
Distributed Unique Global ID Assignment for
Sensor Networks

ElMoustapha Ould-Ahmed-Vall, Douglas M. Blough, Bonnie S. Heck and George F. Riley
School of Electrical and Computer Engineering, Georgia Institute of Technology

Atlanta, Georgia 30332–0250
Email: eouldahm,doug.blough,bonnie.heck,riley @ece.gatech.edu

Abstract—A sensor network consists of a set of battery-
powered nodes, which collaborate to perform sensing tasks in
a given environment. It may contain one or more base stations
to collect sensed data and possibly relay it to a central processing
and storage system. These networks are characterized by scarcity
of resources, in particular the available energy.
We present a distributed algorithm to solve the unique ID

assignment problem. The proposed solution starts by assigning
long unique IDs and organizing nodes in a tree structure. This
tree structure is used to compute the size of the network. Then,
unique IDs are assigned using the minimum number of bytes.
Globally unique IDs are useful in providing many network
functions, e.g. configuration, monitoring of individual nodes, and
various security mechanisms.
Theoretical and simulation analysis of the proposed solution

have been preformed. The results demonstrate that a high
percentage of nodes (more than 99%) are assigned globally
unique IDs at the termination of the algorithm when the algo-
rithm parameters are set properly. Furthermore, the algorithm
terminates in a relatively short time that scales well with the
network size. For example, the algorithm terminates in about 5
minutes for a network of 1,000 nodes.

I. INTRODUCTION

A sensor network consists of a set of battery-powered
nodes, which collaborate to perform sensing tasks in a given
environment. It may contain one or more base stations to
collect sensed data and possibly relay it to a central processing
and storage system.
The communication range of individual nodes is generally

limited, and communication is often carried out in a multi-
hop way. There is a need to have a unique identifier in
the header of every unicast packet. In fact, routing protocols
need to uniquely identify the final destination as any node in
the network can be a potential destination. Several routing
protocols use attribute-based routing and therefore can use
attributes as global identifiers. However, even these protocols
require the existence of unique IDs at a local level. This is the
case for directed diffusion [1] and geographical routing proto-
cols such as [2]. Network-wide unique IDs are beneficial for
administrative tasks requiring reliability, such as configuration
and monitoring of individual nodes, and download of binary
code or data aggregation descriptions to sensor nodes [3].
Network-wide unique IDs are also required when security
is needed in sensor networks [4]. Several MAC protocols
requiring the preexistence of network-wide unique IDs have
also been proposed for sensor networks [5].

Assumption of the preexistence of network-wide IDs is not
realistic in the case of sensor networks. The preexistence of
network-wide global IDs requires hard-coding these IDs on
nodes prior to the deployment. This is costly in terms of time
and effort when a network contains thousands to hundreds
of thousands of nodes. Another alternative is to have MAC
addresses that are unique for every manufactured sensor node,
as is the case for Ethernet cards [6]. This is not a realistic
approach because of the coordination it requires and the fact
these IDs would have to be very long and therefore costly to
use in packet headers.
An obvious ID assignment strategy is to have each node ran-

domly choose an ID such that the probability of any two nodes
choosing the same ID is very low. However, for this probability
to be low, we need the IDs to be very long, which is again
costly in terms of energy [7]. Any ID assignment solution
should produce the shortest possible addresses because sensor
networks are energy-constrained. The usage of the minimum
number of bytes required is motivated by the need to limit the
size of transmitted packets, in particular the header. In fact,
communication is usually the main source of energy drain in a
sensor node [8]. For this reason, sensor networks are designed
to limit the amount of data transmitted, for example through
data aggregation. This reduces the payload of transmitted
packets, which makes the header size even more significant.
In this paper, we introduce an algorithm that assigns unique

IDs to sensor nodes using only the minimum number of
bytes. The algorithm does not assume the preexistence of
any type of identification and scales well with the size of
the network. We also do not assume the preexistence of any
communication protocols. In particular, the preexistence of a
specific collision avoidance mechanism is not assumed. The
algorithm handles collisions through prevention and recovery.
Collisions are prevented through the scheduling of transmis-
sions at random times. If collisions occur, they are detected
through a confirmation mechanism, and recovery is performed
by retransmitting colliding packets.
The algorithm can be divided into three main phases. In

the first phase, a tree structure is established and, at the same
time temporary long IDs are assigned. These temporary IDs
are used for reliable communication during the remaining two
phases. In the second phase, the size of sub-trees is reported
bottom-up from leaf nodes to the root. In the third phase, the
final short IDs are assigned.

0-7803-9466-6/05/$20.00 ©2005 IEEE MASS 2005

We analytically prove the correctness and termination of
the algorithm. We also assess its performance in terms of the
execution time and the probability that a node is left without
an assigned ID at the end of the algorithm.

II. RELATED WORK

In general, network-wide unique addresses are not needed
to identify the destination node of a specific packet in sensor
networks. In fact, attribute-based addressing fits better with the
specificities of sensor networks [9]. In this case, an attribute
such as node location and sensor type is used to identify the
final destination. However, different nodes can have the same
attribute value, in particular in the same neighborhood. Thus,
there is a need to uniquely identify the next hop node during
packet routing [10].
Several schemes have been proposed to assign locally

unique addresses in sensor networks. In [8], Schurgers, et
al., developed a distributed allocation scheme where local
addresses are spatially reused to reduce the required number of
bits. The preexisting MAC addresses are converted into locally
unique addresses. Each locally unique address is combined
with an attribute-based address to uniquely determine the final
destination of a packet. This use of locally unique addresses
instead of global addresses does not affect the operations of
the existing routing protocols. This solution assumes the pre-
existence of globally unique addresses, which is not realistic
in the case of sensor networks. Our solution can be used to
assign these global addresses prior to the use of the method
in [8].
In [10], Ali, et al., proposed an addressing scheme for

cluster-based sensor networks [11]. To prevent collisions,
nodes within the same cluster are assigned different local
addresses. Non-member one-hop and two-hop neighbors must
also have different local addresses to avoid the hidden-terminal
problem. The network is divided into hierarchical layers where
the number of layers increases with the number of nodes in the
network. Global IDs are obtained by putting together the local
address and the addresses of the head nodes of the different
layers. This solution suffers from the fact that the address
size increases with the number of layers as 6 bits are added
for each layer. This makes this solution less attractive due
to the energy cost of using global IDs in the case of large
sensor networks. In addition, this solution can be used only
with cluster-based routing and does not extend to the case of
multi-hop routing [12].
In [3], Dunkels, et al., developed a spatial IP addressing

scheme using node location. The (x, y) coordinates of a node
are used as the two least significant bytes of its spatial IP.
This solution is particularly attractive since it can facilitate
the interaction between sensor networks and other types of
networks. However, it suffers from the large size of generated
addresses leading to higher overhead. It also requires the
existence of a localization mechanism since it assumes that
nodes are location-aware.

III. UNIQUE ID ASSIGNMENT ALGORITHM
We present a distributed algorithm that assigns globally

unique IDs to sensor nodes. Initially, we assume that all
nodes remain alive until the end of the algorithm. We have
an extension to the algorithm that relaxes this assumption to
accommodate a dynamic network where nodes join and leave
at any time during the execution of the algorithm or after its
termination. Due to the page limit, this extension cannot be
prersented here and will be the object of a future publication.
The algorithm can be divided into three main phases. In

the first phase, the objective is to assign temporary unique
identifiers in the form of potentially long vectors of bytes.
A tree structure rooted at the node initiating the algorithm is
established during this phase.
In the second phase, the temporary identifiers are used to

reliably compute the size of each sub-tree and report it to the
parent node. This process is done for each sub-tree from leaf
nodes until the root node. At the end of this phase, the initiator
knows the total size of the network. This allows the initiator
to compute the minimum number of bytes required to give a
unique ID to each node in the tree.
The third phase consists of assigning final IDs to each node

in the network going from the root to the leaf nodes. These
different phases are now described in detail.

A. Phase 1: Tree Building and Temporary ID Assignment
In this phase, temporary IDs are assigned and a tree struc-

ture is established. The temporary ID of a particular node is
a vector of bytes that uniquely identifies it. The temporary ID
of a child node has one byte more than that of its parent. We
assume a network density, such that no node has more than 256
neighbors. However, for networks of higher density, temporary
IDs can be modified to be vectors with elements of 2 or 3
bytes as needed. The algorithm starts with the initiator node,
typically the base station, choosing its temporary ID to contain
one byte of value 0, and broadcasting an initialization message
of type 1. Each node receiving an initialization message for the
first time considers its parent to be the sender of the message
and initializes its temporary ID to that of its parent node.
The receiving node then randomly chooses a 4-byte integer

and sends it in a message of type 2 to its parent node. This
message also contains a retry counter. Upon reception of a
new message of type 2, the parent node checks if any other
child node had already chosen the same random number. If so,
a reinitialization message of type 3 is sent to the child node.
If no other child had chosen the same number, the parent
node sends a message containing an assigned ID of one byte
that is different from the ones sent to other children nodes.
This message is of type 4. The reception of this message is
confirmed to the parent by a confirmation message of type 5.
After receiving the message of type 4 containing the 1-

byte unique child ID, this byte is added at the end of the
temporary ID. The child node then schedules the sending of
an initialization message at random time uniformly distributed
between and . At the scheduled time,
the node sends an initialization message of type 1 and waits

for a certain amount of time () to hear from any
potential children. If any child responds within this period, the
previous procedure of assigning one byte ID repeats itself. If
no child responds, the node considers itself a leaf node.
All messages except the ones of type 1 are exchanged in a

reliable way. A message of type 2, which contains the random
4-byte integer chosen by a child node, is confirmed by the
reception of a message of type 3 (reinitialization message)
or type 4 (containing a 1-byte assigned ID). A message of
type 3 is resent if the parent node receives a second message
of type 2 with the same 4-byte ID. A message of type 4 is
confirmed through the reception of the confirmation message
of type 5. If a message is not confirmed within a random period
chosen uniformly between and , the
message is resent. The node keeps checking for a confirmation
and resending until the message is confirmed.
Figure 1 illustrates the messages exchanged between a

parent node and a child node during phase 1 when no reini-
tialization message is sent. A reinitialization message makes
the child node resends the message of type 2. At the end of
this exchange, the child node has a temporary ID that is 1
byte longer than the one of its parent node. The child node
then sends its own message of type 1. Algorithm III-A gives
the pseudo code of the first phase. Note that at the end of this
phase every node knows the temporary ID of its parent node.
The parent ID is equal to the node ID without the last byte.

PSfrag replacements

Parent node Child node

type 1, t0
type 2, t1

type 4, t2
type 5, t3

TempID: 163.25 TempID: 163.25.41

Fig. 1. One step of phase 1 with no reinitialization message

B. Phase 2: Collecting the Sub-Tree Sizes

In this phase, nodes report their sub-tree sizes from the leaf
nodes to the root node. The sub-tree size of a particular node is
the number of nodes contained in the tree rooted at that node
at the end of phase 1. A node that is declared leaf at the end
of phase 1 considers its sub-tree size to be 1 and sends it as
a message of type 6 to its parent. A non-leaf node waits until
it receives sub-tree sizes from all of its children nodes before
sending its sub-tree size to its parent. Sub-tree size messages
are confirmed by the parent node with a confirmation message
of type 7. Figure 2 illustrates the message exchange during
phase 2 to collect the sub-tree sizes.
When the initiator receives sub-tree size messages from all

of its children, it knows the total number of nodes in the
network. This total is used to compute the minimum number
of bytes needed to code a unique final ID for each node in the
network. These IDs are assigned in phase 3 of the algorithm.
Algorithm III-B gives the pseudo code of the second phase.

Algorithm 1 Phase 1: Temporary ID Assignment

if is true then

send an initialization message of type 1
end if
if receive message of type 2 then
if a child already have same intId then
send reinitialization message of type 3

end if
if no child already has same then
add to children list
choose a random time rt
schedule checking for confi rmation at rt
send message of type 4 with ChildIdB

end if
end if
if receive msg message of type 5 then
if then
fi nd , the corresponding child

end if
end if
if receive fi rst message of type 1 then

choose a random 4-byte
choose a random time
schedule checking for confi rmation at
send message of type 2 with

end if
if receive message of type 3 then
choose a different random 4-byte
choose a random time
schedule checking for confi rmation at
send message of type 2 with

end if
if receive message of type 4 then
if is true then
update
resend message of type 5

end if
if is not true then
update and
update
choose a random time
schedule sending message of type 1 at
send message of type 5

end if
end if

PSfrag replacements

typ
e 6
, t0

type7,t1

ty
pe
6,
t2

type
7,t3 typ

e6
,t4

type 7, t5

ty
pe
6,
t6

type
7,t7

TempID: 41.62.1

TempID: 41.62.0
TempID: 41.62.2

TempID: 41.62

TempID: 41

Size: 300

Size: 100
Size: 1

Size: 402

Size: 403

Fig. 2. One step of phase 2

Note that at the end of this phase every node knows its sub-
tree size as well as the sub-tree size of each of its children
nodes.

Algorithm 2 Phase 2: Sub-tree Sizes Collecting

if receive message of type 6 then
fi nd , the corresponding child
if is true then
resend message of type 7

end if
if is not true then

and

send message of type 7
choose a random time
schedule checking if all sub-tree sizes received at

end if
end if
if leaf is true then
choose a random time
schedule checking for confi rmation at
send message of type 6

end if
if receive message of type 7 then
if is not true then
update

end if
end if
if sub-tree size messages received from all children and is not true then
choose a random time
schedule checking for confi rmation at
send message of type 6

end if

C. Phase 3: Final Unique ID Assignment
In this phase, the final unique IDs are assigned by each

parent node to its children nodes starting from the root. Final
IDs are coded using the same number of bytes (i.e., 1, 2, 3, or
4) for all nodes. The initiator is assigned an ID of 0. It sends
a final ID message (message of type 8) to each of its children
nodes. Each message contains a unique ID and the number of
bytes to be used to code IDs. Final ID messages are confirmed
with messages of type 9. Each node receiving a message of
type 8 takes the ID it contains as its final ID and knows that a
number of IDs starting from its ID and containing as many IDs
as needed is reserved for the IDs of the nodes in its sub-tree.
Each non-leaf node receiving a final ID message confirms it
and assigns IDs to its children nodes in a similar way.
Figure 3 illustrates the message exchange during phase 3

to allocate the final IDs. Each node allocates its ID plus
1 to its first child and then allocates to the child
with , where is the sub-tree size of
the child. Algorithm III-C gives the pseudo code of the
third phase. At the end of this phase, every node in the
network knows its final ID. These final IDs are coded using
the minimum number of bytes.

D. Collision Handling
Assuming a single channel, if a node is transmitting a

message to a node , a collision occurs if is already in
the process of receiving from a different node. The algorithm
does not assume the existence of any specific MAC address.
In particular, no collision avoidance mechanism is required.

SubT5

PSfrag replacements

type8,t4

typ
e 9
, t5

type
8,t2

ty
pe
9,
t3

type 8, t6
typ

e9
,t7

type
8,t0

ty
pe
9,
t1

FinalID: 200
FinalID: 100

FinalID: 500

FinalID: 99

FinalID: 98

Size: 300
Size: 100

Size: 1

Size: 402

Size: 403

Fig. 3. One step of phase 3

Collision is handled in the sense that all messages except the
initialization message (message of type 1) received by a node
are confirmed by an acknowledgment message. Before sending
a message, a node chooses randomly an integer number
between 0 and , and waits for a time equal to

. If it does not receive
the confirmation within the random waiting time, it resends the
message and keeps doing so until receiving the confirmation.
The node adapts the parameter to the traffic

condition. In fact, this parameter is increased by half of its
initial value () every time an expected confirmation
is not received, unless has already reached an upper
limit set to . Upon the reception of a message,

is reduced by half of , unless a lower
bound, set to the initial value, is already reached.
For the message of type 1, it is assumed that every node

has several neighbors. Each neighbor sends an initialization
message at different times (randomly chosen after the first
phase). Therefore, a node has several possibilities of receiving
an initialization message.

IV. THEORETICAL ANALYSIS

This section contains the theoretical evaluation of the unique
ID assignment algorithm. In particular, the correctness of
the algorithm is analyzed. We also prove that the algorithm
terminates naturally and give an upper limit on the average
energy consumption per node. Since the initial assignment
messages (of type 1) are sent in a reliably, we also analyze the
probability of a node being left out by the algorithm. Such a
node does not participate in the algorithm and is not assigned
an ID.

A. Model

The evolution of each node, except for the initiator, is
modeled as a stochastic process with state space of

. The different states are defined as follows:

Algorithm 3 Phase 3: Final IDs Assignment
if sub-tree size messages received from all children and is true then
compute , the number of bytes

choose random time
schedule checking for confi rmation at
send message of type 8 to fi rst child with

end if
if receive message of type 9 then
fi nd , the corresponding child
if is true then
ignore

end if
if is not true then

if more nodes in the children list then
choose random time
schedule checking for confi rmation at
send message of type 8 to next child with

end if
end if

end if
if receive message of type 8 then
if is true then
resend fi nal ID confi rmation message of type 9

end if
if is not true then

send message of type 9 to parent node
choose random time
schedule checking for confi rmation at
send message of type 8 to fi rst child with

end if
end if

1) State 0: A node is in state 0 if it did not yet receive any
initialization message (message of type 1)

2) State 1: A node is in state 1 if it has already received an
initialization message, is still waiting for its temporary
ID to be confirmed by its parent node

3) State 2: A node is in state 2 if its temporary ID has been
confirmed by its parent node, but it did not yet send a
message of type 1

4) State 3: A node is in state 3 if its temporary ID has been
confirmed by its parent node, it has sent a message of
type 1, but did not yet send its sub-tree size message.
This could be because it is still waiting to know if
it is a leaf, or is still waiting for at least one child
node to report the size of its sub-tree. It could also be
during the period after receiving all sub-tree sizes, but
the scheduled time to send its sub-tree message has not
been reached

5) State 4: A node is in state 4 if it has already reported
its sub-tree size to its parent node but is still waiting to
receive its final ID

6) State 5: A node is in state 5 if it has already received
its final ID

Clearly, state 5 is a stable state after which the node does not
go back to any other state. It is also clear that a node can only
go to the next higher state or remain in its current state. That is,
for example, a node in state 3 can only go to state 4 or remain
in state 3. The probability that a node changes its state depends

on its current state as well as the states of the neighboring
nodes. In fact, the neighbors influence the node state in several
ways. A non-initiator node currently in state 0 can go to state
1 only if at least one of its neighbors is already in state 2. A
non-leaf node in state 3 can change to state 4 only if all of its
children nodes (a sub-set of its neighbors) are already in state
4. A non-initiator node currently in state 4 can go to state 5
only if its parent node is already in state 5. More generally
the neighbors affect the probability of change in the sense
that they can cause collisions if transmitting simultaneously.
Collisions cause messages to be retransmitted and delay state
changes.
We define the probability () as the probability that when

the node is in state at time , it goes to state in the
next step () with between 0 and 4. As stated earlier, the
value of () depends on the current state of the node as well
as the current states of its neighbors, in particular its parent
and children nodes. Figure 4 gives the state diagram.

PSfrag replacements

State 0: Inactive

State 1: Initialized State 2: Temp ID

State 3: Init Sent

State 4: Size RecdState 5: Final ID

Fig. 4. States diagram

B. Performance of the Algorithm
In this subsection, several properties of the algorithm are

given. In particular, the correctness and termination of algo-
rithm are studied. We also study the probability of a node not
being assigned an ID at the end of the algorithm. This is a
measure of the effectiveness of the algorithm. Due to the page
limit, the proofs of different lemmas in this subsection can be
found in [13].
Before studying the correctness of the algorithm, we look

at the possibility of two nodes with the same parent receiving
the same temporary ID. This occurs only when two children
of the same node choose the same 4-byte ID in first phase
and respond simultaneously with messages of type 2 to the
initialization message and their parent receives only one of
the two messages. For the two nodes to end up with the
same temporary ID, they need also to send simultaneously
the confirmation message of type 5 and for their parent to
receive one and only one of these messages.
We define as the probability of two nodes having two

identical temporary IDs. As we can see, is very low
because the occurrence of two nodes having two identical

temporary IDs is conditioned to the occurrence of a succes-
sive number of independent events each having a very low
probability. In fact, , where is the probability of
any two nodes in the network with the same parent choosing
the same 4-byte integer. It can be proved that for a network
of nodes each having no more than 256 neighbors, we have

. For , we obtain
. The following lemma states the correctness

of the algorithm. This lemma is proved in [13].
Lemma 1: If the algorithm terminates, each participating

node has a unique ID with a high probability of ,
where is as defined above.
The following lemma, proved in [13], shows that if nodes

do not die during the execution of the algorithm, then the
algorithm terminates.
Lemma 2: If all nodes that received an initialization mes-

sage remain alive, then the algorithm will terminate.
We now determine the probability that a message is suc-

cessfully transmitted by the second trial. A message is not
successfully transmitted if a collision occurs. A collision
is detected by the sender node, , when it does not re-
ceive the corresponding confirmation message in a randomly
predetermined time period. As explained in Subsection III-
D, the length of this time period is uniformly distributed
between and . If no confirmation
is received, the message is resent at the end of this period.
A collision occurs if the receiving node, , is currently in
the process of receiving a different message. It also occurs
if a different neighbor of broadcasts a message while the
current message is being received. If the size of the current
message is S bytes and the capacity of the radio is B kbps,
the transmission (reception) time of the message is given by:

. Suppose that the transmission starts
at the current message is not received (collision) if at least
one of the other neighbors transmits a message in the time
interval . If has k neighbors, including
the sender , each neighbor transmits at most one message
during each period of length , where is the initial value
of . Consequently, there are at most messages
sent by the other neighbors. Each message is followed by a
confirmation message except for a message of type 1 or when
confirming a previous message from . Therefore, there are
at most confirmation messages and a total of
messages. Assuming that all messages have approximately the
same size S, the current message encounters a collision if its
reception starts in one of at most transmission
periods of length . The following lemma, proved in [13],
bounds the probability that a message is received by the second
trial.
Lemma 3: If is such that

, then the probability of a message
successfully received upon second transmission is at least

.
This demonstrates that by appropriately setting , we can

guarantee a high probability of transmission of messages by
the second trial. For a numerical example, we assume that the

radio transmission rate is , which is reasonable
for current technology: transmission rate for MICAz motes for
example is 250 kbps. We also assume that , the network
having a density of 21. The message size is function of
the number of hops from the base station since each address
is composed of one byte per hop. Let assume that at most

. This limit holds even for large networks with low
densities. Then we have: . Clearly, we can
see that by setting initially to , we obtain
the following high probability of successful transmission by
the second trial: .
By following the same reasoning as above, we can bound

the probability of a node not assigned an ID at the end of the
algorithm. This occurs if the messages of type 1 (initialization
messages) from all of its neighbors are lost. Since each of these
messages is sent at a random time, we obtain the following
lemma, proved in [13].
Lemma 4: If k neighbors of a node are assigned IDs, then

the probability of the node being left out is at most
.

Again, this probability can be controlled through the param-
eter .
A performance measure of the algorithm is the amount

of energy consumed per node during the execution of the
algorithm. Since the processing energy is negligible compared
to the communication energy, we are taking into account only
the latter. The following lemma, proved in [13], bounds the
average communication energy consumption per node.
Lemma 5: If on average each node has neighbors and

the average message size in the network is bits, then the
average communication energy consumption is bounded by

, where and are respectively
energy consumption per bit for transmission and reception,
with probability , where is as defined in
lemma 3.

V. SIMULATION RESULTS
In this section, we show the performance of the algorithm

under different simulation settings. We study the effect of
different parameters on the performance. In particular, we
study the effect of the network size, network density, and initial
value of on the execution time, the percentage of
nodes assigned an ID at the end of the algorithm, and the
probability of a message being retransmitted.
Simulations are performed using GTSNetS (the Georgia

Tech Sensor Network Simulator) [14], [15]. Nodes are dis-
tributed in an equi-distant fashion in a square region with
the initiator located at the center of the region. The distance
between two successive nodes is fixed at 20 meters. The net-
work density is changed by modifying the transmission range:
transmission range of 21 meters for a density of 4, 30 meters
for a density of 8 and so on. Messages exchange is performed
entirely using broadcasts. Channel sensing is performed before
sending a message, which reduces the collision probability.
Under each setting, each simulation was run 10 times. An
average for these 10 runs is used as the final result.

Figure 5 plots the execution time of the algorithm as
a function of the network size while maintaining a fixed
network density of 4 neighbors. As expected, the execution
time increases with the network size, but remains relatively
short (less than 30 minutes for a network of 10,000 nodes).

 5

 10

 15

 20

 25

 30

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E
xe

cu
tio

n
tim

e
(m

in
ut

es
)

Network size

Execution time Vs. network size

TimeWaitI = 1.5
TimeWaitI = 2

TimeWaitI = 2.5

Fig. 5. Execution time Vs. network size

Figure 6 plots the execution time of the algorithm as a
function of the network density for a network of 1,000 nodes.
We can see that the execution time decreases as the density
increases. This is due to the fact that density is increased
by increasing the communication range, which reduces the
number of hops between the initiator and the leaf nodes. The
execution time remains relatively short even for a network of
low density.

 3

 4

 5

 6

 7

 8

 9

 10

 2 4 6 8 10 12 14 16 18 20

E
xe

cu
tio

n
tim

e
(m

in
ut

es
)

Network density

Execution time Vs. network density

TimeWaitI = 1.5
TimeWaitI = 2

TimeWaitI = 2.5

Fig. 6. Execution time Vs. network density

Both Figure 5 and Figure 6 show that the execution time
increases with the initial value of . This is not
surprising since nodes wait longer before resending lost mes-
sages and before forwarding the initialization messages. This
makes the overall algorithm take more time to terminate. It is,
therefore, desirable to keep the initial value of as
low as possible.
Figure 7 plots the percentage of nodes assigned a unique ID

at the end of the algorithm as a function of the network size
with a network density of 4 neighbors. We can see that this
probability decreases as the size of the network increases. We

can also see that for a specific network size, we can obtain
a very high percentage of ID assignments by increasing the
initial value of to a high enough value. However, as
this value increases the execution time also increases. With a

initially of 2.5 seconds, we can obtain a percentage
of about 99.5% even for a large network of 10,000 nodes.
Figure 8 plots the percentage of nodes assigned a unique ID

at the end of the algorithm as a function of the network density
for a network of 1,000 nodes. We can see that the percentage
of nodes with an assigned ID at the end of the algorithm
decreases as the density increases. This is due to the fact that
higher density increases the probability of collisions, which
reduces the probability of successful reception of messages
of type 1 even though more messages are sent in each
neighborhood. Messages of type 1 are not retransmitted, and
their loss reduces the probability of a node participating in the
algorithm.

 98.6

 98.8

 99

 99.2

 99.4

 99.6

 99.8

 100

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
ss

ig
nm

en
t p

ro
ba

bi
lit

y
(%

)

Network size

Runtime Vs. network size

TimeWaitI = 1.5
TimeWaitI = 2

TimeWaitI = 2.5

 98.6

 98.8

 99

 99.2

 99.4

 99.6

 99.8

 100

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
ss

ig
nm

en
t p

ro
ba

bi
lit

y
(%

)

Network size

Assignment probability Vs. network size

TimeWaitI = 1.5
TimeWaitI = 2

TimeWaitI = 2.5

Fig. 7. Assignment probability Vs. network size

 91

 92

 93

 94

 95

 96

 97

 98

 99

 100

 2 4 6 8 10 12 14 16 18 20

A
ss

ig
nm

en
t p

ro
ba

bi
lit

y
(%

)

Network density

Collision probability Vs. network density

TimeWaitI = 1.5
TimeWaitI = 2

TimeWaitI = 2.5

Fig. 8. Assignment probability Vs. network density

Both Figure 7 and Figure 8 indicate that we can increase
the probability of nodes participation in the algorithm by
increasing the initial value of . However, such an
increase causes the execution time to increase which is not
desirable. Thus, there is a tradeoff between the percentage of
assigned IDs and the execution time.

Finally, we study the probability of collisions under various
simulation settings. Figure 9 plots the probability of a message
being retransmitted because of collision as a function of the
network size. We can see that this probability increases with
size. This is due to the fact that messages are longer on
average since more nodes are located many hops away from
the initiator. Longer messages take more time to transmit,
which makes the occurrence of a collision more likely. As
expected, the probability of collision diminishes, when the
value of increases.

 7.6

 7.8

 8

 8.2

 8.4

 8.6

 8.8

 9

 9.2

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
ol

lis
io

n
pr

ob
ab

ili
ty

 (%
)

Network size

Assignment probability Vs. network size

TimeWaitI = 1.5
TimeWaitI = 2

TimeWaitI = 2.5

 7.6

 7.8

 8

 8.2

 8.4

 8.6

 8.8

 9

 9.2

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
ol

lis
io

n
pr

ob
ab

ili
ty

 (%
)

Network size

Collision probability Vs. network size

TimeWaitI = 1.5
TimeWaitI = 2

TimeWaitI = 2.5

Fig. 9. Collision probability Vs. network size

Figure 10 gives the collision probability as a function of
network density for a network of 1,000 nodes. We can see
that collision is more likely in a network with higher density.
This is not surprising since more nodes are competing for each
channel. We can also see that the collision probability can be
controlled by increasing the value of .

 7

 8

 9

 10

 11

 12

 13

 14

 15

 2 4 6 8 10 12 14 16 18 20

C
ol

lis
io

n
pr

ob
ab

ili
ty

 (%
)

Network density

Collision probability Vs. network density

TimeWaitI = 1.5
TimeWaitI = 2

TimeWaitI = 2.5

Fig. 10. Collision probability Vs. network density

Based on the results, we can state that the initial value
of plays a central role in the algorithm. It needs
to be set appropriately so as to maximize the probability of
nodes being assigned an ID at the and of the algorithm and
minimize the collision probability while keeping the execution
time under control.

VI. CONCLUSION
We presented a solution to the global ID assignment

problem in sensor networks. Our solution aims at assigning
unique IDs to each node using the minimum number of bytes
required to code these IDs. This was obtained using a 3-phase
approach. In the first phase, temporary long IDs are assigned.
These temporary IDs are used in the second phase to reliably
determine the exact size of the network and, therefore, the
minimum number of bytes to use. In the third phase, final
IDs coded using the minimum number of bytes are assigned.
We demonstrated that the proposed algorithm can be tailored
to obtain excellent results, both in terms of the percentage of
participating nodes and the execution time.

ACKNOWLEDGMENT
This work is supported in part by NSF under contract

numbers ANI-9977544, ANI-0136969, ANI-0240477, ECS-
0225417, CNS 0209179, and DARPA under contract number
N66002-00-1-8934.

REFERENCES
[1] D. E. Chalermek Intanagonwiwat, Ramesh Govindan, “Directed dif-

fusion: a scalable and robust communication paradigm for sensor
networks,” in Proceedings of the 6th annual international conference
on Mobile computing and networking, pp. 56–67, August 2000.

[2] Y. Yu, R. Govindan, and D. Estrin, “Geographical and energy aware
routing: A recursive data dissemination protocol for wireless sensor
networks,” Tech. Rep. TR-01-0023, UCLA/CSD, 2001.

[3] A. Dunkels, J. Alonso, and T. Voight, “Making tcp/ip viable for wireless
sensor networks,” in First European Workshop on Wireless Sensor
Networks (EWSN), 2004.

[4] C. Karlof and D. Wagner, “Secure routing in wireless sensor networks:
Attacks and countermeasures,” in Proceedings of the 1st IEEE Interna-
tional Workshop on Sensor Network Protocols and Applications, 2003.

[5] W. Ye, J. Heidemann, and D. Estrin, “An energy-effi cient mac protocol
for wireless sensor networks,” in Proceedings of INFOCOM, 2002.

[6] A. S. Tanenbaum, Computer Networks. Englewood Cliffs, 1989.
[7] J. R. Smith, “Distributing identity,” IEEE Robotics and Automation

Magazine, Vol.6, No.1, March 1999.
[8] C. Schurgers, G. Kulkarni, and M. B. Srivastava, “Distributed on-

demand address assignment in wireless sensor networks,” IEEE Transac-
tions on Parallel and Distributed Systems, Vol.13, No.10, pp. 1056-1065,
October 2002.

[9] D. Estrin, J. Heidemann, and S. Kumar, “Next century challenges: Scal-
able coordination in sensor networks,” in Proceedings of MOBICOM,
pp. 263–270, 1999.

[10] M. Ali and Z. A. Uzmi, “An energy effi cient node address naming
scheme for wireless sensor networks,” in Proceedings of the Interna-
tional Networking and Communications Conference (INCC), 2004.

[11] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, “An
application-specifi c protocol architecture for wireless microsensor net-
works,” IEEE Transactions on Wireless Communications, Vol.1, No.4,
October 2002.

[12] W. B. Heinzelman, J. W. Kulik, and H. Balakrishnan, “Adaptive pro-
tocols for information dissemination in wireless sensor networks,” in
Proceedings of MOBICOM, 1999.

[13] E. Ould-Ahmed-Vall, D. M. Blough, B. S. Heck, and G. F. Riley,
“Distributed global identifi cation for sensor networks,” Tech. Rep. GIT-
CERCS-05-17, Georgia Tech/CERCS, 2005.

[14] E. Ould-Ahmed-Vall, G. F. Riley, and B. S. Heck, “Simulation of large-
scale sensor networks using gtsnets,” in to appear in Proceedings of
Eleventh International Symposium on Modeling, Analysis and Simu-
lation of Computer and Telecommunication Systems (MASCOTS’05),
2005.

[15] E. Ould-Ahmed-Vall, G. F. Riley, and B. S. Heck, “Gtsnets: the georgia
tech sensor network simulator,” in Poster Papers Proceedings of the 7th
ACM International Symposium on Modeling, Analysis and Simulation
of Wireless and Mobile Systems (MSWiM), 2004.

