
70

Today, the heterogeneous demands
of embedded-systems applications naturally
lead to heterogeneous multiprocessor system-
on-chip (SoC) platform designs based on
intellectual property (IP) cores. Although the
integration of heterogeneous processors on
SoCs is an attractive way to flexibly provide
diverse and targeted functionality, such
designs become complex in terms of main-
taining cache coherence in shared-memory
architectures.

In part l of this article, we presented inte-
gration techniques for cache coherence among
heterogeneous multiprocessors on a shared-
bus. These techniques include read-to-write
conversion and/or shared-signal assertion and
deassertion. We also had proposed a snoop-
hit buffer (to boost performance) and region-
based cache coherence (to recover the lost
protocol states).1 In this part of the article, we
present two examples of integrating hetero-
geneous processors and show the limitation

of integrating processors without native sup-
port for cache coherence. Finally, we discuss
the Verilog simulation results of applying our
techniques to actual heterogeneous multi-
processor platforms.

Case studies
Here, we present two implementations

using commercially available embedded
processors: the PowerPC 755, a write-back-
enhanced Intel 486, and an ARM920T. The
PowerPC 755 processor uses the MEI proto-
col, and Intel 486 supports a modified MESI
protocol. The ARM920T does not offer native
support for cache coherence. The examples of
this case study focus purely on maintaining
cache coherence. Thus, we selected this com-
bination of processors solely to illustrate how
to apply our techniques to the integration of
actual heterogeneous processors.

A multiprocessor platform employs a shared
bus for data transactions between main mem-

Taeweon Suh
Hsien-Hsin S. Lee

Douglas M. Blough
Georgia Institute of

Technology

EXPERIMENTS WITH ACTUAL HETEROGENEOUS MULTIPROCESSOR PLATFORMS

ON A SHARED-BUS MEASURE THE EFFECTIVENESS OF TWO CACHE

COHERENCE TECHNIQUES. THIS INTEGRATION APPROACH, SNOOP-HIT BUFFER,

AND THE ACCOMPANYING REGION-BASED CACHE COHERENCE APPROACH

YIELD SIGNIFICANT SPEEDUPS COMPARED TO A PURE SOFTWARE SOLUTION.

INTEGRATING CACHE COHERENCE
PROTOCOLS FOR HETEROGENEOUS

MULTIPROCESSOR SYSTEMS,
PART 2

Published by the IEEE Computer Society 0272-1732/04/$20.00 2004 IEEE

ory and processors. Companies proposed sev-
eral bus architectures for SoCs; these includ-
ed IBM’s CoreConnect (http://www.chips.
ibm.com/products/coreconnect), Palmchip’s
CoreFrame,2 and ARM’s Advanced Micro-
controller Bus Architecture (AMBA). A com-
mon characteristic among these architectures
is that they use two separate pipelined buses:
one each for high- and low-speed devices. In
this article, we study the Advanced System
Bus (ASB), an AMBA bus, in the integration
of the ARM920T with the PowerPC 755 as
the shared-bus protocol. AMBA is one of the
most popular bus protocols used in embed-
ded system designs. We chose ASB because
the ARM920T’s Advanced High-Perfor-
mance Bus (AHB) was unavailable in Seam-
less processor models.

As Figure 1a shows, the schematic diagram
illustrates the integration of a Power PC755
and an Intel 486, representing a case of the
PF3.1 Wrappers are necessary for the proto-
col conversions between the processors’ inter-
faces and the bus, in addition to the
read-to-write conversion. On the PowerPC
755 side, the read-to-write conversion is
unnecessary because the S state is not present
in the state machine. On the Intel 486 side,
however, we should remove the S state by
asserting the INV (invalidation request) input
signal, a cache coherency protocol pin. The
Intel486 cache controller samples the signal
on snoop cycles. If INV is asserted, the cache
controller invalidates an addressed cache line
in the E or S state. If a cache line is in the M
state, the line is drained to memory. Normal-
ly, INV is deasserted on read snoop cycles and
asserted on write snoop cycles. However, to
remove the S state, it should be asserted on
both read and write snoop cycles.

In the Intel 486’s cache, cache lines are
defined as either write-back or write-through
at allocation time in enhanced bus mode,
depending on the WB/WT (write-back/
write-through) pin status. Only write-through
lines can have the S state, and only write-back
lines can have the E state. Therefore, the pro-
tocol for write-through lines is the SI proto-
col, while the protocol for write-back lines is
the MEI protocol.

When a snoop hit occurs on the M state
line of the Intel 486 cache, the HITM
(hit/miss to a modified line) output signal is

asserted, and, correspondingly, the wrapper
around the PowerPC 755 informs the core of
a snoop hit by asserting the ARTRY (address
retry) input signal. Then, the PowerPC 755
immediately yields the bus mastership to
Intel486 so that the cache controller in the
Intel 486 drains the modified line to memo-
ry. When a snoop hit occurs on the M state
line of the PowerPC 755’s data cache, the
PowerPC 755 asserts the ARTRY output sig-
nal. The arbiter then immediately asserts
BOFF (backoff) so Intel 486 yields the bus
mastership to the PowerPC755. Then, the
cache controller in the PowerPC 755 drains
the modified line to memory.

Figure 1b shows another example of a het-
erogeneous platform using PowerPC 755 and
ARM920T representing a case of PF2.1 The
same methodology used in the ARM920T is
applicable to PF1.1 The wrapper in the figure
converts the PowerPC bus protocol to the ASB
protocol, and vice versa. The wrapper also

71SEPTEMBER–OCTOBER 2004

PowerPC 755
(MEI)

bus

Intel 486
(MESI)

Arbiter

Wrapper Wrapper

BR_BAR

BG_BAR

ARTRY

BREQ

BOFF
HLDA

INV HITM

HOLD

PowerPC 755
(MEI)

ASB

Arbiter

Wrapper ARM920T
(none)

BREQ

BGNT

ARTRY

Snoop
logic

nFIQ

BR_BAR

BG_BAR

(a)

(b)

Figure 1. Coherence in the PowerPC 755 and Intel 486 (a);
and PowerPC 755 and ARM920T (b).

allows the PowerPC 755 to monitor the bus
transactions generated by the ARM920T. The
snoop logic provides snooping capability for
the ARM920T, which does not have native
cache coherence support. It keeps track of all
the address tags of the ARM920T’s data cache
inside a tag content-addressable memory (or
tag CAM) by monitoring bus transactions ini-
tiated by the ARM920T. Our preliminary syn-
thesized result using a 0.18-µm TSMC library
shows that the snoop logic occupies 11.18 per-
cent of the fully customized ARM920T area,
supporting 16-Mbytes of shared memory.
When the tag of a requested address generat-
ed by the PowerPC 755 matches an entry of
the tag CAM, it triggers a snoop hit to the
ARM920T by asserting nFIQ (fast interrupt).
An interrupt service routine is responsible for
draining the snoop-hit cache line if the line is
modified, or invalidating it if the line is clean.

Even though this architecture can make
caches coherent, there is a limitation when at
least one of the processors in a heterogeneous
processor platform does not have native cache
coherence hardware such as in the case of
ARM920T. PF1 and PF2 pertain to this cate-
gory, and Figure 2 illustrates the problem. Sup-
pose that the architecture allows lock variables
and shared data 1 to be cached, and the shared
data 1 is currently in the data cache of the
ARM920T. After acquiring the lock, the Pow-
erPC tries to access the shared data 1 as shown

in step �. Therefore, a snoop hit occurs in the
snoop logic, and nFIQ is asserted as illustrat-
ed in step �. Then, the ARM processor is sup-
posed to drain or invalidate the addressed
cache line in the interrupt service routine.
However, because most commercial processors
implement pipelining and precise interrupt,
the ARM might or might not respond to the
interrupt immediately. During the interrupt
response time, as shown in step �, ARM
might check the lock to see whether it has been
released. Lock variables are currently in the
PowerPC’s data cache, because the PowerPC
accessed the lock lately. Therefore, PowerPC
should drain the cache line storing the lock
variables to memory. However, if the Power-
PC gains the bus mastership, it is supposed to
retry the transaction, which it did in step �,
instead of draining the lock variables. We call
this situation hardware deadlock.

There are two solutions to preventing the
hardware deadlock problem. The first option is
not to cache the lock variables. The other alter-
native is to use the SoCLC discussed in the first
part of this article. For the first solution, a soft-
ware lock, such as the Bakery algorithm, can
be used as a lock mechanism even though it is
inefficient from a performance standpoint. For
the second solution, it needs a simple lock
module sitting on a bus, as explained in the lock
mechanism section in part 1 of this article.
Since the lock variables are not cached in either
case, the hardware deadlock does not occur.

Even though we focus our discussion on a
lock variable, the same problem can occur in
critical sections where applications implement
multiple locks in a system. For this reason, a
system can have only one lock in PF1 or PF2,
requiring that the program perform all shared-
variable operations within critical sections.

Performance evaluation
Hardware simulation demands an enor-

mous amount of time to run real applications.
We experimented with the Verilog simulation
of a MPEG decoding application on a two-
processor platform with three small frames.
Using the simulation environment listed in
Table 1, the simulation took more than three
days to finish on a SUN UltraSparc worksta-
tion, making a complete evaluation of our
approach too time-consuming. Therefore, we
designed a suite of microbenchmark programs

72

EMBEDDED SYSTEMS

IEEE MICRO

Time

PowerPCBus master ARM PowerPC

nFIQ

Interrupt
response

time

Snoop hit in the
snoop logic

ARM drains out
the shared data 1

ARM tries to check the lock, which is
in the PowerPC's data cache

�

� �

PowerPC accesses the
shared data 1

Figure 2. Hardware deadlock problem.

to evaluate our methodology’s impact.

Performance of integration techniques
Our microbenchmark suite consists of a

worst-case scenario (WCS), a typical-case sce-
nario (TCS), and a best-case scenario (BCS).
In these programs, one task runs on each
processor. Each task intensively tries to access
a critical section (shared memory) protected
by the SoCLC lock mechanism. Once a task
acquires the lock, it accesses shared data quan-
tified by cache lines and modifies them before
exiting the critical section. We implemented
the microbenchmarks in a way that each task
acquires the lock alternatively, which means
the simulation assumes the worst-case situa-
tion for lock acquisition and releasing.

We used a pure software solution as our base-
line system, in which the programmer is
responsible for draining or invalidating all the
shared data in the critical section before exit-
ing. Because the lock mechanism protects the
critical sections, users should know which
shared data is in use in the critical sections. To
flush all of the used shared data in the critical
sections in the simulations, we recursively
used “asm volatile(“mcr p15, 0, %0,c7, c14,
1”::”r”(addr))” for the ARM920T and “asm
volatile (“dcbf 0, %0”::”r”(addr))” for the
PowerPC 755. The Atalanta RTOS also can
enable the cache flush instructions for drain-
ing all touched shared data at the end of each
critical section, in case there is no hardware
coherence support.

We call the proposed solution with the read-
to-write conversion and shared signal asser-

tion/deassertion the simple hardware approach.
We refer to the use of a snoop-hit buffer in
addition to a simple hardware approach as the
snoop-hit buffer approach. Table 1 summarizes
the simulation environments and the hardware
configurations. We use two- (PowerPC 755
and ARM920T) and four-processor (three
PowerPC 755s and one ARM920T) platforms
to quantify the performance.

The Intel 486 and PowerPC 755 platform
should outperform the PowerPC 755 and
ARM920T platform due to the absence of an
interrupt service routine. (We are unable to
report the results of the PowerPC 755 and
Intel 486 system because the Seamless proces-
sor model for the Intel 486 doesn’t fully sup-
port the coherence functionality.)

We simulated and measured the perfor-
mance of our proposed approaches and the
baseline, using hardware-software cosimula-
tions. The Seamless and ModelSim from Men-
tor Graphics were used as simulators. We varied
the memory latency from 7-1-1-1-1-1-1-1, 13-
2-2-2-2-2-2-2 ... to 97-9-9-9-9-9-9-9. The
string 7-1-1-1-1-1-1-1 means 7-cycle access
time for the first word and 1-cycle access time
for each seven trailing words (a cache line is
eight words). The miss penalty indicated by the
x-axis in all the figures represents the latency
required for fetching the entire cache line, that
is, all eight words.

WCS performance. Figure 3 shows the WCS
results. In the WCS, each task keeps access-
ing the same blocks of memory. Figure 3a
shows simulation results on the two-

73SEPTEMBER–OCTOBER 2004

Table 1. Simulation environments.

Environments Description
Simulators Seamless CVE, ModelSim
Operating frequencies

PowerPC 755 100 MHz*
ARM920T 50 MHz*
ASB 50 MHz*

Instruction and data caches Enabled
Memory access time

Single word 7 cycles**
Burst (8 words) 7 cycles for the first word, 1 cycle for each subsequent word**

* These low operating frequencies are because of the limitation of simulation models. We expect

similar results for simulations with higher operating frequencies.

** This memory access latency varies as described in this article.

processor platform, where the simple hard-
ware approach performs better than the pure
software solution with few exceptions. These
exceptions come from cache line replacements
and/or interrupt processing overheads that
vary as the miss penalty changes. The simula-
tion with the snoop-hit buffer approach shows
at least a 6.3 percent performance improve-
ment against the software solution for all

WCS simulations. As the miss penalty increas-
es, the performance of the snoop-hit buffer
approach increases dramatically. The simula-
tion result shows up to a 53.4 percent perfor-
mance improvement when the miss penalty
equals 160 cycles and the number of accessed
cache line is 32.

Figure 3b shows simulation results on the 4-
processor platform, where the simple hard-
ware approach always has better performance
(at least 0.97 percent improvement) with no
exceptions, since only one processor needs the
interrupt service routine. The simulation with
the snoop-hit buffer approach shows an 11.8
to 57.1 percent performance improvement
compared to the pure software solution.

BCS performance. In the BCS, each processor
accesses different critical sections, which
means that snoop-hits do not occur. In the
pure software solution, each processor has to
drain all the accessed shared data before exit-
ing the critical section. However, in the pro-
posed solution, this is unnecessary.

Figure 4a shows the simulation results on
the two-processor platform, which achieved
a 49.2 percent performance improvement
with a 14-cycle miss penalty and one accessed
cache line. The speedup increases as the miss
penalty and/or the number of accessed cache
lines increases. Simulation with 32 cache lines
shows a 407 percent performance improve-
ment with a 160-cycle miss penalty, compared
to the pure-software solution. Because snoop
hits do not occur in BCS, the simple hard-
ware and snoop-hit buffer approaches show
the same results. Figure 4b shows the simula-
tion results on the four-processor platform,
which achieved a performance improvement
of from 51 to 426 percent.

TCS performance. In the TCS, each task ran-
domly picks up shared blocks of memory from
among 10 blocks before entering into the crit-
ical section. Figure 5a (on p. 76) shows the
simulation results on the two-processor plat-
form. The simple hardware approach shows a
21.7 to 54.2 percent performance improve-
ment, and the snoop-hit buffer approach
shows a 24.5 to 214 percent performance
improvement compared to the pure software
solution. Figure 5b shows the simulation
results on the four-processor platform. The

74

EMBEDDED SYSTEMS

IEEE MICRO

20 40 60 80 100 120 140 160

1.0

1.1

1.2

1.3

1.4

1.5

1.6
S

pe
ed

up
 o

ve
r

so
ftw

ar
e

so
lu

tio
n

Miss penalty (no. of cycles)

No. of cache lines

32

16

8

4

2

1

0 20 40 60 80 100 120 140 160
1.0

1.1

1.2

1.3

1.4

1.5

1.6

S
pe

ed
up

 o
ve

r
so

ftw
ar

e
so

lu
tio

n

Miss penalty (no. of cycles)

Simple hardware approach

Snoop-hit buffer approach

Snoop-hit buffer approach

Simple hardware approach

(a)

(b)

No. of cache lines

32

16

8

4

2

1

Figure 3. Worst-case scenario (WCS) results on platforms with two (a) and
four (b) processors.

simple hardware approach shows a 27 to 68.6
percent performance improvement, and the
snoop-hit buffer approach shows a 46.4 to 226
percent performance improvement over that
of the pure-software solution.

RBCC performance
We evaluated RBCC performance with two

benchmarks, Microbench and the RTOS
model, using the hardware platform described
in part 1 of this article, Figure 3. Similar to
the work described in the previous section,
Microbench consists of WCS, BCS, and TCS
benchmarks. In these benchmarks, one task
runs on each processor, and each task access-
es the same memory blocks after acquiring the
lock of SoCLC. We use a system without
RBCC as the baseline.

WCS performance. In the WCS, the three ARM
processors—which use the MESI protocols—
keep writing to the same block of memory,
while the PowerPC 755 executes an idle task.
Because processors keep writing to the same
memory blocks after acquiring the lock, the S
state in the MESI protocol does not affect per-
formance. Thus, in Figure 6a (on p. 77),
RBCC shows the same performance as the
without-RBCC system (speedup = 1). How-
ever, the snoop-hit buffer approach dramati-
cally enhances performance because every
snoop hit takes advantage of this buffer. The
simulation shows a 2.1 to 56.9 percent perfor-
mance improvement as the number of accessed
cache line and/or the miss penalty increases.

BCS performance. In the BCS, the three ARM
processors keep reading the same block of
memory while the PowerPC 755 executes an
idle task. Without RBCC, since the integrat-
ed coherence protocol should be MEI, when-
ever a processor reads blocks of memory, other
processors should invalidate the cache lines, if
they have cached them. However, with RBCC,
they need not invalidate these cache lines,
because the MESI protocol has the S state.

The simulation results in Figure 6b show a
13 percent performance improvement with a
14-cycle miss penalty and one accessed cache
line. The speedup increases as the miss penal-
ty and/or the number of accessed cache lines
increases. The simulation with 32 cache lines
shows a 3.06× speedup against the without-

RBCC system with a 160-cycle miss penalty.
Because a snoop hit (which occurs when a
processor tries to read or write modified cache
lines of other processors) never occurs, the
snoop-hit buffer does not affect performance.

TCS performance. In the TCS, all four proces-
sors access the MEI memory area, and the
three ARM processors access the MESI mem-

75SEPTEMBER–OCTOBER 2004

0 20 40 60 80 100 120 140 160
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

S
pe

ed
up

 o
ve

r
so

ftw
ar

e
so

lu
tio

n

Miss penalty (no. of cycles)

Simple hardware
(snoop-hit buffer) approch

Simple hardware
(snoop-hit buffer) approch

0 20 40 60 80 100 120 140 160
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

S
pe

ed
up

 o
ve

r
so

ftw
ar

e
so

lu
tio

n

Miss penalty (no. of cycles)

No. of cache lines

32

16

8

4

2

1

No. of cache lines

32

16

8

4

2

1

(a)

(b)

Figure 4. Best-case scenario (BCS) results on platforms with two (a) and
four (b) processors.

ory area. The ARM processors access MEI or
MESI memory area with a 50 percent proba-
bility each. The simulation assumes each
ARM processor performs read operations 80
percent of the time, thus providing an oppor-
tunity to use the S state around 50 percent of
the time (0.803).

Figure 6c shows the simulation results.
RBCC shows a 0.5 to 11.4 percent perfor-
mance improvement compared to the with-
out-RBCC system. The snoop-hit buffer
approach without RBCC enhances perfor-

mance by 2.1 to 19.6 percent.
RBCC with the snoop-hit
buffer approach increases per-
formance from 2.7 to 36.4
percent.

RTOS kernel performance. We
also modeled another bench-
mark, part of the Atalanta
RTOS kernel. As discussed in
part 1 of this article, Atalanta
was tailored for heterogeneous
multiprocessor platforms. For
interprocessor communica-
tion and synchronization,
Atalanta provides shared-
address space. Thus, proces-
sors sharing system objects,
such as semaphores and mail-
boxes, can directly access the
other processors’ task control
blocks (TCB).

Consider an example in
which processor 1 and
processor 2 share semaphore
A, and processor 1 now has
semaphore A, and processor
2 is waiting for it. When
processor 1 is done with sem-
aphore A and releases it,
processor 1 updates and
inserts the waiting tasks’ TCB
to the ready state by changing
the state field in the TCB and
then updates and inserts the
TCB into the ready list of
processor 2. Then, processor
1 generates an interrupt to
processor 2, so processor 2
can reschedule tasks, and runs
the highest-priority task. In

Atalanta, tasks’ TCBs on each processor are
connected through a doubly linked list,
according to the tasks’ priorities. This simu-
lation models and measures this task insertion
and deletion mechanism in the Atalanta
RTOS.

Using the same RBCC simulation platform
of Figure 3 in part 1 of this article, the inte-
gration technique, we obtain the results in Fig-
ure 7, which shows the performance
enhancement of RBCC as the miss penalty
increases. The notation “2T-16T” stands for

76

EMBEDDED SYSTEMS

IEEE MICRO

0 20 40 60 80 100 120 140 160
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4
S

pe
ed

up
 o

ve
r

so
ftw

ar
e

so
lu

tio
n

Miss penalty (no. of cycles)

0 20 40 60 80 100 120 140 160
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Simple
hardware
approach

Snoop-hit
buffer
approach

S
pe

ed
up

 o
ve

r
so

ftw
ar

e
so

lu
tio

n

Miss penalty (no. of cycles)

No. of cache lines

32

16

8

4

2

1

No. of cache lines

32

16

8

4

2

1

(a)

(b)

Snoop-hit buffer approach

Simple hardware approach

Figure 5. Typical-case scenario (TCS) results on platforms with two (a) and four (b) processors.

two tasks running on each processor in the
MEI protocol area with 16 tasks running on
each processor in the MESI protocol area. A
processor randomly selects two tasks to delete
and insert into TCBs. After the deletion and
insertion of the tasks’ TCBs from the doubly
linked lists, a processor that modified the TCB
of other processor generates an interrupt to
the processor owning the inserted task. Then,
the interrupted processor repeats the proce-
dure, that is, the insertion and deletion of two
randomly selected tasks and the generation of
an interrupt.

In the 2T-2T case of Figure 7, RBCC shows
marginal performance improvement (0.4 to
0.9 percent) over the without-RBCC system.
This comes from the short length of the dou-
bly linked list: Only two tasks run on each
processor in the MESI protocol area, so the
list’s length is two. The insertion and deletion
in this short linked list demands the modifi-
cation of fields in both lists, leading almost no
usage of the S state. Thus, RBCC provides
only marginal performance improvement.
This marginal improvement comes from shar-
ing the array to reference the first ready list of
tasks on each processor.

However, the 2T-16T case shows an 11 to
29 percent improvement, because 16 tasks are
connected through the doubly linked list in
TCBs, and depending on the position of
insertion and deletion, we modify the fields
in only two or three TCBs. This leads to
increased usage of the S state.

The snoop-hit buffer approach without
RBCC shows a 4.4 to 41.1 percent improve-
ment for the 2T-2T case, and a 2.9 to 26.1
percent improvement for the 2T-16T case.
Finally, RBCC with the snoop-hit buffer
enhances performance by 4.5 to 43.0 percent
for the 2T-2T case, and by 15.3 to 77.0 per-
cent for the 2T-16T case.

In parts 1 and 2 of this article, we propose a
systematic integration technique to guar-

antee cache coherency for heterogeneous mul-
tiprocessor SoCs. As these performance results
have shown, our methodology provides a
viable and effective solution for integrating
heterogeneous cache coherence protocols in
a system.

Whereas our discussion has thus far focused
on maintaining cache coherence in a shared-

77SEPTEMBER–OCTOBER 2004

0 20 40 60 80 100 120 140 160
0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

S
pe

ed
up

 o
ve

r
ba

se
lin

e
(w

ith
ou

t R
B

C
C

)
Miss penalty (no. of cycles)

RBCC with snoop-hit buffer, same as
without RBCC with snoop-hit buffer

RBCC with snoop-hit buffer, same as
RBCC

0 20 40 60 80 100 120 140 160
1

2

3

4

S
pe

ed
up

 o
ve

r
ba

se
lin

e
(w

ith
ou

t R
B

C
C

)

Miss penalty (no. of cycles)

0 20 40 60 80 100 120 140 160
1.0

1.1

1.2

1.3

1.4

1.5

S
pe

ed
up

 o
ve

r
ba

se
lin

e
(w

ith
ou

t R
B

C
C

)

Miss penalty (no. of cycles)

No. of cache lines
32
16
8
4
2
1

No. of cache lines

32

16

8

4

2

1

(a)

(b)

(c)

No. of cache lines

32
1

RBCC with
snoop-hit buffer

Without RBCC
with snoop-hit buffer

RBCC

RBCC

Figure 6. RBCC results for WCS (a), BCS (b), and TCS (c).

bus architecture, today’s SoCs are often based
on a multiple-bus architecture. Even with
multiple buses inside, SoCs wouldn’t adopt
dedicated memory interface for each proces-
sor because of high cost. For example, Texas
Instrument’s OMAP has a C55x DSP and
ARM925T, and each processor has its own
internal bus. However, they share an external
DRAM interface. We are investigating an
inexpensive solution to exploiting cache
coherence on a non-shared bus, shared-
memory architecture in SoCs.

References
1. T. Suh, H-H.S. Lee, and D.M. Blough,

“Integrating Cache Coherence Protocols for
Heterogeneous Multiprocessor Systems,
Part 1,” IEEE Micro, vol. 24, no. 4, Jul-Aug.
2004, pp. 33-41.

2. B. Gordan, “An Efficient Bus Architecture
for System-on-a-Chip Design,” Proc. IEEE
Custom Integrated Circuits Conf. (CICC 99),
IEEE Press, 1999, pp. 623-626.

Taeweon Suh is a PhD student in the School
of Electrical and Computer Engineering,
Georgia Institute of Technology. His research
interests include embedded systems, com-
puter architecture, DSPs, and networks. Suh
has a BS in electrical engineering from Korea
University and an MS in electronics engi-
neering from Seoul National University. He
is a student member of ACM.

Hsien-Hsin S. Lee is an assistant professor in
the School of Electrical and Computer Engi-
neering, Georgia Institute of Technology. His
research interests include microarchitecture,
low-power systems, design automation, and
security. Lee has a BSEE from National
Tsinghua University, Taiwan, and an MSE
and a PhD in computer science and engi-
neering from the University of Michigan. He
is a member of ACM and IEEE.

Douglas M. Blough is a professor of electri-
cal and computer engineering at the Georgia
Institute of Technology. His research interests
include parallel and distributed systems;
dependability and security; and wireless ad
hoc networks. Blough has a BS in electrical
engineering and an MS and a PhD in com-
puter science from Johns Hopkins Universi-
ty, Baltimore. He is a senior member of IEEE.

Send questions and comments to Taeweon
Suh, Hsien-Hsin S. Lee, and Douglas M.
Blough, School of Electrical and Computer
Engineering, Georgia Institute of Technology,
Atlanta, Georgia 30332-0250; {suhtw, leehs,
doug.blough}@ece.gatech.edu.

For further information on this or any other
computing topic, visit our Digital Library at
http://www.computer.org/publications/dlib.

78

EMBEDDED SYSTEMS

IEEE MICRO

0 20 40 60 80 100 120 140 1601.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
S

pe
ed

up
 o

ve
r

ba
se

lin
e

(w
ith

ou
t R

B
C

C
)

Miss penalty (cycles)

RBCC with snoop-hit buffer

Without RBCC with snoop-hit buffer

RBCC

(b) 2T, 16T

(a) 2T, 2T

Figure 7. RTOS kernel simulation results.

