into
the S state when integrating the MESI with
the MOESI.

The shortcoming of our technique is that
our techniques require processors in a system to
use the minimum set of the protocol states even
in a situation where SoC applications share data
among processors having the same protocol,
which has more protocol states than the mini-
mum set of protocols. Such a design is too
restricted and prohibits compatible states, such
as S, for processors using the same protocol. To
address this issue, we propose a region-based
cache coherence (RBCC) technique.

Given the memory area usage of the appli-
cations, region-based cache coherence condi-
tionally permits the disabled states. Figure 3
shows a four-processor heterogeneous SoC in
which three processors have the MESI proto-
col and one has the MEI protocol. We assume
that all four processors share memory area 1
and that the three MESI protocol processors
share memory area 2. We implemented the
data cache of the MESI protocol using Ver-
ilog HDL and an ARM9TMDI core. The
data cache has an 8-Kbyte direct-mapped
structure with a 32-byte line size.

Using our RBCC technique, the new plat-
form can use the MESI protocol for area 2
and the MEI protocol for area 1. Depending
on the CPU-generated address, the extra
RBCC logic will decide, on the fly, whether
to enable the S state or not.

We can implement RBCC with two mem-
ory-mapped registers, one comparator, two
multiplexers, and two tri-state buffers inside
wrappers. Continuing with the same example,
one register (start_addr_reg) keeps the start-
ing address of area 2, and the other register
(range_reg) has the range information shown
in Figure 3, which also shows the shared and
BusRdX signals on a bus. The shared signal
informs a bus master processor that other
processors have cached a line. A bus master
processor uses the BusRdX signal to request
an exclusive copy of a line when a write miss
occurs. Most data caches are used in the write-
back mode, and the write-back cache employs
the write-allocation policy. So a processor uses
the BusRdX to signal a write-miss and request
an exclusive copy of data in write-back caches.
Thus, we implement the read-to-write con-
version using BusRdX inside wrappers.

Without RBCC, when integrating the MEI
and MESI protocols, the BusRdX signal
should always be asserted even in read misses.
With RBCC, if a snoop address acknowl-
edged by the RBCC logic falls in the range of
area 2, processors view the shared and
BusRdX signals on a bus through multiplex-
ers (shown in Figure 3) that are selecting sig-
nals from a bus. Otherwise, the shared signal
is deasserted (shared-signal deassertion), and
BusRdX is asserted (read-to-write conversion)
by multiplexers selecting 0 for the shared sig-
nal and 1 for the BusRdX signal.

The shared signal is an input when a proces-
sor is a bus master, that is, when bus GraNT
(BGNT) is asserted; and it is an output when a
processor is not a bus master (that is, when
snooping). The BusRdX signal is an input when
a processor is not a bus master and an output
when a processor is a bus master. We can extend
the RBCC logic in Figure 3 to include as many
areas as needed. It is also easily extendable to
other protocol combinations such as MEI-
MOESI, MESI-MOESI, and so on.

The implementation requires components
listed before for each memory area, except we
need only two tri-state buffers no matter how

38

EMBEDDED SYSTEMS

IEEE MICRO

Table 4. State transition percentages.

Splash2 was executed on 16

processors, and Multiprog was

executed on 8 processors.

State transitions (percentage)
State Splash2 Multiprog kernel *

I 0.29 0.14
E 0.76 3.31
S 19.9 30.51
M 78.9 65.68

* data references

many areas we choose to use. Our synthesized
result reports 591 gates for one memory area.

DMA. In general, designs allocate memory-
mapped I/Os into uncacheable memory
space. Therefore, DMA should not cause any
coherence problem. However, some uncon-
ventional systems allow DMA to transfer data
between cacheable regions. In these systems,
we can resolve the coherence problem by
allowing the DMA controller to concede bus
mastership whenever a snoop-hit occurs dur-
ing DMA operations and reclaim it after write
back if the corresponding line is dirty. How-
ever, this DMA issue is not limited to hetero-
geneous platforms, but also affects
homogeneous platforms.

Lock mechanism for heterogeneous platforms
In a shared-memory multiprocessor system,

the processors should access critical sections
in a mutually exclusive manner. To guarantee
this, systems use the lock mechanism, in
which processors access locks variables atom-
ically. Processors designed for supporting
multiprocessors or multithreaded systems
inherently provide atomic instructions with
dedicated interface signals. For example, the
PowerPC755 features lwarx and stwcx
instructions with RSRV signal, and the ARM
processor supports swp and swpb instructions
with BLOK signal.

For these instructions to work correctly,
the corresponding protocol of interface sig-
nals must also have support in the memory
controller to guarantee atomic accesses.
Even though homogeneous platforms can
take advantage of these instructions, it
would be infeasible to use them in a hetero-
geneous multiprocessor environment

39JULY–AUGUST 2004

Memory
controller

Snoop-hit buffer

Single-line buffer

 PowerPC 755
(MEI)

Wrapper

Bus

Comparator

start_addr_reg
range_reg

Bus

Multiplexer Multiplexer

ARM9TDMI

I-
ca

ch
e

D-cache
(MESI)

Wrapper

RBCC logic

ARM9TDMI

I-
ca

ch
e

D-cache
(MESI)

Wrapper

RBCC logic

ARM9TDMI

I-
ca

ch
e

D-cache
(MESI)

Wrapper

RBCC logic

RBCC logic

BusRdXShared

Address 10

0 1 0 1

To data cache

Area 2
information

BGNT

Figure 3. Region-based cache coherence on a four-processor SoC.

because the behavior of each atomic instruc-
tion differs for different processors. Software
solutions such as the Bakery algorithm are
an alternative in heterogeneous environ-
ments, but they are inefficient from a per-
formance standpoint.

The SoC Lock Cache (SoCLC),11 a simple
yet efficient hardware mechanism, is a more
attractive solution for heterogeneous envi-
ronments. The SoCLC uses only a 1-bit lock
register for a lock, and sits on a shared bus like
our snoop-hit buffer. Because it uses general
load/store instructions in acquiring/releasing
a lock in an atomic fashion, a SoCLC can use
the same high-level code regardless of the het-
erogeneity among processors.

With SoCLC, if a processor attempts to
access a critical section, it first checks the lock
register using a load instruction. If the lock is
not in use, the lock register returns a 0 to the
processor and sets the bit value to 1. After-
ward, if other processors attempt to access the
critical section, the lock register returns a 1
without changing its value. As such, this
mechanism guarantees atomic access. Simi-
larly, the processor releases the lock by writ-
ing a 0 to the lock register, using a general
store instruction.

RTOS for heterogeneous platforms
Embedded systems, in general, require

real-time properties in processing tasks,
which requires the use of a real-time operat-
ing system, referred to as an RTOS, in
embedded SoCs. Using an RTOS simplifies
the design process by splitting the applica-
tion into several tasks. To provide for real-
time processing, the RTOS supports
multitasking; event-driven and priority-
based preemptive scheduling; priority inher-
itance; and intertask communications and
synchronization. Especially in heterogeneous
multiprocessor platforms, intertask commu-
nication and synchronization will impact
system performance because processor
heterogeneity could lead to inefficient
shared-memory management.

Atalanta RTOS is an embedded RTOS
designed at Georgia Tech.12 For interprocessor
communication and synchronization, Atalan-
ta provides both message-passing and shared-
memory approaches, whereas multiprocessor
OS kernels such as Real-Time Executive for

Multiprocessor Systems (RTEMS) and Oper-
ating System Embedded (OSE) rely on message
passing. Therefore, in Atalanta, heterogeneous
processors can share system objects such as a
semaphore, mailbox, and queue by using
cacheable shared memory, taking advantage of
the cache coherence methodology we discussed
earlier. The shared-memory approach allows
much better use of shared memory, thereby
increasing performance over that of a message-
passing approach.13 In addition, since mixed
systems of RISCs, DSPs, and other specialized
processors are assumed to be the target archi-
tectures, Atalanta’s design has been tailored for
heterogenous multiprocessor platforms.

We have implemented our methodologies
for heterogeneous multiprocessor sys-

tem design, using commercially available
embedded processors. Part 2 of this article will
discuss the case study of our heterogeneous mul-
tiprocessor system design, a limitation of PF1
and PF2, and the Verilog simulation results of
our simple techniques, snoop-hit buffer, and
RBCC. The simulation results show up to 51
percent performance improvement for low miss
penalties with simple techniques, compared to
a pure software solution. In RTOS kernel sim-
ulations, 77 percent performance improvement
was achieved with RBCC, compared to without
RBCC platform. MICRO

References
1. J.A.J. Leijten et al., “PROPHID: A Hetero-

geneous Multi-Processor Architecture for
Multimedia,” Proc. Int’l Conf. Computer
Design (ICCD 97), IEEE CS Press, 1997, pp.
164-169.

2. A. Bechini, P. Foglia, and C.A. Prete, “Fine-
Grain Design Space Exploration for a Carto-
graphic SoC Multiprocessor,” ACM SigArch
Computer Architecture News, vol. 31, no. 1,
Mar. 2003, pp. 85-92.

3. D. Sciuto et al., “Metrics for Design Space
Exploration of Heterogeneous Multiproces-
sor Embedded Systems,” Proc. Int’l Conf.
Hardware/Software Codesign and System
Synthesis (CODES 02), IEEE CS Press,
2002, pp. 55-60.

4. C.K. Tang, “Cache Design in the Tightly Cou-
pled Multiprocessor System,” Proc. AFIPS
National Computer Conf., IEEE CS Press,
1976, pp. 749-753.

40

EMBEDDED SYSTEMS

IEEE MICRO

5. S. Vercauteren, B. Lin, and H. De Man,
“Constructing Application-Specific Hetero-
geneous Embedded Architectures from
Custom HW/SW Applications,” Proc. 33rd
Design Automation Conf. (DAC 96), ACM
Press, 1996, pp. 521-526.

6. S. Yoo et al., “A Generic Wrapper Architec-
ture for Multi-Processor SoC Cosimulation
and Design,” Proc. Int’l Conf. Hardware/Soft-
ware Codesign and System Synthesis
(CODES 01), ACM Press, 2001, 195-200.

7. D. Lyonnard et al., “Automatic Generation
of Application-Specific Architectures for Het-
erogeneous Multiprocessor System-on-
Chip,” Proc. 38th Design Automation Conf.
(DAC 01), ACM Press, 2001, pp. 518-523.

8. M. Tomasevic and V. Milutinovic, Tutorial on
the Cache Coherency Problem in Shared-
Memory Multiprocessor: Hardware Meth-
ods, IEEE CS Press, 1993, p. 435.

9. T. Suh, D.M. Blough, and H.-H. S. Lee, “Sup-
porting Cache Coherence in Heterogeneous
Multiprocessor Systems,” Proc. Design,
Automation and Test in Europe (DATE 04),
IEEE CS Press, 2004, pp. 1150-1155.

10. D.E. Culler, J.P. Singh, and A. Gupta, Parallel
Computer Architecture: A Hardware/Soft-
ware Approach, Morgan Kaufmann Publish-
ers, 1999.

11. B.E.S. Akgul and V.J. Mooney, “The Sys-
tem-on-a-Chip Lock Cache,” Int’l J. Design
Automation for Embedded Systems, vol. 7,
no. 1-2, Sept. 2002, pp. 139-174.

12. D.-S. Sun, D.M. Blough, and V.J. Mooney,
Atalanta: A New Multiprocessor RTOS Ker-
nel for System-on-a-Chip Applications, tech.
report GIT-CC-02-19, CERCS, Georgia Insti-
tute of Technology, 2002.

13. D.-S. Sun and D. M. Blough, Shared Address
Space I/O: A Novel I/O Approach for System-
on-a-Chip Networking, tech report: GIT-
CERCS-04-08, CERCS, Georgia Institute of
Technology, 2004.

Taeweon Suh is a PhD student in the School
of Electrical and Computer Engineering,
Georgia Institute of Technology. His research
interests include embedded systems, com-
puter architecture, DSPs, and networks. Suh
has a BS in electrical engineering from Korea
University and an MS in electronics engi-
neering from Seoul National University. He
is a student member of ACM.

Hsien-Hsin S. Lee is an assistant professor in
the School of Electrical and Computer Engi-
neering, Georgia Institute of Technology. His
research interests include microarchitecture,
low-power systems, design automation, and
security. Lee has a BSEE from National
Tsinghua University, Taiwan, and an MSE
and PhD in computer science and engineer-
ing from the University of Michigan. He is a
member of ACM and IEEE.

Douglas M. Blough is a professor of electrical
and computer engineering at the Georgia
Institute of Technology. His research interests
include parallel and distributed systems,
dependability and security, and wireless ad hoc
networks. Blough has a BS in electrical engi-
neering and MS and PhD degrees in comput-
er science from the Johns Hopkins University,
Baltimore. He is a senior member of IEEE.

Send questions and comments to Taeweon
Suh, Hsien-Hsin S. Lee, and Douglas M.
Blough, School of Electrical and Computer
Engineering, Georgia Institute of Technology,
Atlanta, Georgia 30332-0250; {suhtw, leehs,
doug.blough}@ece.gatech.edu.

For further information on this or any other
computing topic, visit our Digital Library at
http://www.computer.org/publications/dlib.

41JULY–AUGUST 2004

