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Abstract The secure release of identity attributes is a key enabler for electronic
business interactions. Users should have the maximum control possible over the
release of their identity attributes and should state under which conditions these
attributes can be disclosed. Moreover, users should disclose only the identity
attributes that are actually required for the transactions at hand. In this paper we
present an approach for the controlled release of identity attributes that addresses
such requirements. The approach is based on the integration of trust negotiation and
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minimal credential disclosure techniques. Trust negotiation supports selective and
incremental disclosure of identity attributes, while minimal credential disclosure
guarantees that only the attributes necessary to complete the on-line interactions are
disclosed.

Keywords Identity attributes - Micro-claims - Minimal disclosure

Introduction

As activities such as shopping, discussion, entertainment and business collaboration
are increasingly being conducted on Internet, digital identity management systems
have become fundamental to underpinning accountability in business relationships,
controlling the customization of the user experience, protecting privacy, and
adhering to regulatory controls. Digital identities consist of data referred to as
identity attributes that describe an individual, such as the social security number, the
date of birth, and the country of origin. An identity attribute consists of an attribute
name, also called identity tag, and a value.

Managing identity attributes raises a number of challenges. On one hand, identity
attributes need to be shared to speed up and facilitate authentication of users and
access control, which is often based as policies expressed as conditions against
identity attributes. On the other hand, they need to be protected as they may convey
sensitive information about an individual and can be a target of attacks like identity
theft. Key requirements related to digital identity management systems are correct-
ness, integrity and confidentiality of identity attributes. Correctness is important to
assess identity attributes validity. Integrity requires data not to be tampered.
Confidentiality deals with the protection of sensitive identity information from
unauthorized disclosure. Identity information should only be accessible by the
authorized recipients. It is therefore essential to provide mechanisms for confidential
release of individuals’ attributes. Users should also have control over the release of
their identity attributes and be able to state the conditions for attributes disclosure.
Users should be able to disclose only the identity attributes actually needed for
authentication and access control according to the least disclosure principle (Bishop
2004). In fact, users are often required to reveal more information than necessary to
complete digital transactions.

In this paper we present an approach for the controlled release of identity
attributes, based on the integration of trust negotiation and minimal credential
disclosure techniques, which addresses the above requirements. Trust negotiation
supports the selective and incremental disclosure of identity attributes while minimal
credential disclosure supports the least disclosure principle.

The paper is organized as follows. Next section gives an overview of our
approach for the secure release of identity attributes based on the integration of the
Trust-X negotiation framework (Bertino et al. 2004) and the minimal credential
disclosure technique by Bauer et al. (2008). We then summarize the negotiation
language and the negotiation protocol supported by Trust-X. Next, we introduce the
notion of micro-claims, followed by the presentation of the negotiation protocol
based on the use of the minimal disclosure technique. We proceed with presenting
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the experimental results. The final sections outline related work and conclude the
paper.

Approach technical overview

Trust negotiation is an approach for establishing trust in open distributed systems.
Trust negotiation establishes trust online between two negotiating parties through
bilateral credential disclosure. Digital credentials are assertions stating one or more
identity attributes of a given subject, referred to as the owner, certified by trusted
third parties called certification authorities (CAs). A key aspect of trust negotiation is
that sensitive credentials may be protected by disclosure policies specified by
credential owners. Disclosure policies state the conditions under which credentials
can be released during a negotiation. Conditions are expressed as constraints against
the credentials possessed by the interacting parties and the identity attributes
encoded in the credentials. Therefore, trust negotiation supports the selective and
incremental disclosure of identity attributes but does not guarantee compliance with
the least disclosure principle. In conventional trust negotiations, users may exchange
credentials that also contain identity attributes not actually requested by the
counterpart’s disclosure policies.

An interesting approach supporting fine-grained disclosure of identity attributes
has been proposed by Bauer et al. (2008). Such approach is based on the notion of
micro-claims, that is, predicates specified in terms of identity attributes. Examples of
birth-date-related micro-claims are “Age>18”, and “Age>21”. The set of all
micro-claims derived from the identity attributes of a user is collected in a unique
credential, represented as a Merkle hash tree (Merkle 1987) in which the leaf nodes
represent the micro-claims. The use of such Merkle hash tree credentials makes it
possible to dynamically specify an arbitrary subset of micro-claims for a given
interaction without disclosing the other micro-claims. This approach also assures
integrity of the micro-claims because the credential is released and signed by a CA.
The major drawback of such approach is that it requires the users to determine which
micro-claims to release for a given transaction, and thus it needs to be integrated
with a tool able to automatically select, on behalf of the user, the micro-claims to
release.

Therefore, the integration of trust negotiation and minimal credential disclosure
is the key to a solution to the problem of identity attribute disclosure addressing
all requirements we have outlined. To date, however, there is no system
combining those two approaches. In this paper, we make a step towards the
development of such system and discuss how to extend Trust-X with the minimal
credential disclosure technique. The resulting system allows users to disclose only
the identity attributes necessary to satisfy the counterpart disclosure policies. Rather
than sending all the credentials requested by the counterpart policies, clients, on
behalf of their users, send only one credential that contains the micro-claims about the
identity attributes specified in the counterpart’s disclosure policies. The integration of
the two approaches is not trivial. Because verifying whether clients have certain
properties is based on proving that they own certain micro-claims, we had to extend
the Trust-X negotiation language in order to specify disclosure policies protecting the
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release of single attributes rather than credentials, and expressing conditions against
these attributes. Moreover, because clients should be able to automatically select the
micro-claims that satisfy the counterpart disclosure policies, we had to devise
different strategies to match the micro-claims with the attributes in the disclosure
policies and to select only the micro-claims that satisfy the policies.

Before describing how the integration is realized, we give an overview of Trust-X
and the minimal credential disclosure approach.

Trust negotiation

Trust-X is a comprehensive XML-based framework for trust negotiations for peer-to-
peer environments. In what follows, we give an overview of X -TNL (Bertino et al.
2004), the negotiation language supported by Trust-X and then of the Trust-X
negotiation protocol.

Trust-X language

X -TNL is the XML-based language supported by Trust-X. X -TNL credentials are
the means to convey information about the profile of the parties involved in the
negotiation. A credential is a set of identity attributes of a party issued by a CA. All
credentials associated with a party are collected into a unique XML document,
referred to as X- Profile. The disclosure policies state the conditions under which a
resource or a credential can be released during a negotiation. Conditions are
expressed as constraints on the attribute credentials. Each party adopts its own Trust-
X set of disclosure policies to protect its own credentials, policies, and resources.
Like credentials, disclosure policies are encoded using XML. Two building blocks
for specifying disclosure policies are ferms and R-Terms. A term is an expression of
form P (C) where P is a credential type and C is a (possibly empty) list of conditions
on the attributes encoded in credentials of type P. The credential type P can be
unspecified (and denoted by a variable), so to express constraints on the counterpart
properties without specifying from which types of credential such properties should
be obtained from. The receiver of the policy can choose which credentials to send as
a proof of policy satisfiability. R-Terms are expressions of the form ResName
(attrset) where ResName denotes a resource name and atfrset denotes a set of
attributes, specifying relevant characteristics of the resource. Examples of resources
are a credential, a file or a Web service. Disclosure policies can thus assume one of
the following forms:

1) R<T;, T, ., T,, n>1, where T;, T>, ., T, are terms and R is an R-Term
identifying the name of the target resource.

2) R«DELIV. A rule of this form is called delivery rule, meaning that R can be
delivered as is.

A disclosure policy is satisfied if the stated credentials are disclosed to the policy
sender and the policy conditions (if any) evaluated as true, according to the specific
credential content. A delivery rule implies that the resource R is ready to be released,
and no specific requirement has to be satisfied.
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EXAMPLE 1 The following are examples of disclosure policies:

* Driving License(State = Indiana) < PictureID(Age >18)
* PictureID «—BMV(State = Indiana)

The first policy states that in order to obtain a Driving License credential in
Indiana the user must disclose a picture id that proves he is older than 18. The
second policy says that in order to release his PicturelD, the user wants to see a
credential proving that the counterpart is an authorized Bureau of Motor Vehicle
(BMYV) branch of Indiana.

The Trust-X negotiation protocol

In Trust-X, the negotiation is performed in two main phases: the policy evaluation
phase and the credential exchange phase. The policy evaluation phase, the key
phase of Trust-X, consists of a bilateral and ordered policy exchange. The goal is to
determine a sequence of credentials, called trust sequence, satisfying the disclosure
policies of both parties. During each interaction, one of the two parties sends a set of
disclosure policies to the other. The receiving party verifies whether its X-Profile
satisfies the conditions stated by the policies, and whether there are local policies
regulating the disclosure of the credentials requested by the policies sent by the other
party. If this is the case, the receiving party sends to the other party the disclosure
policies protecting the credentials requested by the other party. Otherwise, the
receiver informs the other party that it does not possess the requested credentials.
The counterpart then sends an alternative policy, if any, or ends the process. The
interplay goes on until one or more potential trust sequences are determined, that is,
whenever both parties determine one or more sets of policies that can be satisfied for
all the involved resources. To maintain the progress of a negotiation and help
detecting a potential trust sequence a tree structure is used.

Once the parties have agreed on a trust sequence, the credential exchange phase
begins. Each party discloses its credentials, following the order given by the trust
sequence, eventually retrieving those credentials that are not immediately available
through credentials chains. Upon receiving a credential, the counterpart verifies the
satisfaction of the associated policies, checks for revocation and validity dates, and
authenticates the ownership (for credentials). The receiving party then replies with
an acknowledgment, and asks for the subsequent credential in the sequence, if any.
Otherwise, a credential belonging to the subsequent set of credentials in the trust
sequence is sent. The process ends with the disclosure of the requested resource or, if
any unforeseen event happens, an interruption.

A minimal credential disclosure approach
Users are often required to reveal more information than necessary when authorizing
digital transactions. For example, they might be required to supply their birth date in

order to prove that they are at least 18. If such information falls into the wrong
hands, there is a potential for misuse.
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Information such as birth date is often used as a secondary identifier by service
providers and, therefore, revealing such information unnecessarily can increase the risk
of identity fraud. The minimum disclosure credential concept assumes that users’
personal information is stored as a set of “micro-claims”. Examples of birth-date-related
micro-claims are “Age >18”, “Age >217, “Age >257, etc. Similar micro-claims can be
constructed for almost any category of personal information. Once micro-claims are
constructed, minimum disclosure credentials allow users to reveal, in a manner easily
verifiable by receiving parties, the minimum set of micro-claims necessary for a
particular transaction. This allows users to minimize the amount of their personal
information that is revealed to, and maintained by, parties with which they interact.

Credential design

The core of a minimum disclosure credential is a Merkle hash tree structure, which is
similar to a redactable signature (Johnson et al. 2002). A redactable signature
scheme is such that the signature can be verified even when parts of the document
being signed are hidden (redacted). In the credentials that use this structure, hashes
of micro-claims are represented as leaves in a Merkle hash tree, as shown in Fig. 1.
The credential consists of two parts: a public part and a private part. The public part
of the credential is a certificate. The certificate holds information about the issuer,
the certification chain for the issuer, the type of certificate, the date range over which
the certificate is valid, the user’s public key, and a signature of the root node of a
Merkle hash tree. The certificate should not hold any data about the user directly,

Legend:

N;: H(H(C,) || H(C,))

,: HH(C;) || H(C,))

52 HH(C,) || H(C4))

;- HH(C,) || H(C))

Ng: H(N, || N,)

Ng: H(N; || N,)

R H(N; | No)

C,...Cg : User micro-claims

Fig. 1 Simple Merkle hash tree with eight claims
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even data as common as a name. As per standard operation, the certificate will be
signed by a certificate authority. The private part of the credential consists of a
private key and a Merkle hash tree, whereby all of the leaf nodes are attributes of, or
micro-claims about, the identity of the user, who is the credential holder. A user who
wishes to assert some micro-claims supplies the certificate, the values of the asserted
claims and their positions in the hash tree, and additional hash tree intermediate
values necessary to reconstruct the root hash value, which the receiving party
validates against the root hash value in the certificate.

The basic minimum disclosure credential scheme has been extended to allow
claims from multiple authorities to be combined within a single credential, while still
allowing a user to supply an arbitrary subset of the claims from all authorities (Bauer
et al. 2008). This allows users to have multiple “identity providers” that supply
claims only related to their particular domain.

In order to support credentials that contain claims issued by different identity
providers, referred to as combined credentials, the hash tree structure contains a
subtree for each identity provider. The root of the subtree has a third child node that
represents the hash of the public certificate for the nodes in the subtree. We use
combined credentials in our trust negotiation approach with minimal disclosure.

Protocols for the credential

In order to create a credential by a single identity provider, four steps are required.
First, the user and the identity provider agree on a list of claims. Next, the hash tree
for the claims is generated. Third, the identity provider verifies that the user
possesses the private key. Finally, the identity provider generates and signs the
public certificate. When generating the hash tree, random padding must be added to
the claims before they are hashed, as discussed in (Bauer et al. 2008). With a single
identity provider, the tree will always be balanced, bounding the number of interior
nodes to the number of claims. The number of hashes needed to generate the tree is
therefore bounded to twice the number of claims-generally an insignificant amount
of computation time.

The protocol for using the credential follows conventional PKI certificate usage.
To show a set of claims from the credential, the owner provides the claims and the
intermediate node values and path information necessary for the receiving party to
verify each of the claims. If any of the claims are in a subtree certified by a different
identity provider, the accompanying certificates must be included with the set of
claims. The receiving party verifies that the claims are in the hash tree specified (via
the root hash) in the certificate part of the credential. The receiving party also
verifies the signature on the certificate part of the credential. In order to verify that
the sending party is the holder of the credential, the receiving party also verifies that
the sending party possesses the private key which matches the public key claimed
by the credential. This can be done by standard methods, such as challenge/response
or as part of a secret key agreement operation, as long as the key verification is tied to
the specific claims being asserted by the sending party. In addition, to cryptographic
verifications, the receiving party must confirm that it trusts the identity providers to
assert the claims in the credential. For example, an assertion by the Department of
Motor Vehicles that an individual is a licensed lawyer should not be trusted.
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Trust negotiation with minimal credential disclosure

None of the existing trust negotiation software systems provide support to minimal
integration disclosure. Therefore, in order to integrate such techniques into trust
negotiations, it is necessary to extend the language to specify negotiation policies
and the negotiation protocol itself. If we consider Trust-X, the negotiation language
must be extended with the specification of disclosure policies for identity attributes.
At the negotiation protocol level challenging issues are how to match the attribute
names in the disclosure policies’ terms with the attribute names in the micro-claims
and how to select the micro-claims that make true the terms. The negotiating parties
might use different vocabularies and hence the terms in the policies and the micro-
claims might have syntactic and/or semantic differences in attribute names and
categorical values.

Identity attribute disclosure policies

Trust negotiations are carried out on the basis of disclosure policies that regulate the
release of sensitive credentials, while the approach for minimal credential disclosure
is based on micro-claims that express conditions on user’s identity attributes not
related to a particular credential type. As such, the X -TNL language must be
extended in order to specify disclosure policies that protect the release of attributes
rather than credentials. We thus extend the disclosure policy language with
expressions of the form 4« AT, ..., AT, where 4 is an attribute name, and terms
AT; are attribute conditions of the form a op expr. a denotes an attribute name, op is a
comparison operator, such as =, <, >, < >  and expr denotes a constant or a
variable name.

Micro-claims matching

Users may belong to different domains, and each domain may use a different
vocabulary to denote identity attribute names. Thus, when a user sends its disclosure
policies to the counterpart during a trust negotiation, the counterpart may not be able
to understand which micro-claims he/she has to provide to satisfy the user’s policy.
Therefore, we need a technique for matching the identity attribute names in
disclosure policies with the names in the users’ micro-claims.

The matching technique depends on the types of variations in identity attribute
names, which can be classified as follows:

» Syntactic variations refer to the use of different character combinations to denote
the same term. An example is the use of “CreditCard” and “Credit Card”.

» Terminological variations refer to the use of different terms to denote the same
concept. An example of terminological variation is the use of the synonyms
“Credit Card” and “Charge Card”.

»  Semantic variations are related to the use of different concepts in different
domains, each characterized by a different ontology, for denoting the same term.

Syntactic variations can be identified by using look-up tables enumerating the
possible ways in which the same term can be written by using different character
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combinations. Terminological variations can be identified by means of dictionaries or
thesaurus such as WordNet (Fellbaum 1998). Dictionaries are typically used to retrieve
all the synonyms of a given term. Semantic variations can be determined by using
ontology matching techniques (Choi et al. 2006; Jarvis 2003). Ontology matching
supports the comparison of not only the name of an attribute but also its semantics by
considering the relations defined in the ontology with which the attribute is associated.

To detect all the possible variations in identity attribute names listed in disclosure
policies and in micro-claims, we adopt a matching technique based on look up tables,
dictionaries, and ontology mapping. To enable such matching approach, we assume
that users have an ontology describing their domain and the identity attributes
specified in their disclosure policies and micro-claims correspond to a concept in such
ontology. Moreover, each user maintains a look up table containing alternative
character combinations and a table recording sets of synonyms for (some of) the
identity attribute names referred in his/her disclosure policies and micro-claims.

The matching protocol takes place when a user receives a disclosure policy from
the counterpart and notifies the counterpart that is not able to understand which
identity attributes he/she has to provide to satisfy the policy. Thus, the counterpart
sends a set of alternative character combinations and a set of synonyms for the
identity attributes listed in its disclosure policy. The party thus presents the user with
predefined naming alternatives. If by using the counterpart’s information, the user is
not able to match its identity attributes with the ones by the counterpart, it notifies
the counterpart. Thus, the counterpart tries to match the concepts corresponding to
the identity attributes the user is not able to provide with concepts of the user’s
ontology. If no matches are found, the negotiation fails.

Micro-claims selection strategies

Once the match between attribute names in the disclosure policies’ terms and the
ones in the micro-claims is performed, it is important to select the micro-claims that
satisfy the terms. Since there might be multiple micro-claims for the same attribute
name, different strategies can be adopted. A naive strategy is to use string matching
to select the micro-claims that satisfy a policy term. This strategy is very restrictive
because if there are no micro-claims that textually match a policy term, the term
cannot be satisfied even though there are micro-claims that logically match or imply
the condition specified in the term. For example, assume that the birthday of a user is
04-15-1978 and hence the user is 30 years old. Suppose that the user has to prove
that his age is greater than 18, that is, he has to prove the disclosure policy term
“Age >18”. Suppose that the following micro-claims are recorded in his Merkle hash
credential: “Age >16”, “Age >207, “Age >28”, and “Age <45”. It is clear that under
the string matching strategy, no one of those micro-claims matches the policy term,
even though both the micro-claims “Age >20” and “Age >28” logically imply the
condition “Age >18”.

To address such issue, the most intuitive strategy is the one that we refer to as
tight bind strategy. Under such strategy, the selected micro-claim is the one that
logically implies the term in the disclosure policy and that is closer to the actual
value assumed by the attribute from which the micro-claim is derived. Though this
strategy is intuitive, it makes it possible for the service provider (or any party
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receiving the micro-claim) to obtain a tighter bound on the actual value of the
attribute. In the scenario described above, where a user has to prove to be older than
18, the tight bind strategy would select the micro-claim “Age >28”. If a malicious
party knows that tight bind strategy is adopted, it can reduce the uncertainty about
the actual age of the user. An alternative strategy, that we adopt, is to select the
micro-claim which, not only logically implies the policy term, but also has the
farthest value from the actual value of the attribute. Such strategy, that we refer to as
loose bind strategy, provides a less tight bound about the actual value of the
attributes and thus provides a higher uncertainty about the actual values of the
attribute, as compared to the tight bind strategy. According to this strategy, if a user
has to prove to be older than 18 in the scenario described above, the loose bind
strategy will select the micro-claim “Age >207.

Note that both the tight bind and the loose bind strategy can also be adopted to
select micro-claims about identity attributes that assume non numerical values.
However, in order to apply such strategies, the attributes must be organized into
some hierarchical form. Organizing the data into hierarchies allows for generaliza-
tion. Generalization is accomplished by assigning a disclosed value that is more
general than the original attribute value. For example, a user who has to prove he is
resident in Indiana can make the address information less specific by omitting the
street and city and revealing just the zip code. We assume that domain D' is a
partially ordered set (D', ») whose largest element corresponds to the non-
generalized attribute value and the smallest element is the most generalized value
which is the suppressed value. The domain D' contains multiple generalization levels
denoted by the pedex. An attribute generalized to D' is more general than an
attribute generalized to D,' 2 D,!, which implies that D,' discloses more information
than D,. Using this basic structure, the user can decide which strategy to apply, by
selecting the adequate level of generalization. For example, a user who has to prove
he/she is resident in Indiana, if he/she decides to apply the loose bound strategy,
would select a micro-claim about the zip code, while he/she discloses all micro-
claims about its address if adopting the tight bind strategy.

Users can decide to use both the strategies alternatively during a negotiation
process. Using always the same strategy for the selection of micro-claims may lead
to information leakage because the strategy can be identified. Once the strategy is
identified, the attacker may infer valuable information about the identity attributes
being hidden.

For example, consider the case of a user who needs to prove he is older than 18. If
the user decides to adopt tight-bind strategy, and he is 20, he will select Age >18
micro-claim, rather than the micro-claim Age <28. By looking at previous
negotiation steps, and possibly correlating micro-claims that are semantically
related, the attacker may guess that the user is adopting a tight-bind strategy. Hence,
he can guess that the user is likely closer to 18 than 28, and most likely younger than
25.

If the attacker does not know the criteria according to which the predicates are
selected, even these simple guesses are harder to make. By alternating different
strategies, the user’s strategy selection is hidden, and therefore it’s harder for an
attacker to infer the actual value of identity attributes.
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Negotiation protocol with minimal credential disclosure

The adoption of the minimal credential disclosure in Trust-X requires extending the
profiles of parties to store Merkle hash tree credentials.

We thus extend users X-Profiles to include the credentials according to the Merkle
hash tree structure, with micro-claims about users identity attributes and all the
credentials that certify that the users have these identity attributes. At the beginning of
the negotiation users select the strategy to select the micro-claims (loose bind strategy
or tight bind strategy) . For each term AT7; in the disclosure policy 4« AT}, ..., AT,
received by the counterpart, a party computes the set Claim_Set of micro-claims name
in AT; and that make true 47;. The match between attributes names in the A7; terms
and the attributes in the micro-claims is executed by using the approach described in
the previous section. If Claim_Set is empty, the policy cannot be satisfied by the party,
and a notification message is sent to the counterpart. Otherwise, the party checks if
there are policies protecting the release of the attribute corresponding to term A7;. If
such policies exist, the party sends them to the counterpart. At the end of the policy
evaluation phase, when the two parties agree on a trust sequence Trust Seq of terms
that must be satisfied, they do not exchange and verify one by one the credentials, as it
typically occurs in Trust-X negotiations. For each term A7; in the Trust Seq, the user
has to satisfy, the Merkle hash tree credentials containing the micro-claims that match
the attribute names in A7; and imply A7; are selected. Once selected the micro-claims
that match and satisfy the terms in counterpart’s disclosure policies, the Merkle hash
tree credentials containing such claims are combined together. Thus, only the public
part of the combined credential, and the information to enable the verification of
counterpart disclosure policies are sent to the counterpart. This information includes the
list of micro-claims that match the terms in counterpart disclosure policies, the
intermediate node values and path information necessary for the receiving party to verify
all the micro-claims. The receiving party verifies that the micro-claims are in the hash
tree by computing the hash value of the root and checking if the root hash in the
certificate matches the computed hash value. The receiving party also verifies the
signature on the root value in the certificate part of the credential. In order to verify that
the counterpart is the holder of the credential, the party also verifies that the counterpart
owns the private key which matches the public key claimed by the credential. If the
counterpart micro-claims verification is successful, the algorithm checks if the signature
affixed on the root hash in certificate is valid. If the signature is valid, the negotiation
between the two parties is successful, otherwise the negotiation fails.

EXAMPLE 2 Consider a simple negotiation where a party receives the disclosure
policy DrivingLicense«—State = Indiana, Age >18 that requires the party to prove
that he is resident in Indiana and that he is older than 18. The party has to
demonstrate that he owns a set of micro-claims that satisfy the terms State = Indiana
and Age >18. Assume that the party owns the Merkle hash tree credential in Fig. 2.
The credential contains the micro-claims State = Indiana, ZipCode = 47906, City =
West Lafayette, Address = Brown Street, and Age >16, Age >20, Age >28, and Age
<45. Assume that the identity attributes about the location of the user are ordered
based on their level of generalization as follows: ZipCode = 47906 < Address =
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Fig. 2 Example of Merkle hash tree

Brown Street < City = West Lafayette < State = Indiana. Assume that the party
decides to adopt the loose bind strategy. Thus, according to loose bind strategy the
micro-claims that match the terms State = Indiana and Age >18 in the disclosure
policy are ZipCode = 47906 and Age >20 respectively.

The party, sends the certificate and the following information to prove his claims:

» for the claim Stateof Residence = Indiana, the authentication path is H (C;), H
(Cg), N3 5 N4, N5, N6 B R and the node set lS{H (C7), H (Cg), N3, N5}

*  for the claim Age >25, the authentication path is H(C;),H(C>), N;, N5, Ns, Ng, R,
and the node set is {H(C;),H(C5), N5, Ng}.

The counterparty computes the root hash performing the following steps:

1. computes the hash of H(C)) || H(C,) that is N,
2. computes the hash of N; || N, that is N5
3. computes the root value R as the hash value of Ns || N

If the value computed matches the value in the certificate sent by party, the
verification succeeds.
Implementation and experimental evaluation
In this section we present, first, the performance of the minimal credential disclosure

approach and then we present the performance of the Trust-X negotiation protocol
with minimal credential disclosure.
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Table 1 Comparison of the public-key operations for Merkle hash tree, Brute force and Brands credential
schemes for 1 micro-claim to be verified

Operations

MHT Credential
Prover Tree reduction
Prove ownership (1 slow modular exponentiation)
Verifier Hash computations
Verify certificate (1 fast modular exponentiation)

Verify ownership (1 fast modular exponentiation)

Brute Force
Prover Prove ownership (1 slow modular exponentiation)
Verifier Verity certificates (1 fast modular exponentiation)

Verify ownership (1 fast modular exponentiation)
Brand’s Credential
Prover Prove credential + ownership (1 slow modular exponentiation)

Verifier Verify credential + ownership (1 slow modular exponentiation)

Performance of micro-claims’ verification based on Merkle hash tree credentials

Our minimal disclosure credential design uses mainly one-way hashes and minimizes the
number of public/private key operations (large modular exponentiations). This allows our
system to be faster than the digital credential schemes of (Brands et al. 2007) and
(Camenisch and Lysyanskaya 2001), which require more of these expensive, modular
exponentiation operations. Table 1 reports a summary of the public/key operations
required by the Merkle hash tree based credential scheme and the one by Brands.

We performed two sets of performance experiments dealing with the credentials
alone, focusing on the computational burden placed on servers, which is likely to be
the performance bottleneck in a system. In the first set, we evaluated credential
verification time vs. number of claims. In the second set, we implemented and
deployed an actual client-server system in Emulab (White et al. 2002), and evaluated
server throughput. These experiments included communication costs and additional
client-side and server-side computations costs in addition to credential verification
time, and have multiple clients accessing the service simultaneously, to provide a
realistic assessment of performance. In all experiments, we compared our hash tree
approach against Brands’ credentials and the brute force solution of embedding each
claim in a separate certificate. For Brands’ credentials, we used the parameters from
(Brands et al. 2007) (|p|=1,600, |q|=256, |s|=160), which is roughly equivalent in
security level to our credential. Brands’ credential has the advantage over our
approach that it can prove properties of claims, reducing its need for micro-claims.
At this stage, we do not attempt to quantify that advantage in these tests.

The first set of experiments was performed on an Intel Core 2 Duo E6600 running
at 2.4 GHz using Sun’s server JVM version 1.6.0. In all cases the operations were
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Table 2 Time efficiency of hash ] -
tree and certificate Operation Time (p-sec)

Verify Tree (SHA-256)

1 claim of 2,048 31

20 claims of 2,048 100

All 2,048 claims 8,000
Verify Certificate (RSA, 1,536 bit)

1 certificate 620

20 certificates 12,000

2,048 certificates 1,300,000
Verify Brands

1 claim 38,000

20 claims 280,000

2,048 claims 26,000,000

run repeatedly before timing, so as to force the JVM to fully optimize the operations.
We used X.509 certificates for the public key certificate part of the credential. The
certificate was signed using RSA, and the CA’s key was 1,536 bits. Results are
shown in Table 2.

The total time to verify one hash tree credential is equal to the tree verification
time plus the time to verify one certificate. The hash tree used in these experiments
contains 2,048 claims. From Table 2, we see that verifying one claim with the hash
tree approach is approximately 30 times faster than verifying one claim in a Brands’
credential (2*620 us+31 ps compared with 38,000 ps), including proving
ownership. For 20 claims, the hash tree approach is approximately 210 times faster
than Brands’, and with 2,048 claims, the speedup factor is approximately 2,800.
Speedup compared to the brute force approach of one certificate per claim approaches
linear with the number of claims, e.g. approximately 50 times faster with 100 claims.

The hash tree credential also requires less computation for the prover than Brands’
credential. Brands’ credential requires almost the same time for the prover (client) as the
verifier, for a modest number of claims. More precisely, the client requires about 26 ms
to show a credential with one claim and about 270 ms to show a credential with 20
claims. Our credential requires one RSA private key operation (about 20 ms) and a tree
reduction (about 5 ms, for showing 20 claims out of 2,048) on the part of the client.

In the Emulab experiments, there was a variable number of clients and one server,
which accepted connections from the clients and verified one credential per client
request. Each client and server instance was run on a separate 3 GHz Pentium Xeon.
Each client generated verification requests one after another, waiting for one response
and then immediately generating a new request. All parameters were the same as in the
first set of experiments. Here, our primary performance measure is the server
throughput (number of verifications done per second). The results are shown in Fig. 3.

The figure shows that throughput with Brands’ credentials saturates at only a few
clients, while the hash tree credentials can handle up to about 15 clients before saturating.
The peak throughput for the hash tree credentials is approximately 210 verifications per
second, while the peak throughput with Brands’ credential having ten claims is
approximately five operations per second and with 20 claims it is only about two
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Fig. 3 Credential verification throughput vs. number of clients

operations per second. Adding claims to the hash tree credential has only a modest impact
on performance. With 15 claims, the peak throughput is still over 200 verifications per
second and even with 2,048 claims, the throughput is still around 33 verifications per
second. The figure also shows that throughput for the brute force approach with one
certificate per claim drops off rapidly as the number of claims increases.

Performance of the negotiation protocol with minimal credential disclosure

To evaluate the impact of adopting a minimal credential approach in trust
negotiation, we have integrated into the Trust-X prototype (Squicciarini et al.
2007) the minimal credential disclosure approach by Bauer et al.

We have measured the time to perform credential exchange phase according to the
complexity of the disclosure policies. By complexity of a policy, we mean the
number of terms that are required to the counterpart for a single resource. We
distinguish between single and multiple-term policies. Policy complexity influences
the number and the length of alternative trust sequences according to which the two
parties can complete the negotiation. We measure the total execution time of
credential exchange phase for both negotiation parties, denoted as client and server
respectively, and the execution type to combine the credentials to be sent to the
counterpart and the time to verify the combined credentials in the following cases:

1. varying the number of single-term policies from five to fifteen scaling of a factor
equal to five

2. varying the number of credentials conditions in a multi-term policy from five to
fifteen scaling of a factor equal to five

We have performed our experiments on a Pentium 4 PC with 2.00-GHz processor
and with 512 MB of RAM, under Microsoft Windows XP. The same working load
of the system was ensured in all the experiments. In addition, for each test case,
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Fig. 4 Credential exchange execution time for single term policies

eleven trials have been executed, and the average of the results obtained from the last
ten trials has been computed, excluding the results of the first test. The performance
has been measured in terms of CPU time (in microseconds).

Figure 4 shows the experimental results for test case one. The total execution time
of both server (represented in green) and client (represented in orange) increases
with the increase of the number of single term policies exchanged during the

—a— ServerVerification —m—ServerCombine ~—ServerCredentialExchange

ClientVerification

ClientCombine —o—ClientCredentialExchange
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300000

250000

— _’:/_________/_--"

Execution time in microseconds
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Fig. 5 Credential exchange execution time for multi term policies
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negotiation. This result is due to the fact that the number of credentials to be
combined and sent to the counterpart increases with the number of policies.
However, the time to verify the combined credentials is almost constant.

Figure 5 shows the experimental results for the second test case. The execution
time for credential exchange increases with the number of attribute conditions that
needs to be verified by the two parties because the time to generate combined
credentials increases.

Related work

Trust negotiation has been recognized as an interesting and challenging research area
to explore, and has been extensively investigated in recent years. As a result, several
techniques and prototypes have been developed (Herzberg et al. 2000; Winsborough
et al. 2000). Work related to privacy in the context of trust negotiation systems has
focused on the protection of sensitive policies and credentials. Yu et al. (2003) have
developed a unified scheme, known as Unipro, to model resource protection, which
applies to both the actual resources to be protected and to the policies. Such scheme,
however, is based on a notion of protection which is closer to the notion of access
control and as such it is not able to support anonymization. Our work, instead, has
the goal of providing stronger privacy to individuals through the use of minimal
credential disclosure techniques.

Two significant approaches dealing with selective disclosure of attributes are by
Holt et al. (2003) and by Li et al. (2003). Holt’s work focuses on hidden credential
features, and on how to improve performance of hidden credentials constructed from
identity-based crypto systems which satisfy credential indistinguishability. The
notion of credential indistinguishability, adopted in such an approach, is very
different from ours. The key idea by Holt et al. is to make credentials
indistinguishable to any recipient which does not possess either of the credentials
corresponding to P and PO, where P and PO are elements of the set of possible single-
credential policies. Li et al. have proposed a scheme called Oblivious Signature
Based Envelope (OSBE) (Li et al. 2003). OSBEs are similar to Hidden Credentials
in that the ability to read a message is contingent on having been issued the required
secret.

Several privacy-enabled identity management systems have been based on the
notion of anonymous credential (Camenisch and Herreweghen 2002; Chaum 1985).
In anonymous credential systems, organizations know the users only by pseudonyms.
Different pseudonyms of the same user cannot be linked. Yet, an organization can
issue a credential to a pseudonym, and the corresponding user can prove possession of
this credential to another organization (who knows him by a different pseudonym),
without revealing anything more than the fact that she owns such a credential.

Stefan Brands developed a different form of digital credential, in which a user has
a single public credential, but that credential is pseudo-anonymous, even to the
issuer (Brands 2000). The credential holds attributes that the user can selectively
prove to a service provider. Repeated showings of the same credential are linkable,
both if shown to the same or different service providers. However, since the
credential is issued blind by the identity provider, the effect is that a user has one
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global pseudonym. The credential can be reissued easily, allowing the user to change
the global pseudonym, as permitted by the identity provider.

We have shown that verifying minimum-disclosure credentials of the type we use
herein is approximately three orders of magnitude faster than verifying Brands’
credentials. The reason is that the minimum-disclosure credentials require mainly
hash computations and only one RSA public-key operation to verify the signature on
the certificate, whereas Brands’ credential requires a large number of big modular-
exponentiation operations.

Camenisch et al., have proposed and implemented yet another form of digital
credential, or more precisely, yet more forms (Camenisch and Lysyanskaya 2001;
Camenisch and Herreweghen 2002; Camenisch et al. 2005). IBM’s Idemix system is
based on Camenisch et al.’s work (Camenisch and Herreweghen 2002).

We emphasize that the approaches by Brands and Camenisch et al., achieve much
stronger anonymity properties than are possible with our credentials. Minimum
disclosure credentials provide auditability in that the certificate authority can tie the
credential to a specific user. The lack of strong anonymity in the minimum
disclosure approach has the additional benefit of much higher performance in
verifying credentials.

Conclusions

In this paper we have presented an approach for the controlled release of identity
attributes based on the integration of trust negotiation and minimal credential disclosure
techniques. The minimal credential disclosure approach guarantees that during the
negotiation process a party discloses only the attributes necessary to complete the
interactions with other parties. As part of future work, we plan to investigate how to
leverage micro-claims in the context of federations. A service provider, which has
successfully verified a set of counterpart’s micro-claims during a negotiation process,
can release a signed assertion listing the counterpart’s micro-claims and specifying how
the micro-claims have been obtained and verified. Such an assertion can be used during
subsequent negotiations in the federation. We also plan to investigate privacy-
preserving strategies for the generation and selection of micro-claims. Micro-claims
could be generated for example based on anonymization criteria, like k-anonymity.

Acknowledgements This material is based in part upon work supported by the National Science
Foundation under the Grant CNS-CT-0716252ITR and upon work supported by the U.S. Department of
Homeland Security under Grant Award Number 2006-CS-001-000001, under the auspices of the Institute
for Information Infrastructure Protection (I3P) research program. The I3P is managed by Dartmouth
College. The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the U.S.
Department of Homeland Security, the I3P, or Dartmouth College.

References

Bauer D, Blough D, Cash D. Minimal information disclosure with efficiently verifiable credentials.
Proceedings of 4th Workshop on Digital Identity Management, 2008.

@ Springer



Minimal credential disclosure in trust negotiations

Bertino E, Ferrari E, Squicciarini AC. Trust-X- a peer to peer framework for trust establisment. IEEE
Transactions on Knowledge and Data Engineering (TKDE). TKDE. 2004;16(7):827-42.

Bishop M. Introduction to computer security. Boston: Addison-Wesley; 2004.

Brands S. Rethinking public key infrastructures and digital certificates; building in privacy. Cambridge
Massachusetts: MIT Press; 2000.

Brands S, Demuynck L, Decker BD. A practical system for globally revoking the unlinkable pseudonyms
of unknown users. In 12th Australasian Conference on Information Security and Privacy, 2007.
Camenisch J, Herreweghen EV. Design and implementation of the Idemix anonymous credential system.

Proceedings of the 9th ACM Conference on Computer and Communications Security; 2002.

Camenisch J, Lysyanskaya A. An efficient system for non-transferable anonymous credentials with
optional anonymity revocation, Proceedings of the International Conference on the Theory and
Application of Cryptographic Techniques: Advances in Cryptology; 2001.

Camenisch J, Hohenberger S, Lysyanskaya A. Compact e-cash. In: Cramer R, editor. Advances in
cryptology—EUROCRYPT ’05, Vol. 3494 of lecture notes in Computer Science; 2005. p. 302-21.

Chaum D. Security without identification: transaction systems to make big brother obsolete.
Communications of the ACM, 28, 1985.

Choi N, Song 1Y, Han H. A survey on ontology mapping. SIGMOD Record. 2006;35(3):34-41.

Fellbaum C. Wordnet: an electronic lexical database. Cambridge: MIT; 1998.

Herzberg A, Mihaeli J, et al. Access control meets public key infrastructure, or: assigning roles to
strangers. In Proceedings IEEE Symposium on Security and Privacy, Oakland, CA; 2000.

Holt J, Bradshaw R, Seamons KE, Orman H. Hidden credentials. In Proceedings of 2nd ACM Workshop
on Privacy in the Electronic Society, Washington, DC; 2003.

Jarvis RD. Selective disclosure of credential content during Trust Negotiation, Master of Science Thesis,
BrighamYoung University, Provo, Utah; 2003.

Johnson R, Molnar D, Song DX, Wagner D. Homomorphic signature schemes. Topics in Cryptology—
CTRSA 2002, vol. 2271. Springer-Verlag; 2002, p. 244-62.

Li N, Du W, Boneh D. Oblivious signature-based envelope. In Proceedings of 22nd ACM Symposium on
Principles of Distributed Computing (PODC 2003), Boston, Massachusetts; 2003.

Merkle R. A digital signature based on a conventional encryption function. In Proceedings of Conference
on the Theory and Applications of Cryptographic Techniques on Advances in Cryptology; 1987, p.
369-78.

Squicciarini A, Bertino E, Ferrari E, Paci F, Thuraisingham B. PP-trust-X: a system for privacy preserving
trust negotiations. ACM Transactions on Information Systems Security. TISSEC. 2007;10(3):1-50.

White B, Lepreau J, Stoller L, Ricci R, Guruprasad S, Newbold M, et al. An integrated experimental
environment for distributed systems and networks. In Proc. of the Fifth Symposium on Operating
Systems Design and Implementation, Boston, MA; 2002, p. 255-70.

Winsborough WH, Seamons KE, Jones V. Automated trust negotiation. DARPA Information Survivability
Conference and Exposition, Volume I, Los Alamitos, CA, USA: IEEE Press; 2000, p. 88-102.

Yu T, Winslett M. A unified scheme for resource protection in automated trust negotiation. In Proceedings
of IEEE Symposium on Security and Privacy, Oakland, CA; 2003.

@ Springer



	Minimal credential disclosure in trust negotiations
	Abstract
	Introduction
	Approach technical overview
	Trust negotiation
	Trust-X language
	The Trust-X negotiation protocol

	A minimal credential disclosure approach
	Credential design
	Protocols for the credential

	Trust negotiation with minimal credential disclosure
	Identity attribute disclosure policies
	Micro-claims matching
	Micro-claims selection strategies
	Negotiation protocol with minimal credential disclosure

	Implementation and experimental evaluation
	Performance of micro-claims’ verification based on Merkle hash tree credentials
	Performance of the negotiation protocol with minimal credential disclosure

	Related work
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


