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Abstract—While deep learning has brought promising ad-
vances to semantic segmentation tasks for autonomous vehicles,
the performance strongly depends on the coverage of collected
data and the quality of annotations. To overcome the barrier of
insufficient high quality training data covering a complex range
of vehicular scenarios, in this paper, we propose a multi-view-
based active learning framework (MultiVTrain), which enables
the vehicles to collaboratively generate training data and accurate
labels without querying remote human annotators. As images
captured by RGB cameras are vulnerable to occlusion and limited
field-of-view, a novel multi-view prediction transfer scheme is
introduced to leverage sensor data fusion and transfer predictions
of one view to another. This allows information from different
views to be aggregated, which improves the quality of the
generated annotations. Extensive evaluation results demonstrate
that our proposed MultiVTrain framework outperforms other
active learning baselines by ∼ 9%, and passive supervised
learning baselines trained with ground truth labels by ∼ 2.5%,
for the same training set size.

Index Terms—Autonomous vehicles, connected vehicles, active
learning, online learning, multi-view collaborative perception.

I. INTRODUCTION

Semantic segmentation is of great significance for au-
tonomous vehicles to understand the environment [1], where
each pixel in an image is marked with categorical labels,
representing drivable area, pedestrians, traffic participants,
buildings, etc. Recent advances in deep learning have led
to the development of semantic segmentation using convo-
lutional neural networks [2]–[4]. However, these methods
are focused on centralized supervised learning and, hence,
their performance hinges on acquiring a huge amount of
well-labeled data for training. Creating large labeled datasets
is prohibitively expensive as it requires human annotators
to accurately trace segment boundaries and produce pixel-
level labels. Moreover, it requires not only collecting traffic
scene images with sufficient variations in terms of lighting
conditions, weather, terrain, environment, etc., but also incurs
very high overheads due to the tremendous amount of data
that needs to be stored and transferred.

Active learning (AL) has proven to be a powerful technique
to improve data efficiency for supervised learning methods,
where the key idea is that a machine learning algorithm can
achieve better performance with fewer training labels if it is
allowed to choose the data from which it learns [5]. Prior

works have demonstrated the great potential active learning
can add to the training performance as well as efficiency [6]–
[9]. However, most of this work assumes an oracle labels
the query data samples, which is impractical in vehicular
networks. In addition, as vehicles capture data in a streaming
style, pool-based re-training is very expensive and can hardly
be accomplished by vehicles locally. Offloading all data and
training tasks to a centralized server introduces other chal-
lenges such as scalability and bandwidth [10]. Therefore, a
scalable and decentralized active learning framework without
an oracle is needed, so that the vehicles can select data and
train locally in an online fashion.

Advances in connected and autonomous vehicles allow
vehicles to exchange information through various commu-
nication protocols (V2V, V2I, V2X) and be equipped with
powerful sensors (lidar, camera, etc.) and processing units.
This makes it possible to leverage sensor data fusion and
data aggregation from nearby vehicles with multiple viewing
angles, and potentially address the challenges of occlusion, low
resolution due to long distance, and non-line-of-sight effects.
In this paper, we propose a multi-view based collaborative
active learning framework (MultiVTrain) addressing the above
challenges, where a group of vehicles can perform online
learning by cooperating to choose informative instances and
automatically annotate them without human help, thereby en-
abling the creation of accurate models locally without support
of a centralized cloud. In specific, our contributions include:

• A multi-view prediction transfer scheme to align different
views from multiple vehicles via leveraging sensor data
fusion and facilitate cooperative generation of pseudo labels.

• A collaborative online annotation algorithm, which replaces
human annotation by synthesizing the predictions generated
by neighboring vehicles’ local models and correlated multi-
views. As a result, data annotation and model updates can
be completed locally without support of a centralized server.

• A data selection scheme that accounts for data informative-
ness, cross-view diversity, and the accuracy of the current
model to save local computational resources by selecting
the specific instances that have the best chance to improve
model performance.

• An implementation and of our MultiVTrain framework



for multi-class semantic segmentation is built on top of
Carla. Extensive evaluation are conducted to demonstrate
the effectiveness of the approach.

II. RELATED WORK

Deep learning based semantic segmentation is one of the
important techniques to realize driving scene perception and
localization [1]. Networks like SegNet [11], IC-Net [12]are
mainly encoder-decoder architectures with a pixel-wise classi-
fication layer. These are based on building blocks from some
common network topologies, such as PSPNet [13], VGG-
16 [14], and ResNet [15]. Though these approaches show
promising performance, they are pool-based passive learning
methods that have the limitations of requiring highly accurate
data labels and enormous re-training costs.

Active learning (AL), which aims at finding the minimum
amount of labeled data to achieve a certain performance, has
been considered as a promising approach to address the data
and efficiency challenges. [16] provides a thorough review
of classical AL literature. How to select the next batch of
query samples to be labeled is a focus in recent image-
based AL works. Three major approaches have been pro-
posed: uncertainty-based, diversity-based, and expected model
change [17]. Since classical AL methods require an oracle to
label sampled data, which hinders practical deployment, re-
placing oracle-based labeling with other noisy label generation
methods has also been studied in recent AL works [18]–[20].

Most existing noisy label generation methods have heavy
memory and compute requirements, which is a problem for
deployment in decentralized vehicular networks. Considering
the unique environment that vehicles operate in, a light-weight
and resource efficient AL framework is necessary. To address
this challenge for the classification task, Abdellatif, et al.
proposed a cooperative pseudo label generation scheme and
a data selection scheme based on data quality as well as
diversity [21]. However, their model accuracy metric applied
to label generation may be biased by the selected test set.
Performing well on one data set does not guarantee good
performance on new data sets, especially for vehicular appli-
cations, where different road scenarios are virtually unlimited.
Li, et al. take advantage of the multi-view effect to address
the partial occlusion issue in vehicle detection [9]. However,
their set up is specific to the detection problem and is not
easily adapted for the segmentation task, and their approach
also assumed human annotators for label generation.

We propose MultiVTrain, a novel learning framework based
on AL, for improving semantic segmentation with unseen sce-
narios in vehicular networks. MultiVTrain uses a multi-view
prediction transfer method to improve pseudo label quality
for a single vehicle. It also employs a collaborative method
based on depth information to intelligently integrate pseudo
labels from nearby vehicles to obtain high-quality annotations
for sampled data. In this way, the segmentation model can
be updated locally with newly collected data without human
annotation. MultiVTrain also improves efficiency and saves
memory by selecting only the most significant data instances
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Fig. 1: MultiVTrain System Model Overview

to be added to the training set using a combination of data
uncertainty, cross-view diversity, and local model prediction.

III. SYSTEM MODEL AND PRELIMINARIES

In this section, we first present our system model in III-A.
As depth-fused images play an important role in our proposed
approach, the pre-processing and fusion procedures we adopt
are introduced in III-B.

A. System Model

As shown in Fig. 1, our proposed system model considers
a group of vehicles, where each is equipped with an RGB
camera, a depth sensor (e.g. lidar, depth camera), a pre-trained
machine learning model, and local processing units capable
of performing sensor data fusion and local machine learning
model updates. We refer to the vehicles that find interesting
images to learn and initiate a round of collaborative active
learning as TaskVehicles (TVs). A TV is shown in orange
in Fig. 1. We refer to the vehicles that are within commu-
nication range of a task vehicle and are capable of serving a
collaborative learning task as ServiceVehicles (SVs). SVs are
shown in grey in Fig. 1. We assume basic communication
among vehicles is supported to allow system-level beacon
messages as well as application messages. The periodic beacon
messages allow vehicles to discover neighboring vehicles. The
application messages allow vehicles to exchange sensor data,
calibrated sensor parameter, vehicle location, velocity and
moving direction.

B. Depth-Fused Images

Sensor fusion is used to aggregate correlated multi-view
images from nearby vehicles for pseudo labeling. As shown
in Fig. 2, we obtain depth-fused images by fusing information
from depth sensors with 2D RGB images in an early fusion
style. Since our proposed approach does not have limitation on
the choices of depth sensors, we use point clouds, which can be
easily obtained, to illustrate the process of depth-fused image
generation. Following the standardized formulation in [22], let
each point in a 3D point cloud be represented by [x, y, z, 1]T ,
where x, y, and z are the coordinates of the point. Note that,
given the coordinates of the depth sensor, xs, ys, and zs, the
depth information d for the point [x, y, z, 1]T can be easily
calculated. For simplicity, we assume that the d value is stored



Fig. 2: Depth-Fused Image

as part of the data record of each point. Let a pixel in an image
plane be represented by [u, v, 1]T , where u and v denote the
row and column position of the pixel, respectively.

As the relative position between depth sensor and camera
can be acquired through calibration, the point cloud can be
projected to the image pixel array according to:uv

1

 = K

[
R t
0 1

]
x
y
z
1

 (1)

where K, R, and t denote the intrinsic matrix, rotation matrix,
and translation vector of the RGB camera, respectively [22].
By applying Eq. 1 to every point in the point cloud, point
cloud points, along with their depth values, are mapped to
corresponding pixels in the 2D image.1 In this way, a depth
map D of the same dimension as an image I captured by
the RGB camera is obtained. Through matrix concatenation,
D and I are combined to become the depth-fused image
D = I|D, where the value in each cell of D contains red,
green, blue, and depth values. During the concatenation, pixels
without projected depth info will be automatically assigned∞
as a depth value. To simplify the discussion, everywhere we
use the term “image” in the following sections, we refer to a
2D RGB image.

IV. MULTI-VIEW PREDICTION TRANSFER

As obtaining human annotation is impractical as well as
expensive in vehicular networks, the multi-view prediction
transfer (MPT) scheme is proposed to improve the quality of
generated pseudo labels. Inspired by the image-based shape-
from-silhouette [23] and 3D shape belief transfer proposed
in [24], we use depth-fused images to fuse multi-view in-
formation for better pseudo label generation. For ease of
presentation, we simplify the terminology so that wherever
we refer to the “label of an image”, we are referring to the
label matrix that has a label for each pixel of the image.

1) How does MPT work: Consider a scenario that vi and
vj are moving on the same road but in different lanes. As
depicted in Fig. 3(a) and Fig. 3(c), we can see that vi is in
front of vj and the black vehicle shown in vj’s view is indeed
vi. Though the locations of vi and vj are different, they share
some common objects in their views. The MPT task goal here
is to let vj produce pseudo labels for vi’s image, denoted

1All resulting points [u, v] that fall outside the boundary of the image plane
are discarded.

by Iti , captured at time step t. Assume vj is equipped with
a local model that can generate per-pixel prediction φj,n for
every pixel n on its input image. Thus, two predictions can be
made by vj : 1) φj,n(Iti ), prediction of vi’s image at time step
t, and 2) φj,n(Itj), prediction of vj’s corresponding image
captured at time step t. As the second prediction is made
on a different view (image), we need to transfer the second
one to the first one’s image plane, so that we can aggregate
the predictions from these two different views. Following the
procedure introduced in Section III-B, both vi and vj are
able to obtain the depth-fused image Dti , Dtj based on their
local sensor data. As stated in Section III-A, we assume that
Dti , Ki, and location of vi is known to vj upon receiving
vi’s application message. Then, vj can easily reconstructs the
rotation matrix Ri and translation matrix ti of vi. Therefore,
given the depth information incorporated in the depth-fused
image, vj is able to transfer the per-pixel prediction φj,n(Itj)
to the view of vi (the plane of Iti ). by:

[φj,n(Iti ← Itj)|ε] = [φj,n(Itj)|Dt
j ]K

−1
j

[
Rj tj
0 1

]−1 [
Ri ti
0 1

]
Ki

(2)
where ε represents the redundant numbers generated by matrix
transformation. Hence by dropping the ε term, the transferred
prediction φj,n(Iti ← Itj) is obtained as shown in Fig. 3(e).
vj now obtains two sets of predictions toward the same input
image Iti , incorporating information from two different views.
By extending this procedure to a group of neighboring vehicles
with diverse views, a fuller understanding of the common
objects can be obtained.

2) MPT results improvement: As we can see from the figure
that the depth information is missing at certain pixel locations
(black in Fig. 3(e)), this is due to either out of range objects
or the sparsity of captured point clouds. If the point clouds
are too sparse, the benefit of this scheme will be deteriorated,
because there would be little information to correctly correlate
pixel locations in diverse views. We follow the interpolation
method introduced in [25] to upsample the depth-fused images,
so that the depth-fused images with denser depth information
are obtained. For the pixel location whose depth value is still
missing after the cure, we treat the pixel as out of scope pixel
and fill the depth value with +∞.

3) Adaptation to other image-based machine learning
tasks: Moreover, this multi-view shape transfer scheme can be
easily adapted to bounding box object detection, by replacing
the per-pixel segmentation prediction to the bounding box
prediction or sample points with depth information inside the
bounding box.

V. ONLINE ACTIVE LEARNING FRAMEWORK

In this section, we provide the details of the online active
learning framework in our proposed MultiVTrain methodology
for the application of semantic segmentation. While we believe
the approach can be extended fairly easily to other tasks such
as object detection, we leave extensions as future work and
focus on semantic segmentation from here on. From the high-
level perspective, we address the challenge of expensive data



(a) Image Itj Captured
by vj at time step t

(b) Carla-Generated
Ground Truth of Itj

(c) Image Iti Captured
by vi at time step t

(d) Carla-Generated
Ground Truth of Iti

(e) Raw MPT results
φj,n(Iti ← Itj)

(f) Upsampled MPT
results φj,n(Iti ← Itj )

Fig. 3: Example Scenario of Multi-View Prediction Transfer (MPT)
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Fig. 4: Online Active Learning Framework Loop

labeling for machine learning in vehicular networks by online
active learning, where no human labelers and centralized
servers are required. The five-stage loop of our online active
learning framework is illustrated in Fig. 4.

We assume an initial segmentation model is pre-trained and
installed in each vehicle before leaving the factory. This model
is then updated by each round of active learning. During
the online sample query stage, a vehicle will estimate the
informativeness of the newly captured images. Whenever there
is an informative image found, the vehicle will interact with
its neighboring vehicles to collaboratively annotate the image
based on group members’ own images and local model predic-
tions. After group decision of the image labeling, each vehicle
in the group will decide based on their own situation whether
this labeled image should be added to its training dataset. Each
vehicle will update its local model after the updates of its
training dataset. However, to reduce computational overhead,
we let each vehicle aggregate multiple new annotated images
in their training dataset before performing a model update.
Details of each stage are provided next.

A. Initialization

In the initialization stage, passive learning consisting of
the conventional supervised learning of a multi-class segmen-
tation based on human annotation (“ground-truth” labeling)
is performed. The pre-trained base model is produced from
M well-labeled data samples. The base model takes an in-
put image I and outputs a per-pixel object confidence, i.e.,
φ(I, ω) ∈ [0, 1]N×C , where N is dimension of the output
distribution, and C is the number of object classes. This is
equivalent to a multi-class segmentation task [26]. We use the
standardized sum of pixel-wise cross entropy to measure the

segmentation loss:

Lce = − 1

N

N∑
n=1

C∑
c=1

yn,c log(φn,c) (3)

where y ∈ {0, 1} is the ground truth label, N denotes the
number of pixels in an image, and yn,c and φn,c represent the
ground truth label and probability prediction for the nth pixel
of class c, respectively.

We assume that different brands of vehicles hold different
initial models as, in reality, they usually do not share labeled
datasets. Moreover, as different vehicles hold different trip
histories, even if the initial model is the same at the beginning,
the model will be different after certain times of local model
updates. Therefore, we assume that the initial models for all
vehicles are different in some way.

B. Sample Query

The key reason why active learning can efficiently improve
a model with less training data is that it allows the machine
learning algorithm to choose the data from which it learns,
e.g. by selecting images that the current model does not
predict well. Such data is said to be informative [5]. Scoring
the informativeness of an unlabeled image is, therefore, an
important component of selecting new input data to learn from.
In our proposed MultiVTrain method, we use the uncertainty
concept to evaluate the informativeness of an image [16]. Thus,
the informativeness scoring S of an image I with N pixels is
calculated by cross-entropy as:

S(I) =
1

N

N∑
n=1

H(φn) = − 1

N

N∑
n=1

C∑
c=1

φn,c log(φn,c) (4)

H(φn) represents the entropy of prediction for one pixel in
N , calculated by

∑C
c=1 φn,c log(φn,c), where φn,c denotes the

confidence that pixel n should be predicted as class c.
Though the common approaches use the computed infor-

mativeness score to decide which images should be sampled
for annotation, yet in vehicular networks, images arrive in a
streaming way, where consecutive images in a certain range
could score similarly due to the similar view. For instance,
if a vehicle stops at a crossing due to red light, the images
captured during the wait will be very similar, which need not
be learned multiple times, as it wastes the annotation as well
as training resources. Therefore we introduce another metric -
cross-image diversity, where pixel-wise prediction histogram



plus vehicle location difference are counted, to avoid choosing
consecutive images with a similar view. An image is selected
as a query sample if and only if both informativeness score
and cross-image diversity are larger than certain threshold.

Note that different from other active learning frameworks,
we will not train on every queried samples. Considering the
relatively limited local resources, we allow the vehicle to
decide whether to learn from a sample in the Training Dataset
Update stage. More details are provided in Section V-D

C. Online Collaborative Annotation

Though offloading all sampled data to remote cloud and
relying on human labeling is considered accurate and reliable,
the delay and labor cost is non-negligible. Besides, neighbor-
ing vehicles usually hold overlapping objects in their views,
where the views usually capture the same object with different
angles, distances, and occlusion conditions. Hence, by combin-
ing these multiple views together, a fuller observation of these
objects can be obtained and better segmentation results can be
achieved than using images from one single view. Therefore,
instead of resorting to human labeling, MultiVTrain achieves
data annotation in a distributed fashion without human in-
tervention by leveraging neighboring vehicles’ different local
models along with their multi-view depth-fused images.

As described in Sec. III-A, we assume that each vehicle
is equipped with a depth sensor and an RGB camera facing
the front and that a 3D point cloud obtained from the depth
sensor is fused with a 2D color image captured by the RGB
camera to produce a depth-fused image. Once a sample image
Iti is successfully selected during the sample query stage, its
corresponding depth-fused image will be generated. Following
the notation used in Section IV, let Dti = (Iti , dti) denote
a depth-fused image generated by vehicle vi in time step
t, and φi(Iti ) denote the segmentation prediction generated
by vi’s local model towards Iti . As illustrated in Figure 1,
the TV (vi ∈ G) will form a group G with its neighboring
vehicles (vj ∈ G), and broadcast its depth-fused image Dti
and prediction φi(Iti ) to the group members (Lines 2-3 of
Algorithm 1). Upon receiving TV’s data, a SV will need to
produce a pseudo label towards Iti . Since different vehicles
hold different pre-trained local models and each vehicle’s
travel history is unique, their capability of prediction for
different types of objects, lighting condition, traffic scenario,
etc. will be different. It is important to aggregate the strength
of prediction of diverse models. Therefore, a SV vj will first
compute a prediction directly based on its local model to
obtain φj(Iti ) (Line 5). However, as a vehicle’s local model is
not perfectly accurate and could potentially be affected by the
view and distance to the components, we use MPT scheme (see
Section IV) to obtain a transferred prediction φj(Iti ← Itj)
based on SV’s own view. A pseudo label would be generated
by synthesizing the local model prediction and MPT generated
prediction. (Lines 7-11).

Intuitively, if an object is closer to the vehicle (depth d) or is
more centered to the camera (angle α), the object is less likely
to be occluded and is more likely to show better resolution in

Algorithm 1: Depth-Based Weighted Voting Scheme
for Pseudo Label Integration

1 task vehicle: vi ∈ G, service vehicle: vj ∈ G;
2 while vi selects a valid sample image Iti do
3 vi broadcast the corresponding depth-fused image Dti

and prediction φi(Iti );
4 for all available vj receives Dti , φi(Iti ) do
5 computes prediction φj(Iti ) using vj’s local model;
6 apply MPT scheme (Eq. 2) and obtain φj(Iti ← Itj);
7 for each pixel n in Iti do
8 if (n : Iti ← Itj) exist in Iti then
9 obtain Lj,n(Iti ) based on Eq. 5

10 else
11 Lj,n(Iti ) = φj,n(Iti )

12 broadcast Lj,n(Iti ) to other group members;

13 for all members in G do
14 take vi’s φi(Iti ) as Li,n(Iti );
15 for each pixel n in Iti do

16 LG,n(Iti ) = 1
|G|

|G|∑
vk∈G

Lk,n(Iti )

17 go back to the start of WHILE loop;

the captured image. Hence, a novel depth-boosted prediction
integration scheme is proposed as:

Lj,n(Iti ) = γj,nφj,n(Iti ← Itj) + (1− γj,n)φj,n(Iti )),

γj,n =
1
2
− 1

2
sin(

|αt
j,n|−|α

t
i,n|

ᾱ
)

1 + e
dt
j,n

−dt
i,n

d̄

(5)

where Lj,n denotes the pseudo label generated by vj for pixel
n. γ ∈ [0, 1] is a weighting coefficient defined to combine the
two predictions, which is based on depth (d) as well as angle
(α2) to the center of the camera. Angle αtj,n, αti,n, emulate the
pixel n’s centerness to the camera of vj and vi respectively,
such that the more center position the pixel locates, the larger
the angle becomes. Similarly, dtj,n, dti,n represent the depth
value at pixel n in Dtj and Dti respectively. The smaller
the depth is, the content captured by pixel n is closer to
the camera (vehicle). ᾱ and d̄ are two hyper-parameters that
control the sensitivity to the angle and depth value, where
the larger the hyper-parameter is, Lj,n is less sensitive to the
corresponding value. In summary, the larger the γ becomes
at pixel n, the higher weight will be given to the transferred
prediction φj,n(Iti ← Itj), because we believe that at pixel n,
vj’s view provides better information than vi’s view, and vice
versa. Note there is a special case that when γj,n is as close
as to 0.25, the view is as close as to the view of the TV. When
γ = 0.25, the two views are considered the same. When the
transferred prediction φj,n(Iti ← Itj) is missing at pixel n,
dnj =∞ and γ becomes zero, in which only the local model
prediction φj,n(Iti ) will be factored in.

2The angle can be reconstructed from depth-fused image through
arccos xn−xo√

(xn−xo)2+(yn−yo)2
, where xn, xo denotes the x axis coordinate

of pixel n and camera center o, same as yn, yo.



Once a SV obtains per-pixel level pseudo label Lj,n(Iti ), it
sends its vote to other group members (Line 12). Each group
member integrates the pseudo label vote produced by other
group members through average voting and obtains the group
decision of final label for the sample image Itj . As TV is the
initiator and does not have another view, its prediction φi(Iti )
will be taken as its vote of pseudo label directly. (Lines 13-16).

D. Training Dataset and Local Model Update
Although the image sample is selected by task vehicles

instead of service vehicles, the sample might also be informa-
tive to learn for the service vehicles or uninformative to learn
even for the task vehicle, as the informativeness is decided by
estimation. Therefore, we let each vehicle participating in the
collaborative annotation stage compare the group annotation
results with its own local prediction results. If the prediction
difference between local prediction and the group annotation
is larger than certain threshold Tth, this sample is considered
as valuable to learn. In that case, this would also add the data
sample into its training dataset.

To avoid catastrophic forgetting, i.e., forgetting old tasks
in the presence of more recent tasks and to save computation
resources, we update the local model once 64 new informative
data samples are captured. We follow the online continual
learning paradigm as discussed in [27]. To be more specific,
we adopt the naive rehearsal method [28], where a small replay
buffer is built to store a fraction of previous data randomly.
While conducting a new round of model update, each mini-
batch is constructed by an equal amount (8/8) of new data
and the rehearsal data3.

VI. SIMULATION SETUP AND DATA COLLECTION

A. Experiment Setup
The evaluation is performed using the Carla simulator [29],

which supports a variety of towns, driving scenarios, types
of sensors, and ground-truth label generation. Unlike other
data sources, Carla allows us to generate images of the same
objects from multiple vehicles at different locations at the same
time, which is necessary for evaluating our proposed approach.
Details of the experimental setup are provided below.

1) Simulation Scenario: A group of five vehicles was sim-
ulated in Carla environment. In order to let them stay within
communication range so that groups can be formed, the built-
in PDE control is leveraged to limit the maximum pair-wise
distance among the vehicles to be 250m. Since we do want to
simulate different aspects of multi-view effects, nothing else
was controlled other than the pair-wise distance. Thus, the
relative position, direction, speed, etc. between the vehicles
were dynamic. An initial model, a depth camera4, and an RGB

3We use the combination of (8, 8) here due to the GPU limit. Though the
(64/64) setup listed in the paper is more ideal, the 1 : 1 ratio between new
data and the rehearsal data in each batch size is more important.

4As discussed earlier, either depth camera or lidar can be used to provide
depth info and evaluate our proposed approach. The raw data captured by lidar
is 3D point cloud while the raw data captured by depth camera is encoded in
2D matrix format, which can be reconstructed to 3D point cloud if needed.
Thus, depth camera is used to save I/O delay and computer storage. However,
which sensor is used should not impact the performance of the approach.

TABLE I: Model Training Settings Overview (gt represents
“groundtruth”, pl represents “pseudo label”)

Models Training Method Training Set

PSP-pagt Passive, Offline 1148 (TS 1, GT)
Deepv3-pagt Passive, Offline 1148 (TS 1, GT)
PSP-acgt Active, Offline 700 (TS 1, GT) + 448 (TS 2, GT)
Deepv3-acgt Active, Offline 700 (TS 1, GT) + 448 (TS 2, GT)
PSP-acpl Active, Offline 700 (TS 1, GT) + 448 (TS 2, PL)
Deepv3-acpl Active, Offline 700 (TS 1, GT) + 448 (TS 2, PL)
ACMV-acpl Active, Online 700 (TS 1, GT) + 448 (TS 3, PL)
ACWA-acpl Active, Online 700 (TS 1, GT) + 448 (TS 4, PL)
MultiV-acpl Active, Online 700 (TS 1, GT) + 448 (TS 2, PL)
MultiV-acgt Active, Online 700 (TS 1, GT) + 448 (TS 2, GT)

camera were attached to each vehicle and calibrated in the
same way, so that with the application messages as described
in Sec. III-A, a vehicle was able to calculate neighboring
vehicles’ rotation and translation matrices easily. At run time,
each vehicle captures an image every 100 ms and tries to find
a sample image to learn. Once a sample is found, the group
of vehicles will cooperatively annotate the sample and update
their training sets and local models as needed.

2) Dataset Collection: Four training sets, one validation
set, and one test set were collected using Carla. Training set
1 (TS 1: 1400 images) and the validation set (200 images)
for building the passive learning models was generated by a
single vehicle traveling in the built-in town maps (Town01
and Town07), where groundtruth labels “-pagt”) are auto-
generated by Carla. The test set, which consists of 400 images,
was collected through the same procedure but from Town05
instead, so that we can make sure that no vehicles have seen
similar scenes before to avoid unfair comparisons. Training
set 2 (TS 2: 448 images) is collected through simulation of
active learning (AL), where two sets of labels are obtained:
auto-generated groundtruth labels “-acgt”) and pseudo labels
(“-acpl”) generated by a module implementing our proposed
MultiVTrain procedure. Training sets 3 and 4 (TS 3: 448
images and TS 4: 448 images) of the same size as TS 2
are generated under the exact same simulation set up but
are used to run different AL frameworks for comparison.
Implementation details are provided in Sec. VI-B. Finally, all
images are collected in the form of RGB images with the
resolution of 680x420 pixels, while other information such
as depth-fused images and vehicle transformations are also
recorded for TS 2, in order to be able to repeat the experiments.

B. Training Details

Two MultiVTrain models and eight baseline models are
trained with different settings to provide a thorough evalua-
tion. All models are built using the PyTorch framework and
trained using a single NVIDIA-RTX2080Ti GPU. The Adam
optimizer was adopted and all models were trained for 40
epochs and a batch size of 16. The learning rate was set to
1e-4. Details of each training method are provided below.

1) Training for MultiVTrain: PSPNet was selected as our
segmentation network and the two hyper-parameters ᾱ and d̄
were set to 1.5 and 500 empirically. Each initial model was



trained with 700 randomly sampled images from TS 1 and
data augmentation including horizontal flip, random rotation,
random crop, Gaussian noises were used. The same validation
set was used for all initial models. During the AL stages, no
data augmentation was done and the batch size of 16 was split
to (8/8) as described in Section V-D. Simulation ended after
448 samples were added to a training set, where 228 samples
were each collected from Town01 and Town07. To simplify
the evaluation process and fairly compare performance with
baseline approaches, we recorded all sampled data and its
corresponding parameters, so that other approaches could be
trained on the exact same dataset. The MultiVTrain model
trained with pseudo labels is denoted by “MultiV-acpl”, while
the model trained with ground truth labels is denoted by
“MultiV-acgt”.

2) Training for Baselines: We compare our approach with
different baseline algorithms by adapting two existing super-
vised learning methods, PSP [13] and DeepLabv3 [30], and
the active learning schemes in [18], [21].

a) Supervised Learning Baselines: To evaluate how each
stage of our active learning framework performs, we trained
the two supervised learning methods in offline style, which
generates the best predictor by learning on the entire training
data set at once. With the PSP method, we randomly selected
1148 images from TS 1 with ground truth labels to produce the
PSP-pagt model. Then, 700 images randomly sampled from
TS 1 plus 448 random images from TS 2 with pseudo labels
generated with our AL approach were used to produce PSP-
acpl. Finally, the same set of 700 TS 1 images and 448 TS 2
images but with ground truth labels were used to obtain PSP-
acgt. In the exact same way as just described for PSP, we
generated three models using the DeepLabv3 method, which
are denoted by Deepv3-pagt, Deepv3-acpl and Deepv3-acgt.

b) Active Learning Baselines: To compare MultiVTrain with
other AL approaches, two AL baselines were implemented and
trained in an online style as in our approach, where selected
data is used to update the best predictor for future data at each
step, instead of retraining on the entire new dataset. We used
the uncertainty based data selection and majority voting (MV)
pseudo label generation method, as proposed in [18], and
trained in the exact same manner as in MultiV-acpl to produce
the ACMV-acpl model. Similarly, we replaced our proposed
data selection and collaborative annotation methods with the
quality-diversity selection (QDS) and weighted average (WA)
integration method, as proposed in [21], to obtain ACWA-acpl.

A summary of the training methods and applied training
sets for all models is provided in Table I.

VII. EVALUATION

As different image segmentation tasks serve different appli-
cation goals, we use the standardized Intersection-Over-Union
(IoU), also referred to as Jaccard Score, to evaluate the per-
class prediction performance. The IoU is calculated as:

IoU =
ncc

ncc +
∑C
η 6=c(nηc + ncη)

(6)

where ncc presents the number of pixels which are labeled
as class c and predicted as class c (True Positives), nηc is the
number of pixels which are not labeled as class c but predicted
as class c (False Positives); similarly, ncη is the number of
pixels which are labeled as class c but are not predicted as
class c (False Negatives). The mean over the per-class IoUs,
denoted by mIoU, is used to quantify the overall segmentation
performance. A quantitative comparison is shown in Table II.
Ten models with different configurations are tested with the
same unseen test set (collected from Town05 as described in
Sec. VI-A2). Per-class IoUs are shown in the first 13 data
columns and the mIoU is provided in the last column.

A. Performance of Different Aspects of MultiVTrain

We begin by evaluating three important aspects of our
proposed MultiVTrain framework: 1) whether it is effectively
selecting data samples that improve the model; 2) how its
generated annotations (pseudo labels) compare to ground truth;
and 3) whether it is vulnerable/sensitive to the common
forgetting issue that affects some AL approaches.

1) Effectiveness of Sample Data Selection: PSP-pagt and
Deepv3-pagt are both popular supervised learning models
trained in passive style where training samples are not selected
as in AL (see Table I). In order to determine how well our
data selection method works, we compare these approaches to
PSP-acgt and Deepv3-acgt, which are trained using the data
selected by our method. From Table II, we see that the mIoU
of PSP-acgt is 6.8% higher than that of PSP-pagt and the mIoU
of Deepv3-acgt is 6.2% higher than that of Deepv3-pagt. For
classes that are not predicted well by the passive methods, e.g.
traffic light, pedestrian, and car, PSP-acgt and Deepv3-acgt
outperform PSP-pagt and Deepv3-pagt by a larger margin, up
to 14.8%. This demonstrates that our approach to identifying
informative data to learn from, rather than simply learning
more data, is effective at improving model accuracy.

2) Effectiveness of Collaborative Annotation: MultiV-acgt
is trained like MultiV-acpl except for using ground truth labels
instead of our collaborative annotation procedure that produces
pseudo labels. From Table II, we see that the mIoU of MultiV-
acgt is only 1.5% higher than MultiV-acpl, which shows
that our proposed collaborative annotation achieves excellent
performance with the pseudo labels it produces. Performance
across the individual classes is fairly even, with differences
in the range of 0.1% to 4.3% between ground truth labels
and pseudo labels. However, even for the worst case with our
pseudo labeling (“car (all types)”), ground truth labels produce
only 4.3% better accuracy than our pseudo labels, which is
not a huge margin. Overall, these results show that the pseudo
labels produced by our MPT and depth-boosted integration
scheme perform well in that they produce close to ground
truth performance.

3) Impact of Online Model Updates: With online learning,
models are updated in a faster and more resource-efficient
manner, which is particularly important for vehicular net-
works. However, the “forgetting” problem can occur with
online learning, which happens when the model learns new



TABLE II: Quantitative Results Comparison with Multiple Baselines

Methods Classes (IoU) Average (mIoU)

road sidewalk building wall fence pole traffic
light

traffic
sign vegetation terrain sky pedestrian/rider car (all types)

PSP-pagt 0.956 0.778 0.804 0.595 0.601 0.603 0.639 0.757 0.891 0.609 0.936 0.642 0.735 0.734
Deepv3-pagt 0.953 0.769 0.799 0.592 0.596 0.595 0.621 0.753 0.887 0.603 0.929 0.636 0.733 0.728

PSP-acgt 0.980 0.845 0.906 0.631 0.632 0.658 0.697 0.775 0.922 0.632 0.956 0.737 0.822 0.784
Deepv3-acgt 0.979 0.832 0.874 0.627 0.625 0.643 0.682 0.779 0.919 0.628 0.954 0.692 0.809 0.773

PSP-acpl 0.987 0.801 0.844 0.613 0.612 0.629 0.663 0.776 0.910 0.624 0.954 0.665 0.758 0.756
Deepv3-acpl 0.977 0.796 0.838 0.604 0.609 0.605 0.657 0.770 0.902 0.622 0.955 0.661 0.752 0.750

ACMV-acpl 0.884 0.686 0.741 0.536 0.545 0.578 0.598 0.692 0.839 0.561 0.874 0.584 0.674 0.676
ACWA-acpl 0.941 0.722 0.763 0.549 0.551 0.588 0.601 0.717 0.840 0.579 0.882 0.596 0.685 0.693

MultiV-acpl 0.977 0.792 0.824 0.603 0.614 0.617 0.657 0.776 0.903 0.621 0.951 0.659 0.742 0.749
MultiV-acgt 0.978 0.802 0.846 0.611 0.620 0.634 0.671 0.787 0.912 0.626 0.952 0.671 0.774 0.760

unseen data and gradually forgets about important infor-
mation learned in the past. By integrating the rehearsal-C
approach [28] of training with both new and old data into
our AL framework, the negative impacts caused by online
learning can be minimized. By comparing results of PSP-acpl
and Deepv3-acpl with MultiV-acpl (or PSP-acgt and Deepv3-
acgt with MultiV-acgt), however, we do see that offline model
training does perform slightly better than with online training,
albeit at a very high cost in terms of speed and efficiency.

B. Comparison of MultiVTrain and AL Baselines

As mentioned earlier, we adapted two active learning base-
line approaches to our problem setting and compared them to
MultiVTrain. As shown in Table II, MultiV-acpl achieves 8.1%
to 10.8% higher mIoU than ACMV-acpl and ACWA-acpl,
with large margins (above 5%) in each per-class improvement,
except for pole. This is mainly because both ACMV-acpl
and ACWA-acpl neglect the importance of distance to the
objects when determining the best pseudo labels. Also, though
ACWA-acpl factors in the rated accuracy of the initial model,
this approach does not adapt well to new never-before-seen
data. Performing well on a limited test set does not mean it
will achieve comparable performance on other test sets. As
described earlier, we used Town01 and Town07 to generate
training data, while leaving the unseen dataset collected from
Town05 for testing, which we believe is representative of how
active learning in vehicles will occur in practice.

C. MultiVTrain Performance with Varying Parameters

In order to study MultiVTrain performance and conduct
fair comparisons with multiple baselines, we fixed several
parameters in the prior results. Here, we study the approach’s
performance as some of those parameters are varied.

1) Model Accuracy vs. Group Size: As we replace the
human annotator with a group of vehicles with multiviews,
the group size affects MultiVTrain’s performance. We varied
the group size from 2 to 8 with the remaining parameters
unchanged. Selected classes are shown in Fig. 5. We see that
as the number of group participants grows, the performance
increases. However, the model accuracy improves fastest when
going from 3 up to 6 vehicles, while improvement from 2
to 3 and beyond 6 is much smaller. Moreover, the smaller

Fig. 5: Model Accuracy (mIoU, IoU) vs. Group Size

Fig. 6: Model Accuracy (mIoU) vs. Initial Training Set Size

size objects such as pedestrian/rider, traffic sign, and car (all
type) show close to linear growth as the group size increases,
while larger objects like road and building show more IoU
improvement when the group size is increased from 2 to 4
and 2 to 3. These results show that it is important to have
around 4 vehicles within a group to provide sufficient view
diversity and that gains are smaller with only 2–3 vehicles.

2) Model Accuracy vs. Initial Training Set Size: Intuitively,
better accuracy of the initial model could lead to generated
annotations with higher quality. As the accuracy of the initial
model is mainly decided by the size of the training set, we
evaluate how the initial model affects the training results by
varying the initial training set size from 500 to 900, leaving
the other portion of 448 images with -acpl labels from TS 2
unchanged. Four other models are tested along with MultiV-
Train and the results are shown in Fig. 6. We observe from the
figure that as the size of training set grows, the performance for
all models grows. Note that ACMV-acpl and ACWA-acpl are



more sensitive to the size of initial model, which implies that
both majority voting and weighted average integration method
mainly account for the initial model performance. This is also
why our approach does not show a big performance drop when
size = 600, contrary to the other AL approaches. Other than
only considering the initial model prediction (heavily relies
on initial model accuracy), our proposed method accounts for
the multi-view benefits by leveraging the depth information,
which enables the vehicle to still improve model performance
when the initial model is not at a high quality. This aligns with
the current real world application requirement in vehicular
networks, where existing dataset is limited and cannot well
account for all complex scenarios.

3) Other Interesting Parameters: Other than group size and
initial model training size, we believe the group members’
view diversity and the AL stage training set size are also
interesting to study for future work. Due to limited space,
we cannot evaluate these parameters in detail but a short
discussion is provided. a) Diversity of Views: as demonstrated
in prior computer vision works [24] the more views of the
same object that can be obtained, the higher chance the object
can be better detected by aggregating the information, which
agrees with our evaluation results in Section VII-A2 and
Section VII-C1. However, given the same group size, we were
not able to evaluate how the diversity of views affects the
results. b) AL Training Set Size: Though AL is known for its
efficiency, how would the performance of MultiVTrain grow as
the AL training set grows. Will the current performance trend
still hold or will the improvement be even larger if the AL
training set grows from 448 to 448M, for example? Since our
proposed method allows vehicles to collect data and update
the model at run time, it is reasonable to let the vehicles
continue learning until the model cannot be further improved.
The improvement cap in terms of AL training size is, therefore,
another interesting topic for future research.

VIII. CONCLUSION AND FUTURE WORK

We presented MultiVTrain, an online AL framework, which
allows the vehicles to cooperatively generate training data and
corresponding labels without querying remote human annota-
tors. In addition, a novel multiview prediction transfer scheme
is proposed to enhance label quality via sensor data fusion and
multiview alignment. Future work will study the parameters
discussed in Section VII-C3 and extend the robustness of
the framework to meet other practical challenges in vehicular
networks, e.g. tolerating connection loss and achieving higher
task completion rate.
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