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Abstract: Privacy is defined as the freedom from unauthorized in-
trusion. The availability of public records along with intelligent search
engines and data mining tools allow easy access to useful information.
They also serve as a haven for individuals with malicious intent. This pa-
per proposes an approach that protects the privacy of individual records
while retaining the information content. The techniques that have been
proposed for privacy protection so far either provide insufficient privacy
or trade off too much useful information on account of privacy protec-
tion. This paper proposes an attack model to analyze the different types
of privacy breaches, proposes a set of properties for good privacy pro-
tection, proposes a robust data protection technique, and compares the
privacy and usability properties of the new technique with some of the
existing techniques.

Reference to this paper should be made as: Rupa Parameswaran and
Douglas M. Blough (xxxx) ‘Privacy Preserving Data Obfuscation for
Inherently Clustered Data’, Int. J. Information and Computer Security,
Vol. 1, No. 2, pp.xxx—xxX.

Biographical notes: Rupa Parameswaran received her B.Eng. de-
gree in computer science and engineering from Bangalore Universty, In-
dia, in 2000, and her M.S. and PhD degrees in electrical and computer
engineering at Georgia Institute of Technology, Atlanta, Georgia, USA,
in 2002 and 2006, respectively. She is working in the Core Database Se-
curity Group at Oracle. She was an active member of the Georgia Tech
Information and Computer Security Colloquium (GTISC) and is also a
member of the IEEE and ACM. Her research interests include issues re-
lated to practical data privacy, framework for secure online transactions,
building access and privacy policies for data manipulation and privacy

Copyright © 200x Inderscience Enterprises Ltd.



2 Rupa Parameswaran and Douglas M. Blough

preserving data mining.

Douglas M. Blough received the B.S. degree in electrical engineering and
the M.S. and Ph.D. degrees in computer science from The Johns Hopkins
University, Baltimore, MD, in 1984, 1986, and 1988, respectively. Since
Fall 1999, he has been Professor of Electrical and Computer Engineer-
ing at the Georgia Institute of Technology, where he also holds a joint
appointment in the College of Computing. From 1988 to 1999, he was
on the faculty of Electrical and Computer Engineering at the University
of California, Irvine. Dr. Blough was Program Co-Chair for the 2000
International Conference on Dependable Systems and Networks (DSN)
and the 1995 Pacific Rim International Symposium on Fault-Tolerant
Systems. He has been on the Program Committees of numerous other
conferences, was Associate Editor for IEEE Transactions on Computers
from 1995 through 2000, and was Associate Editor for IEEE Transac-
tions on Parallel and Distributed Systems from 2001 through 2005. His
research interests include distributed systems, dependability and secu-
rity, and wireless multihop networks.

1 Introduction

The concern over privacy of personal and sensitive information has led to the
implementation of several techniques for hiding, obfuscating and encrypting sen-
sitive information in databases. The need for privacy has led to the development
of several data obfuscation (DO) techniques that provide privacy preservation at
the cost of information loss. Most of the techniques cater to specific domains and
perform well for a limited set of applications. In the absence of a standard for
classifying DO techniques, comparison and performance analysis of the different
techniques is not straightforward. The domain of interest in this research is data
mining. Many data mining applications involve learning through cluster analysis.
The term Usability refers to the usefulness of the transformed data. In this pa-
per, usability is measured in terms of preservation of the inherent clustering of the
original data. The need for an obfuscation technique that preserves privacy as well
as usability of the transformed data has motivated the design, development, and
preliminary performance analysis of a robust cluster-retaining DO technique in this
research. The paper proposes the use of the Reversibility Property as a measure of
privacy preservation. The privacy provided by the proposed data obfuscation tech-
nique, Nearest Neighbor Data Obfuscation (NeNDS), is evaluated and compared
with other obfuscation techniques with respect to its reversibility and usability.

This paper is an extended version of a workshop paper presented at ICDM
2005 [22]. The main contribution of this paper is the design, development, and
analysis of the proposed DO technique NeNDS as well as a hybrid Geometrically
Transformed version called GT-NeNDS. The motivation for the choice of the DO
technique as well as the description of the proposed technique is provided in Sec-
tion 5. The definition of the Reversibility Property, the classification of different
transformation techniques based on reversibility, and the evaluation of existing DO
techniques is provided in Section 4.1. An experimental analysis of NeNDS is carried
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out in Section 7 to study its cluster-preserving characteristics.

2 Motivation and Related Work

The abundance of information available online has resulted in a loss of individ-
ual privacy [7]. Several methods have been proposed and implemented for privacy
preservation of sensitive data sets [14]. The term data obfuscation [3] is used as
a generalization of approaches that involve distorting the data for privacy preser-
vation and other purposes. One of the more common techniques is cryptography,
where sensitive data is encrypted with a key and is accessible only to authorized
users. In several applications, it is necessary to provide different levels of precision
of data, based on the type of user requesting access. The encryption of data does
not provide this capability. The usability of the data is therefore restricted only to
a narrow set of users. Secure multi-party encryption techniques propose to perform
computations on data in the encrypted form [24].

Privacy preservation by data randomization is based on adding a noise vector
to the original data, thereby desensitizing the precise information content [2]. Data
randomization mainly operates on a subset of database tables, fields, and records
and is designed to maintain the statistical properties of a database. Unless the
noise distribution follows the distribution of the original data, information regarding
dependencies among the attributes is lost.

Data anonymization [15] attempts to classify data into fixed or variable inter-
vals. The usefulness of the obfuscated data and the privacy factor are dependent
on the choice of the interval. A large interval makes the data less useful, while an
interval that is too small does not provide sufficient privacy protection of the data.
K-anonymity [25],proposes a generalization and suppression approach to obtaining
the required anonymity level: generalization replaces a value with a less specific
value, while suppression does not release a value at all. The goal here is to ensure
that each record in a database is indistinguishable from at least k other records in
the database. K-anonymization has been proved to be an NP-hard problem [16].
Various algorithms, such as k-optimal anonymization [25], simulated annealing [27],
and condensation-based k-anonymization [1], have been proposed to produce ap-
proximate solutions to the generalization/suppression problem. Another drawback
of the anonymization technique is loss of information. The generalization approach
categorizes quantitative information into intervals, thus reducing the granularity of
the information. Furthermore, data entries that are not possible to generalize are
suppressed. This leads to a complete loss of information regarding certain fields.

The term wusability, also referred to as data utility, pertains to the usefulness
of the data that has been obfuscated. The most important characteristics that
must be preserved for data mining applications are the multivariate statistical dis-
tributions as well as the clustering property of the data. So far, the emphasis on
data utility has been on preserving statistical inferences [4][8][9]. While researchers
have focused on preservation of statistics as the only measure of data utility, cluster
preservation is an equally important data utility metric that is often ignored. An op-
timum data obfuscation technique is one that preserves both these properties while
still providing strong privacy preservation. One of the techniques that proposes to
preserve usability while preserving privacy is geometric transformation [20] [21]. In
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this approach, geometric transformations such as rotation, scaling, and translation
are used to obfuscate the data. This type of obfuscation is proposed for preserving
the inherent clustering information of data. As geometric transformations are iso-
metric, the transformed data retains its isometric properties. While this technique
does involve modifying data, the inter-relation of the data elements within the data
sets and across the fields is maintained even after the obfuscation. This type of
approach is useful in applications where the data needs to be disguised completely,
such as the third-party mining of sensitive data. Geometric transformation-based
obfuscation is weak in terms of privacy preservation and is unsuitable for use in
sensitive databases. Random data perturbation, as well as anonymization, result
in the modification of data. This results in slight differences of the characteristics
between the original and obfuscated distributions. Such differences are likely to be
very small for large data sets, but are observed to be significant for smaller data
sets [19]. Owners of sensitive databases, such as the Census Bureau, look unfa-
vorably upon such modifying data obfuscation techniques. Since the preservation
of multi-variate characteristics while preserving privacy is an intractable problem,
the next important statistical characteristic to preserve is the marginal distribution
characteristics. One of the obfuscation techniques that has been widely adopted for
sensitive data protection is data swapping [5][6][23][12]. The concept of obfuscating
data sets by swapping the elements in the data set, proposed as early as 1978, intel-
ligently swaps entries within a single field in a set of records so that the individual
record entries are unmatched, but the statistics are maintained across the individual
fields. Swapping can be implemented such that the swapped values are close to each
other, thus approximating the information in the non-obfuscated data records [10].
As data swapping does not modify the actual values of the data, the characteristics
of the marginal distributions of the variables are preserved exactly [19].

The requirement of preserving privacy as well as usability of sensitive data has
led us to develop of a robust data obfuscation technique called Nearest Neighbor
Data Substitution (NeNDS). The underlying principle of this technique is a more
generalized version of data swapping. In NeNDS, sets of data that are close to
each other in Euclidean space are grouped together into neighborhoods. The data
within each neighborhood are permuted in such a way that the original values are
replaced by one of the neighbors in a non-reflective manner. The non-reflective
condition is enforced to avoid the swapping of identical data items and to make
it less vulnerable to reversal. This approach benefits from the advantages of data
swapping, but is a more robust privacy-preserving scheme for data obfuscation.

3 Data Privacy Attack Model

The first part to developing a data obfuscation technique is to build an attack
model to assess the vulnerable points that the attacker can use to compromise the
database. There are ways of accessing a database. The attack models presented
in this section assume that the database that the attacker queries is stored in
obfuscated form. This means that the result of the database remains the same
every time for the same query posed by the attacker. The discussion also assumes
a query-based centralized database. However, the models are also applicable when
the attacker has access to the entire obfuscated database.
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The existing attack model considered for privacy evaluation is shown in Fig-
ure 1(a). Here, the attaker is assumed to have access to publicly available databases,
some of which are unobfuscated. The attacker makes queries to the target database
and compares the results of the query with the records in the databases to which he
has access. The privacy preserving techniques proposed so far assume this type of
attack model. A privacy breach results when an attacker is able to obtain previously
unknown information about one or more records from the obfuscated database by
comparing and correlating the database contents with other databases that he is
able to access. Although this attack model is a likely scenario for compromise, it
does not model all the modes of attack that lead to a breach of privacy.

Obfuscated Database Qbfuscated Database

Privacy breach
. Data Qriginal Data :
Original Attacker rigina
Data Obf. data obf. >
process process

|

: : : Partial
Public Data Privacy Partial process information knowledge
(Unobfuscated) breach Partial data through data leaks bank
Attacker
(a) Existing model (b) Proposed model

Figure 1 Attack Models for Analysis

The existing model assumes that the attacker has no a priori knowledge of the
process used for data obfuscation. It also assumes that the attacker does not know
any of the entries in the target database. These are impractical assumptions. There
are several reasons for assuming that the attacker may have access to some of the
records in the database. In certain cases, the attacker is also likely to have a priori
knowledge regarding the obfuscation process used for obfuscating the database.

The proposed attack model in Figure 1(b) includes side channels from the orig-
inal target database and the data obfuscation process to model the partial infor-
mation gained by the attacker. The attacker can then use this partial information
to attempt to reverse engineer the entire data set. One useful byproduct of this
model is a measure of the robustness of a data obfuscation technique, namely the
percentage of the unobfuscated data set that an attacker must know in order to be
able to learn the entire set. Using this new measure, we are able to demonstrate
that many well-known data obfuscation techniques are highly vulnerable to reverse
engineering through unintentional release of only a small percentage of the unob-
fuscated data set. We also propose to use the amount of information required for
reverse engineering as a measure of privacy preservation for this attack model.
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4 Data Obfuscation Properties

The term data privacy is broadly defined as the presence of appropriate safe-
guards to ensure the security and confidentiality of data records. To implement
appropriate safeguards, it is necessary to first understand the nature of the appli-
cation using the data as well as the security and confidentiality threats that need to
be protected against. Hiding too much information results in loss of data usability,
while insufficient protection poses a threat to data privacy. Although several Data
Obfuscation (DO) techniques have been proposed for the protection of data privacy,
no standard has been developed as yet for measuring or comparing DO techniques.
This section identifies the different aspects of privacy protection that can be used
to evaluate the strength of DO techniques.

4.1 Data Privacy

The definition of privacy is dependent on the type of data that needs to be
protected as well as the target applications that use the data. In some privacy
sensitive databases or applications, distortion of the original data such that it is
similar but not exactly identical to the original data is considered as acceptable
privacy. In other applications, any similarity between the obfuscated data and the
original data is unacceptable and is equivalent to an invasion of privacy. Similarly,
in applications such as medical databases, the breach of even a single record is
unacceptable. However, in the case of publicly available databases, the breach of a
small percentage of the total database is considered as acceptable privacy. Hence,
any method that measures the strength of DO techniques needs to address the
different requirements of privacy for different applications. The privacy measure
proposed in this research measures the strength of DO techniques based on three
aspects of privacy invasion.

e Approximate privacy invasion: This refers to the ability of an attacker to
recover a value close to the value of an original data item being targeted.

e Absolute privacy invasion: This refers to the ability of an attacker to retrieve
the original data exactly.

e Partial privacy invasion: This refers to the ability of an attacker to retrieve a
portion of the original data either exactly or approximately from the obfus-
cated data.

Privacy against approximate invasion, absolute invasion, and partial invasion
cover the basic requirements of privacy for any sensitive database or application that
uses the sensitive data. The property of reversibility is proposed here to characterize
the privacy provided by DO techniques with respect to the three aspects of privacy
invasion. The term Reversibility is defined as the property that dictates the ease
or difficulty of privacy invasion, i.e. the process of reverse engineering obfuscated
data [3]. The reversibility property provides a measure of the robustness of privacy
protection that is provided by a DO technique. The reversibility property exhibited
by a DO technique can be measured by the time required for reverse engineering
the data or by the amount of a priori information required to reverse engineer the
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rest of the original data from the obfuscated data. In this research, the amount of a
priori information that leads to a privacy breach is used as a measure of reversibility
of DO techniques.

An obfuscation technique that can be reversed with the knowledge of the pro-
cess is known as a process reversible transformation function. A model similar to
the cryptanalytic attack model may be used for this category of transformations.
Cryptanalysis of encryption techniques proves the weakness of algorithms to one
or more of the well known attack models: plain-text attacks, chosen-plain-text at-
tacks, and chosen-cipher-text attacks. Similarly, process reversible DO techniques
can be analyzed with respect to their vulnerability to complete reversal under one
or more of the following conditions: with no a priori information, with some a
priori information of the DO process, and with complete a priori knowledge of the
DO process. Process reversibility is sub-classified into the following categories.

1. Partial knowledge reversibility: Partial knowledge reversibility implies that
a transformation function exhibiting this property can be reverse engineered
with the knowledge of either some of the original data entries or a combi-
nation of some original entries of data and some information regarding the
process used. The level of difficulty of the reversal process is dependent on
the DO technique. Obfuscation techniques that involve a one-to-one map-
ping between the original and the transformed data, are vulnerable to partial
knowledge reversibility. The Reversibility analyses for linear and non-linear
one-to-one transformations are provided in Section 6.2.

2. Random number reversibility: This property indicates that the original data
set can be reverse engineered with knowledge of the process, the Pseudo-
Random-Number Generator (PRNG), and the seed. Most obfuscation tech-
niques invoke PRNGs to generate random sequences. The robustness of DO
techniques exhibiting this property relies in protecting the PRNG sequence.
Aslong as the random seed and the sequence are unknown to the attacker, the
obfuscated data is robust to reversal. Once this information is revealed and
the obfuscation process is known, the entire data is compromised. Transfor-
mations that fall under this category cannot be analyzed using cryptanalysis
due to their non-deterministic nature.

Obfuscation techniques that result in a non-invertible data transformation ex-
hibit irreversibility. A Maximum-likelihood reversibility estimate can be made in
the case of some of the techniques, which provides an estimate of the confidence
with which a guess can be made on the original data. Cryptanalysis fails to ac-
count for such transformations as well. With irreversible techniques, there is an
inherent loss of information. Lossy compression techniques and data generalization
techniques, which make it impossible to exactly recover the original data, fall under
this category. The second category of irreversibility contains the set of obfuscation
techniques in which a part of the obfuscated data becomes irreversible during the
transformation. An example of partial irreversibility is substitution with repetition,
where each data element is replaced by its nearest neighbor. Data elements that
are not nearest neighbors of any other element are not included in the final data
set and are lost completely. In such cases, the elements that are eliminated from
the database cannot be exactly restored by any reversal process.
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4.2 Data Usability

The term Data Usability refers to the ability of a DO technique to provide ac-
curate aggregate information. An ideal DO technique is one that preserves both
statistical information as well as clustering information. Data randomization tech-
niques [2], which obfuscate data by the addition of random noise to the original
data, can be tailored to preserve statistical information. However, the inherent
clusters in the original data are distorted because of the addition of random noise.
Data anonymization techniques [25], which categorize sets of k similar records by
a process of suppression and generalization, can preserve statistical information for
small values of k, but fail to preserve the original clusters because of the process
of suppression and generalization. Geometric transformation techniques [20] obfus-
cate the data using linear transformations such as rotation, scaling, and translation.
These transformations distort the statistical distributions of the data. Geometric
transformation techniques preserve the original clusters by virtue of their linearity
property and are suitable for data mining applications. Data swapping, which ob-
fuscates by a process of swapping nearest neighbors, preserves statistical moments
over individual datasets. NeNDS, which is the data obfuscation approach proposed
in this research, obfuscates data by permuting amongst similar data items. NeNDS
preserves all statistical moments over each dataset in the database, but fails to
preserve multi-variate statistics. NeNDS also preserves the original clusters even
after obfuscation.

5 Proposed Data Obfuscation Technique

This section provides a detailed description of the proposed DO technique called
Nearest Neighbor Data Substitution (NeNDS). Applications of the proposed tech-
nique lie in sensitive databases that require a data protection technique without
loss of information content. Examples of such applications are medical records as
well as micro-databases released by the Census Bureau, where the privacy of indi-
viduals is important as the correctness of the data provided to the end user [17].
The data substitution technique proposed here preserves privacy by permuting el-
ements among groups of data items that are close to each other. Data substitution
is performed individually for each field (dataset) in the database, and each field is
permuted independently of the rest of the fields. NeNDS can be used for trans-
formation of any data set that has some notion of distance among the elements.
In other words, any dataset that forms a metric space can be transformed using
NeNDS.

5.1 Nearest Neighbor Data-Substitution - NeNDS

NeNDS is a lossless DO technique that preserves privacy of individual data
elements by substituting them with one of their neighbors in the metric space. A
set of neighboring data elements are grouped together to form a neighborhood.
The minimum number of neighbors that comprise a neighborhood is specified by
the parameter ¢, where 1 < ¢ < n — 1, and n is the size of the data set. The
minimum size of a neighborhood is given as ¢ + 1, so that each data element in a
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neighborhood has at least ¢ neighbors. Hence, the number of neighborhoods in a
data set (if all neighborhoods are at size exactly ¢ + 1) is given by NH = chl .
In the case where ¢ = 1, each neighborhood would contain at least two neighbors,
reducing the substitution technique to data swapping in some cases. The reflective
nature of data swapping makes it vulnerable to privacy breaches in case of prior
knowledge of some of the elements of the original data set. In order to strengthen
the privacy preserving capability of NeNDS, c is set to be greater than 1.

Each field in the database is NeNDS-transformed independently of other fields in
the database. Let ¥;, represent the original database of m attributes and n records,
and Y,,; represent the NeNDS transformed database. The obfuscation technique
performs substitutions on data items that lie close to each other within a single
attribute field, so that the correlation of the data across the different attributes is
not destroyed.

The neighborhoods created are likely to be of different sizes depending on the
number of identical elements in each neighborhood. The algorithm uses a tree-
traversal approach to obtain an optimum substitution pattern. The nodes of the
tree correspond to the elements of a single data set with the first element as the root
of the tree. The children are ordered from left to right based on their proximity
to the parent node. The distance between the parent and child are given along
the edge connecting them. A Depth First Search (DFS) approach is used here to
traverse the tree. A maximum edge cost counter, Cysg, is maintained for each path
being probed. An optimum substitution pattern is one that has the smallest cost
CuE- The substitution corresponding to the path chosen is the permutation used
to replace the original data set.

Algorithm 5.1 shows the working of NeNDS. ¥;, is the input database with
m attributes (fields) an n records. The minimum number of neighbors in each
neighborhood, ¢, is the input parameter for the algorithm. Each individual dataset
of the original and transformed database is denoted by X%;,, X%,.:, respectively,
where i € [1,m]. Each dataset is divided into NH neighborhoods, denoted by
NHj, j € [1, NH]. The recursive CreateTree algorithm is then invoked to build
a ¢ — ary tree for each NH;. The procedure Ancestors(Tree,NH;) returns all
the ancestors of a specified node, and the procedure Identical(Parent, NH;) re-
turns all the entries in NH; that are identical to the parent of the specified node.
ChildrenTree holds the set of valid children of the parent node in Tree. The pop-
ulated tree is then assigned to the variable T'ree; in Algorithm 5.1. All paths
in Tree; that have a length equal to the size of the neighborhood are candidates
for substitution. The maximum edge distance Cjsp is determined for each can-
didate path. Procedure min(CandidateSet) identifies the path with the smallest
CuE as the optimum substitution pattern. This path is then assigned to NH ;
The datasets (X!ous, B2 out, - - - , 2™ out) form the transformed database Xy, where
Yt = (NH{,NH),...,NHyg). NeNDS can be performed on any data set in
which the elements are related by some notion of distance, and can be expressed
as a metric space. The algorithm is run for each field in the database that forms a
metric space. An analysis of the DFS based algorithm for finding the substitution
pattern indicates that the algorithm has an order of complexity that is exponen-
tial in neighborhood size. However, the branch and bound nature of the heuristic
reduces the actual running time to a much smaller value, which is demonstrated
later by the successful completion of NeNDS even for large data sets.
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NeNDS(c)

1. For each ¢ € [1,m] do
(a) NHsize = [%J
(b) ©%, = (NH1,NHo,... NHyHsize)
(c) For each NH; € %%, do
i. Tree; = CreateTree(N H;,0, NHsize)
ii. d; = depth(T'ree;)
iii. For each pathy in Tree; of length d; — 1
e CandidateSet = CandidateSet | (pathr)
iv. NH; = min(CandidateSet)

2. Eiout = (NH{:NHéa ey NH}VHsize)

CreateTree(NH;, Tree, Size)

If Tree =0 then Tree = NHJ(]

If NH; = 0 then Return Tree

ChildrenTree = NH; - Ancestors(Tree,NH;) - Identical(Parent, NH;)
Child(Tree) = Sort(ChildrenTree)

Tree = Child(Tree)

AN B

The algorithm is explained with the help of an example. Consider a neighbohood
[3537384042] that has 5 elements. Figure 2 shows the tree-based permutation
process for the neighborhood. The first item in the set is made the root of the
tree. The remaining elements [37 38 4042] become the children of the root node
and are ordered from left to right based on their distance from the parent node.
The distance between the parent and child is given along the edge connecting them.
For instance, the edge distance between the root (35) and its left most child (37) is
2, which is assigned to the edge connecting the two nodes Es35_37 and is called the
cost of the edge Cg,,_,,. Each child of the root becomes the root of a sub tree with
all the data items that are not in the path from the root of the tree to the root of
the sub tree becoming the children of this root. The nodes are expanded using a
depth first approach from left to right, which means that the leftmost child of the
root is expanded completely before the next child is expanded. In the figure, the
first child (37) of the root (35) becomes the parent node for the nodes [384042],
which are not in its path from the root. The next node that is expanded is (38)
because it is the leftmost child of the parent (37). The leftmost child is expanded
each time until the leaf node is reached. The node (42) is the leaf node for the
leftmost path in the figure. The root node is appended to the leaf and the distance
between the two nodes is assigned as its edge distance. The edge with the largest
edge cost, called Cy g is marked with a green box. This is the maximum cost of
the specified path. The path (35 - 37 — 38 — 40 — 42 — 35) with Cygp = 7
becomes a candidate for the permutation set. The next node that is expanded
is the second child of the node (38), which is (42). The maximum edge cost for
this path is Cpyp = 5, which is less than the cost of the previous path and hence
replaces the first path as the candidate permutation set. The new candidate set is
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now (35 — 37 = 38 — 42 — 40 — 35) with Cyyg = 5. The algorithm backtracks
to the next unexpanded node, which is the second child of node (37), which is
(40). The maximum edge cost for the leftmost path of this sub tree is Cyyp = 7.
Since the cost of the maximum edge for this path is greater than the cost of the
candidate set, this path is ignored. The next path in the sub tree has an edge cost
CupEe = 3, which is smaller than the maximum cost of the candidate set. The path
(35 — 37 — 40 — 42 — 38 — 35) replaces the candidate set and becomes the new
candidate with Cyrp = 3. The next node to be expanded is the third child of (37),
which is (42). The edge cost for this edge Cg,,_,, = 5, which is larger than CpE.
Any path in this sub tree would have a maximum edge cost greater than or equal
to 5. Hence the node is aborted and marked in yellow. The rest of the children of
the root node have edge costs greater than the maximum edge cost of the candidate
set Cyrg = 3. As a result, none of these nodes are expanded. The final candidate
set is (35 — 37 — 40 — 42 — 38 — 35), which is represented by a green arrow
in the figure. The permutation set for the neighborhood [3537384042] is obtained
from the candidate 35 — 37 — 40 — 42 — 38 — 35 by replacing each item in the
neighborhood by the item on the right of it in the candidate set. The permutation
set for this neighborhood is [3740 3542 38].

Figure 2 Permutation tree for the Age data set.

By considering only those nodes that are not yet in the path from the root of
the tree to the root of the sub tree, the size of the tree is significantly reduced.
This method also avoids swapping of data items. The maximum edge cost helps
remove all those paths that would result in a less optimal solution, which reduces
the complexity of the search process. Only those nodes that can lead to a minimum
cost path are expanded. The depth first approach used here is derived from the
Depth First Search tree traversal algorithm. Since the tree is finite, the DFS search
will complete and will yield a solution.

NeNDS ensures a completely robust framework for data mining applications
by preserving all the information content for cluster preservation and providing a
secure and privacy preserving framework for drawing inferences on the data. As
NeNDS preserves the original values of the data even after transformation, it is still
vulnerable to privacy breaches as mentioned in [11]. This type of privacy breach
may be unacceptable in highly sensitive databases. Section 5.3 provides a hybrid
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version of NeNDS that preserves all the favorable characteristics of NeNDS and
also overcomes this shortcoming of NeNDS.

5.2  Geometric Transformation Technique

An overview of the geometric transformation based DO proposed in [20] [21]
is given here. This approach is of interest in data mining applications due to its
inherent cluster preservation property. Hence, this technique will be used as a
benchmark to evaluate the cluster retention capability of NeNDS. Transformations
such as rotation, scaling and translation are used for distorting the data [13].

With geometric transformations, any pair of numerical fields in the database
is interpreted as a two-dimensional space and the co-ordinates of the data items
are distorted by geometric transformation. The approaches can also be scaled to
three or more dimensions without loss of generality. The database is denoted by
Dg.n, where d is the number of attributes and n represents the number of records
or entries in the database. The transformations translation, scaling and rotation
can be implemented using matrix multiplication. Each of the three transformations
can be represented in terms of the equation [X'Y']T = A[X Y]T + B. In all of the
transformations, A, B are the transformation matrices, (X,Y") are the original data,
and (X',Y") are the results of the transformations on the original data. From the
description of the transformations, it can be observed that each data set is distorted
by the same amount relative to the placement of the individual elements in the set.
In this way the clusters are maintained during obfuscation.

5.8 A Hybrid Data Substitution Approach

In this approach, referred to as GT-NeNDS, the data sets are first onfuscated
using NeNDS, and then geometrically transformed. NeNDS provides a privacy
preserving wrapper on the geometrically transformed data. The transformation
functions like rotation and translation are isometric in nature, thereby preserving
cluster information of the data sets and retaining the nearest neighbor information
for the substitution step. NeNDS permutes similar sets of data items and is vulner-
ability to approximate privacy breaches. The additional geometric transformation
performed on NeNDS-obfuscated results in a robust data obfuscation technique
that protect data from absolute and approximate privacy breaches.

6 Analysis of Privacy for DO Techniques

Section 4.1 provides a classification of all transformation functions based on
their reversibility property. Random data perturbation techniques are hard to
reverse because they exhibit random number reversibility. Geometric transforma-
tions, being linear transformations, can be reversed with the knowledge of a finite
number of original records. NeNDS involves a non-linear one-to-one transforma-
tion, and hence can also be reversed with the knowledge of sufficient number of
original records. In this section, we derive the value for the minimum number of
original records that are required to reverse engineer data that is obfuscated using
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geometric transformations and NeNDS.

6.1 Analysis of Geometric Transformations

Geometric transformations fall under the category of linear transformation func-
tions. These functions are the most vulnerable DO techniques that are subject to
partial reversibility. A cryptanalysis of linear geometric transformations renders it
weak to cipher-text only attacks. The knowledge of the type of obfuscation tech-
nique used results in an immediate reversal of the data. The linearity property of
this data obfuscation technique preserves the clustered nature of the data, but also
results in weak privacy protection. The assumption made here is that the attacker
is aware that the DO process is a linear transformation. In this case, we prove
that for a database with d x n entries, where d is the number of attributes and n
is the number of records, the knowledge of only d + 1 linearly independent records
in the original database, is sufficient to uniquely determine the linear transforma-
tion. Once the transformation matrix is obtained, all the original data entries for
which the obfuscated values are available, are compromised. Therefore the geomet-
ric transformations of [20] [21], being instances of linear transformation functions,
are compromised with the knowledge of d + 1 linearly independent records in the
original data [18].

6.2 NeNDS and Data Swapping

Data swapping and NeNDS fall under the category of non-linear bijective trans-
formations. In this type of transformation, reversibility is dependent on the min-
imum number of records r that are sufficient for complete reverse engineering. In
the case of data swapping, the minimum value for r is half the number of ele-
ments in the data set. For each element in the data set that is known a priori, the
corresponding element involved in the swap is revealed.

In the case of NeNDS, complete reversal of the entire data set would require
the knowledge of at least r = ¢ — 1 distinct data elements for each neighborhood,
where ¢ is the minimum size of a neighborhood. Even partial reversal of a single
neighborhood would require the knowledge of ¢ — 1 of its elements. The fraction
¢i—l determines the ease of reversal of a specific neighborhood i having exactly c;
elements. The proof for this claim is provided below. The goal of the attacker is to
retrieve the original value corresponding to one of the obfuscated items in a dataset
with absolute certainty. We refer to this as a targeted value attack.

Theorem 1. Let [X,Y] be the original and obfuscated datasets of size n respec-
tively.
X:.’L‘l,.’EQ,...,IEn (1)

Y:ylayQa"'ayn (2)

Let y, € Y be the obfuscated item whose original value x; the attacker wants
to retrieve and let x; belong to the pt" neighborhood. Assume that all ¢ items in
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the p** neighborhood are distinct values. Assume that the attacker has complete
knowledge of the NeNDS algorithm, including the value of neighborhood size ¢ used
to produce Y, but no additional knowledge except for a subset of the original data
items. Then, the attacker needs to know at least ¢ — 1 original data items other
than the targeted item to succeed in a targeted value attack.

Proof. Let [X,,Y,] be the original and obfuscated data items in the p‘"* neighbor-
hood.

Xp = Zp1,Zp2,- -, Tpe 3)

Yo = Yp1:Yp2,- - -5 Upe (4)

We evaluate what can be determined with the knowledge of at most ¢—2 original
data items.
The only information known to the attacker:

r_
X, =p1,Tp2,---, U, Uy e (5)

Y:yl;y2;---;yn (6)

where XI’) is a set of ¢ — 2 original data items, and each U represents a miss-
ing value. The goal of the attacker is to identify two missing original values and
determine which of these corresponds to the original value of y;.

Case 1: There exist two items yy, y; in the dataset Y that fall within the inter-
val [min(Y,), maz(Y,)]. In this case, the attacker knows that yi,y; are the missing
items in the neighborhood p. These two items can be placed in the neighborhood
in two ways, both of which produce the same obfuscated neighborhood Y:

!

X, = Tp1,Tp2, ooy Yk Yl e+ - Tpe (7
n

Xp:xp17$p27"'ayla'"5yka"'$pc (8)

Since there is no additional information that enables the attacker to accurately
identify which of the two sequences X, X/ is the original neighborhood, the at-
tacker cannot determine with certainty whether y; or y; is equal to ;.

Case 2: There are no items in the obfuscated data set that fall within the interval
[min(Yy), maz(Yy)]. In this case, the missing items are one of the three pairs:
min(Yp) — 2, min(Yy) — 1, maz(Y,) + 1, max(Y,) + 2 or min(Y,) — 1, maz(Y,) + 1.
For each pair, there are two permutations of the neighborhood that could be the
original neighborhood. In this case, the original value corresponding to y; can be
one of 6 values, and the attacker cannot determine with certainty which of these
corresponds to .

Case 3: One item in the obfuscated dataset lies in [min(Y},), maz(Y,)]. Let this
item be denoted as yg;. In this case, the missing items can be one of two pairs:
min(Yp) — 1, yr or yil,maz(Y,) + 1. Each pair can fill up the missing positions in
two ways. In this case, there are 4 candidates corresponding to the original value
for y; and again the attacker cannot know the value of x; with certainty.
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This shows that even with the knowledge of ¢ — 2 items in a neighborhood, the
attacker cannot determine the original values of the remaining items with certainty.
O

NeNDS with duplicates

In the presence of duplicate entries, the minimum size of a neighborhood with
m duplicates is ¢ = 3m. In this case, retrieving the original value of even a single
obfuscated item requires a priori knowledge of at least 2m or 2¢/3 original items
in the neighborhood containing the targeted original value. The minimum bound
applies to cases where the unknown items are all duplicates. If the missing items
are distinct, the minimum amount of information required is still ¢ — 1 items in the
original neighborhood p that contains the targeted item. Even in the worst case for
data with duplicate items, the attacker needs to know at least 2/3 of the items in
a neighborhood to be able to retrieve even a single targeted original value.

7 Experimental Results

The evaluation of usability is carried out using both real and synthetic data.
Real data is obtained from the UCI repository that provides sample data for data
mining applications. Two real databases are used in these experiments, the Diabetes
database and the Thyroid database. Synthetic data is generated using IBMs Quest
synthetic data generator. The inherent clustering degree Cj, of the database to be
generated can be specified as an input parameter, which enables the generation of
databases with different clustering patterns. The other input specified to the data
generator is the number of records required. The generator outputs a database
with 9 fields and n records, where n is the number of records specified as the input.

A measure known as the Misclassification Error Percentage is used to compute
the distortion produced by data obfuscation. The metric was proposed in [26] to
evaluate the number of data points that have moved from one cluster to another.
The average number of clusters that have moved from their original clusters is
computed using Equation 9, where n is th e total number of records in the data
set, X : X € Dy represents a data item with n fields, K is the number of
clusters into which the data are grouped, and Cluster;(X) is the original cluster
and Cluster;(X') is the new cluster formed from the obfuscated data.

K
1 /
MCE = ¥ * E (|Cluster;(X)| — |Cluster;(X")]) ©)

i=1

This section also evaluates the effect of the clustering results when different
neighborhood sizes are used for NeNDS and GT-NeNDS. The tests are carried out
for minimum neighborhood sizes NH ;. varying from 1% of the database to 20%
of the database for real and synthetic data. The different neighborhood sizes for
each database are listed in Table 1. The maximum number of neighborhoods into
which the data sets are partitioned are NH = L%WJ, where n is the number
of items in the data set. The maximum number of neighborhoods for each of the
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databases specified in Table 1 are [100, 50, 20, 10, 5] corresponding to the different
neighborhood sizes [1%,2%, 5%, 10%, 20%] of n respectively. Each data set of the
database is divided into a maximum of N H neighborhoods. NeNDS is applied to
each neighborhood of each data set to produce N H obfuscated neighborhoods for
every data set.

Database 1% 2% | 5% | 10% | 20 %
Synthetic (3000) | 30 | 60 | 150 | 300 | 600
Synthetic (5000) 50 100 250 500 1000
Thyroid (7200) 72 144 360 720 1440

Table 1 Neighborhood sizes.

7.1 Neighborhood Size and Time Complezity

The distortions produced when clustering algorithms are applied to obfuscated
data have been evaluated for two types of clustering techniques- K-means and
hierarchical clustering. The results of the experiments show that NeNDS and GT-
NeNDS produce very small distortions to the inherent clustering of the databases.
Both types of clustering technique produced similar results for all the experiments.
The effect of varying the neighborhood size for NeNDS was analyzed for two types
of clustering algorithms and different neighborhood sizes. Clustering experiments
were carried out for different neighborhood sizes to evaluate the effect of different
neighborhood sizes on the creation of clusters. The experiments showed that the
distortions introduced by changing the neighborhood sizes are very small.

Figure 3(a) shows a graph of the M CE% versus the number of neighborhoods,
where the number of neighborhoods is increased from 1 to 100 for the synthetic
database generated with an inherent clustering C;, = 10 and 3,000 records. The
number of neighborhoods N H is expressed as L%WJ, where N H ;.. is the neigh-
borhood size and N is the size of the data set. The graph shows the M CE% varies
only slightly when the number of neighborhoods is increased from 1 to 100. The
difference between the extreme values of M CE% is 0.02% indicating that by chang-
ing the neighborhood size from 1 to 100 alters less than 1 record in the database.
Plotting the M CE% versus number of neighborhoods for different databases pro-
duced similar results. This shows that the choice of neighborhood size N H ;. (or
the number of neighborhoods N H) has little or no effect on the misclassification
error.

Although the number of neighborhoods does not affect the MCE% of NeNDS
significantly, the permutation of a large neighborhood is likely to take longer time
to compute than for a smaller neighborhood. Figure 3(b) shows a graph of the
computation time (¢) versus the number of neighborhoods for a synthetic database
containing 3,000 records and an inherent clustering degree C;, = 10. The graphs
show that the computation time decreases exponentially when the number of neigh-
borhoods is increased. When the number of neighborhoods NH = 1, each data set
(field) in the database is treated as a single neighborhood with 3,000 data items.
Increasing the number of neighborhoods decreases the size of each neighborhood.
This results in reducing the size of the tree for computing the optimum permuta-
tion candidate. Although the graph is exponential in nature, the computation time
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Figure 3 Effect of neighborhood size on MCE % and computation time.

for the worst case (NH = 1, NHg,. = 3,000) was completed in 1,700 seconds.
This manageable computation time is enabled by the heuristic branch and bound
tree traversal algorithm for NeNDS. It is seen that by increasing the number of
neighborhoods by a small number, a significant reduction in computation time is
obtained, while the M CE% is hardly impacted.

7.2 Cluster Analysis

A quantitative evaluation of the distortions in clustering due to NeNDS-based
data obfuscation is performed in this section using hierarchical and K-means clus-
tering algorithms. The tabulated results represent the average distortion produced
by the obfuscated data for the different neighborhood sizes specified in Table 1.

Tables 2 and 3 show the misclassification error resulting from performing clus-
tering on the geometrically transformed database, NeNDS-obfuscated database, as
well as GT-NeNDS-obfuscated database. For NeNDS and GT-NeNDS, the aver-
age MCE % indicated in the tables is the average MCE % obtained when NeNDS
based obfuscation is performed with the different neighborhood sizes mentioned in
Table 1.

Table 2 shows the effect that the obfuscation process has on the MCE % when
k-means clustering is performed on the obfuscated data for K = [10,20,30]. The
three columns in the table indicate the clustering errors produced due to a geometric
transformation (in this case, rotation), NeNDS, and GT-NeNDS respectively. The
results show that as the value of K increases, there is an increase in the MCE %.
However, the absolute value of the MCE % is less than one percent, which is a small
percentage. The MCE % resulting from NeNDS- and GTNeNDS- transformed
data are only slightly higher values of MCE % than geometric transformations.
This table shows that NeNDS-transformed data are still highly usable for K-means
clustering.

Table 3 shows the effect that the obfuscation process has on the MCE % when

70
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No. | Rot. | NeNDS | GT-NeNDS No. | Rot. | NeNDS | GT-NeNDS
K-means K = 10 Hierarchical Clustering K = 10
3000 | 0.04 0.04 0.04 3000 | 0.14 0.13 0.14
5000 | 0.11 0.11 0.12 5000 | 0.11 0.12 0.13
7200 | 0.24 0.25 0.27 7200 | 0.28 0.30 0.32
K-means K = 20 Hierarchical Clustering K = 20
3000 | 0.13 0.13 0.14 3000 | 0.28 0.27 0.29
5000 | 0.25 0.23 0.27 5000 | 0.11 0.13 0.14
7200 | 0.45 0.49 0.49 7200 | 0.31 0.33 0.34
K-means K = 30 Hierarchical Clustering K = 30
3000 | 0.27 0.30 0.30 3000 | 0.28 0.30 0.31
5000 | 0.25 0.27 0.28 5000 | 0.36 0.37 0.39
7200 | 0.82 0.83 0.90 7200 | 0.81 0.85 0.88

Table 2 MCE% for GT, NeNDS and GT- Table 3 MCE% for GT, NeNDS, GT-
NeNDS data using the K-means clustering NeNDS transformed data using Hierarchical
algorithm. clustering.

hierarchical clustering is performed on the obfuscated data. In this case, the hier-
archical tree is cut at levels corresponding to K = [10,20,30]. The MCE % results
for hierarchical clustering are similar to the MCE % obtained for K-means. This
table shows that NeNDS-transformed data are still highly usable for hierarchical
clustering as well.

The distortion of clusters produced by clustering data obfuscated using random
data perturbation (RDP) is evaluated to assess the usability of randomized data.
The RDP algorithm takes as input the mean and standard deviation [u, o] and
generates a Gaussian distribution, which is then added to the original data set.
Following this, a second Gaussian distribution with the same parameters is gener-
ated and subtracted from the noise added data set. The final database consists of
the datasets to which a noise distribution is added and a second distribution with
the same parameters is subtracted. Four randomized databases are generated, each
with a different set of parameters for the noise distribution. The parameters chosen
are [0, 1], [0, 10],[0,20], [1, 5]. The first parameter produces a noise distribution with
0 mean and a standard deviation of 1. The resulting data sets are distorted by a
very small value. The second and third parameter sets generate noise distributions
that have 0 mean but larger deviations. The last parameter generates a skewed
distribution because of the non-zero mean. The experiments are carried out for the
two synthetic databases, n = [3000, 5000] and the real database with 7,200 records
of Thyroid data.

Tables 4 and 5 show the MCE% results when the randomized databases are
clustered using the K-means clustering algorithm and hierarchical clustering algo-
rithm respectively for K = [10,20,30]. The misclassification error is very small
0.01% for randomized data with a small noise distribution [0.1]. For all other cases,
the MCE% is much larger, ranging from 13.5% to 45.6%. The misclassification
error is worse when the number of clusters is increased. The large percentage of
data items that are displaced from their original clusters makes randomized DO un-
suitable for clustering-based data mining applications. Randomization techniques
provide good clustering for small values of . However, the privacy risk resulting
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No. [ [0,1] ] [0,10] | [0,20] | [1,5] No. [[0,1] | [0,5] | [0,20] | [1,5]
K-means K = 10 Hierarchical Clustering K = 10
3000 | 0.02 13.5 11.4 15.5 3000 0.0 13.1 14.2 13.2
5000 | 0.05 12.3 144 | 12.37 5000 | 0.08 | 12.1 13.1 13.8
7200 | 0.05 18.1 12.32 11.2 7200 | 0.07 | 12.0 13.3 14.1
K-means K = 20 Hierarchical Clustering K = 20
3000 | 0.04 | 0.18 22.3 31.7 3000 | 0.02 | 19.1 184 | 204
5000 | 0.07 | 0.22 28.2 33.9 5000 | 0.07 | 23.8 | 224 | 21.5
7200 | 0.08 | 25.3 32.6 35.4 7200 | 0.06 | 21.9 | 24.8 | 25.4
K-means K = 30 Hierarchical Clustering K = 30
3000 | 0.1 33.2 0.50 44.5 3000 | 0.03 | 32.3 | 45.0 | 41.8
5000 | 0.08 | 39.6 0.44 45.6 5000 | 0.05 | 36.4 | 41.7 | 45.5
7200 | 0.07 | 30.3 43.7 42.1 7200 | 0.05 | 33.6 | 45.2 | 42.7

Table 4 MCE % for randomized data using Table 5 MCE % for randomized data using
K-means clustering. Hierarchical clustering.

from small offsets, as discussed in Section 4.1 makes it unfeasible to use such small
offsets for data randomization.

Table 6 shows a summary of the misclassification error for the different data
obfuscation techniques. Random Data Perturbation (RDP) is performed by adding
a noise vector of mean y = 0 and variance o> = 100. The angle of rotation for
rotation-based geometric transformation is 89.4 degrees. The value of k for NeNDS
as well as GT-NeNDS is computed by finding the average performance for NH =
[50, 100, 150, 300, 1000]. The size of the database used for comparison is n. = 5, 000,
and the inherent clustering factor C;, = 10. The error percentages resulting from
k-means and hierarchical clustering are comparable, and an average of the two
results is used in the table. The table provides a comparison of the misclassification
error as a percentage. It is observed that RDP performs poorly for all cluster
sizes, whereas the other obfuscation techniques are comparable. Although rotation
provides the smallest error percentage, its vulnerability to reverse engineering makes
it unusable for the data obfuscation of sensitive data. The performance of the
hybrid data obfuscation approach is observed to be almost as good as geometric
transformations. The robust privacy-preservation capability of GT-NeNDS makes
it a more suitable candidate for data protection. The performance of the obfuscation
techniques degrade if the number of clusters required is chosen as a number much
larger than the inherent clustering of the data, as can be noted in the case where the
number of clusters is 20. This is twice the value of C'. The loss of information in this
case is a necessary condition for privacy preservation to prevent individual records
from being exposed. The results of the preliminary analysis indicate that NeNDS
and GT — NeNDS provide cluster preserving obfuscated data that is difficult to
reverse-engineer.

The experimental evaluation provided here shows that the cluster-preservation
capability of NeNDS is comparable to the inherent cluster-preserving geometrical
transformations. The usability of a data obfuscation technique is defined in terms
of its preservation of statistical distribution characteristics as well as its cluster-
preservation capability. An ideal obfuscation technique would be one that preserves
multi-variate distribution characteristics, but such a technique would be vulnerable
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Obfuscation | RDP | RDP | Rotation | NeNDS | GT-NeNDS
- [0,10] | [0,1] | Random | Average Average
Clusters

2 3.1 0.0 0.0 0.0 0.0

3 8.3 0.02 0.02 0.01 0.02

5 13.5 0.03 0.04 0.04 0.04

10 18.1 0.05 0.13 0.14 0.14

20 22.3 0.18 0.45 0.51 0.59

40 42.1 0.25 0.87 0.92 0.95

60 47.3 0.21 1.12 1.64 1.71

Table 6 Comparison of misclassification error %.

to privacy breaches. The next important statistical characteristics to be preserved
are marginal distributions. NeNDS preserves marginal distributions of variables
because the data is not modified. The cluster-preservation capability of NeNDS
is evaluated experimentally in this section and found to be as good as geometrical
transformations. The robustness of the privacy preservation of NeNDS is studied in
Section 6.2. Although NeNDS falls under the non-linear bijective transformation,
the large fraction of minimum information required for complete as well as partial
reversal strengthens the privacy-preservation capability of this technique, making
it very difficult to reverse engineer.

8 Conclusion

The main contributions of this paper are: (1) the proposal of a robust DO
technique for clustered data, (2) the definition of a new measure of privacy preser-
vation for DO techniques, and (3) the demonstration of the weak privacy provided
by existing obfuscation techniques such as linear transformations and data swap-
ping. Table 7 provides a comparison of NeNDS and GT-NeNDS with existing DO
techniques with respect to four parameters: displacement, reversibility, preserva-
tion of statistics, and cluster preservation. The Displacement metric indicates the
similarity between the absolute values of the original and obfuscated data. A low
displacement implies high vulnerability to approximate privacy breaches. The Re-
versibility metric evaluates the amount of information required for retrieving the
original data from the obfuscated data. The Stat metric evaluates the extent to
which the statistical distributions of the original data are maintained. The cluster
preservation property of the DO techniques is measured by the Cluster metric. A
robust DO technique is one with High displacement, that is Difficult to reverse
engineer, and that has Good cluster preservation.

Data randomization with small offsets (Random-Low) and high offsets (Random-
High) is robust to absolute reversibility. The small offset of Random-Low makes it
vulnerable to approximate privacy invasion and unsuitable for applications where
approximate information is considered a breach. The large offset of Random-High
makes it unsuitable for data mining applications because of the distortion of the
original clusters. Data anonymization for small values of k¥ (k-Anon-Low) and large
values of k (k-Anon-High) perform similar to data randomization and are unsuit-
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Obfuscation Displacement Reversibility Stat Cluster
Random-Low Very Low Very Difficult Good Fair
Random-High High Very Difficult Good Poor

k-Anon-Low Very Low Easy Good Fair
k-Anon-High High Difficult Fair Poor

Data Swapping Low Moderate | 5] | Moments Good
NeNDS Low Difficult | £%] | Moments | Very Good
Geo-Trans High Easy d + 1 Poor Very Good
GT-NeNDS High Difficult > [ 2% Poor Very Good

Table 7 Comparison of DO techniques.

able for data that are used for data mining applications. The DO techniques data
swapping, NeNDS, geometric transformations, and GT-NeNDS can be used for ob-
fuscation in data mining applications. Data swapping and NeNDS are vulnerable
to approximate reversal. Data swapping is vulnerable to absolute reversibility only
if |4 ] of the data elements in a database of size n are known a priori. The amount
of a priori information that leads to complete reversal of a neighborhood of NeNDS
is LCCJF—NIJ, where n is the number of records in the database, and ¢ + 1 is the size
of each neighborhood that is permuted. Reversal of an entire dataset requires the
knowledge of the permutation pattern of all the neighborhoods into which the data
is distributed. Geometric transformations offer very little resistance to privacy and
are unsuitable for use by themselves. GT-NeNDS, which combines NeNDS and
geometric transformations, provides robust protection against approximate privacy
invasion as well as absolute reversibility. GT-NeNDS preserves the original clusters
and also preserves moments over individual datasets.
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