
RBAY: A Scalable and Extensible Information Plane
for Federating Distributed Datacenter Resources

Xin Chen�, Liting Hu�, Douglas M. Blough�, Michael A. Kozuch†, Matthew Wolf‡
�Georgia Institute of Technology, � Florida International University, †Intel Labs, ‡Oak Ridge National Laboratory

xchen384@gatech.edu,lhu@cs.fiu.edu,doug.blough@ece.gatech.edu,michael.a.kozuch@intel.com,wolfmd@ornl.gov

Abstract—While many institutions, whether industrial, aca-
demic, or governmental, satisfy their computing needs through
public cloud providers, many others still manage their own
resources, often as geographically distributed datacenters. Spare
capacity from these geographically distributed datacenters could
be offered to others, provided there were a mechanism to
discover, and then request these resources. Unfortunately, single
datacenter administrators tend not to cooperate due to issues
of scalability, diverse administrative policies, and site-specific
monitoring infrastructure.
This paper describes RBAY, an integrated information plane

that enables secure and scalable sharing between geographically
distributed datacenters. RBAY’s key design features are twofold.
First, RBAY employs a decentralized ‘hierarchical aggregation
tree’ structure to seamlessly aggregate spare resources from
geographically distributed datacenters to a global information
plane. Second, RBAY attaches to each participating server a
‘admin-customized’ handler, which follows site-specific policy to
expose, hide, add, remove resources to RBAY, and thus fulfill
the task of ‘which resource to expose to whom, when, and how’.
An experimental evaluation on eight real-world geo-distributed
sites demonstrates RBAY’s rapid response to composite queries,
as well as its extensible, scalable, and lightweight nature.

I. INTRODUCTION

As computation continues to move into the public cloud,

the computing platforms of interest to cloud applications

are no longer limited to a single private site, but instead,

resemble a ‘warehouse’ full of nodes assembled from geo-

distributed locations. The OpenCirrus [5] initiative, for in-

stance, federated distributed, heterogeneous datacenters from

HP, Yahoo!, Intel, CMU, GT, KIT, UIUC, IDA, and others to

create a global testbed for participating sites and the broader

research community. The GENI [3] project sought to federate

fourteen to fifty sites to create a global testbed for network

experiments. Microsoft’s Pileus system [20] has established

ways to guarantee applications’ QoS demands, by selectively

accessing data from site spanning the world. Much prior work,

e.g., Tuba [2], has sought to use such sites to replicate data

for increased availability.
However, prior federation efforts did not meet with unqual-

ified success to seamlessly share resources from many small

autonomous sites, due in part to the following challenges:

• Scalability. When the aggregate number of nodes scales
into the thousands, centralized coordinators, such as the

master in Ganglia [14], can become system bottlenecks.

• Diverse Policies. Autonomous sites have diverse admin-
istrative policies for exposing their spare resources.

N1: 1072MGZ GPU
N2: Ubuntu12.04
N3: Matlab 8.0
...

Grace

N1: CentOS 6.5
N2: Acrobat XI Pro
N3: McAfee
...

James

N1: 1072MGZ GPU
N2: 3.75GB Mem
N3: Cassandra 2.0
...

KevinJoe

Query

Fig. 1: Motivating usecase scenario.

• Site-specific Infrastructure. Individual site uses their

own monitoring and management infrastructure (Dell’s

OpenManage [15], IBM’s Tivoli [22], Amazon’s Cloud-

Watch [6], etc.), often with internal message transport

protocols. Enforcing uniformity across such protocols or

infrastructures for seamless operation across global sites

will incur considerable cost.

Figure 1 depicts a simplified usecase scenario. Grace, James,

and Kevin each administers a collection of nodes with diverse

devices they are willing to share, but each sysadmin sets

policies for their system independently and may not enjoy any

particular admin privileges on the other systems. For example,

Grace only wants her resources to be available to others after

10:00 PM; James wants an access control model to expose

his resources to users who satisfy certain privacy policies;

and Kevin prefers users who have good history logs, e.g., no

worrisome behavior.

In this scenario, consider the outside customer Joe is re-

questing a package of resources for his running. Unfortunately,

the inventory information needed to satisfy this request is

distributed among the provider Grace, James and Kevin, and

managed with different sharing policies — preventing Joe

from efficiently locating the resources he needs. Admittedly,

authoring all the rights of scheduling resources to a third party

may solve the problem, but tracking spare capacity of various

resources from many sites and administrating a fair sharing is

troublesome and not scalable, especially when the number of

nodes or sites increases.

This paper describes RBAY, a public information plane that

is (i) extensible to allow autonomous sites to have diverse

administrative policies, (ii) scalable to the number of resource

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.42

1409

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.42

1406

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.42

1345

RBay
Admin

RBay DHT-based Virtual Overlay

RBay
Admin

RBay
Admin

RBay Resource Pool

Query resources

Sell

Buy

Post resources

Fig. 2: The RBay software stack akin to eBay.

attributes, nodes and sites, and (iii) lightweight to each site’s
existing infrastructure without changing any code.

As shown in Figure 2, RBAY operates in ways akin to

‘eBay’, where admins ‘post’ their resources to the platform,
attach certain policy such as ‘valid time’, ‘password’ and the
like. Customers, either from her own site or other sites, set

a predicate and query the resources they want. The role of

RBAY, therefore, is as an information broker, informing cus-

tomers about available resources, whereas site administrators

retain actual control over resource allocation.

Two key points guide RBAY’s design.

Decentralized architecture. RBAY employs a ‘hierarchi-
cal aggregation tree’ structure based on DHT to seamlessly

aggregate spare resources from geographically remote small

datacenter site to a global information plane. Then RBAY

divides the plane into decentralized subtrees according to

different resource attributes, so that each subtree has a partial

view of the global information and then the heavy central

workload can be balanced to many peers and concurrent

queries can be processed by nearby peers in parallel, thus

offering attractive scalability property.

Active attribute (AA). Rather than treat a resource attribute
as merely a key with a value as prior work did, e.g., 〈CPU,
Intel 3.40GHz〉, RBAY attaches each resource attribute a

handler, which is the procedural code written by admins

and invoked at runtime. For instance, an admin can write

an if-then code inside of the onGet handler to check

whether the password provided by the query equals some pre-

defined password, e.g., 〈CPU, Intel 3.40GHz, OnGet〉. When
a customer query performs a Get operation on a node, the

onGet handler is triggered and ‘intervenes’ to implement

password access control for this node’s CPU resource.

RBAY’s prototype implementation includes a language

sandbox for the AA runtime, DHT-based aggregation trees for

tracking and storing AAs, and finally, a query interface for

searching AAs. Our evaluation with 160 VMs on Amazon’s

EC2 across eight sites — Virginia, Oregon, California, Ireland,

Singapore, Tokyo, Sydney, and Sao Paulo — shows that when

processing composite queries in varying numbers of sites,

RBAY’s response times of around 600 ms are comparable to
the performance seen for state-of-the-art single site solutions,

adding only the delays of cross-site RTTs. Additional simula-

tions suggest that RBAY will continue to perform well, even

as datacenter size increases to tens of thousands scale and

resource attribute increases to hundreds of thousands.

This paper makes the following technical contributions:

• A decentralized integrated information plane that aggre-

gates cross-site resources (see Sec. II).

• An active attribute runtime permitting admins to cus-

tomize their own management policies (see Sec. III).

• A comprehensive performance evaluation across real-

world geo-distributed sites (see Sec. IV).

II. RBAY INFRASTRUCTURE

In this section, we compare the general hierarchical dat-

acenter management infrastructure with RBay’s decentralized

datacenter management infrastructure and discuss the rationale

and benefits behind the design.

A. Previous site management infrastructure

Previous work on datacenter management typically uses

hierarchical models, incl. PARMON [4], Supermon [18],

CoMon [7], and Ganglia [14]. As illustrated in Figure 3(a),

Ganglia, for instance, uses a multicast-based listen/announce

protocol for monitoring within clusters and a tree of point-

to-point connections to federate cluster-level state. Within a

cluster, each node multicasts its local state, so that all cluster

nodes have a complete copy of the cluster’s state. Multiple

clusters’ states are aggregated to the tree root, by polling child

nodes at periodic intervals. The root is connected to a web

front end, which is the major point interacting with admins and

serving all posted queries. XML is used for data representation

and XDR for data transport.

Although it uses a big hierarchical tree to connect many

clusters, the root is still the bottleneck as it maintains the

snapshots of all cluster states and becomes the only point to

interact with admins and queries. Besides, each site has its

own administrative policy to expose resources, giving a heavy

burden to the central node to check everyone’s policy at each

updating period. Therefore, it is not scalable to the number of

resource attributes, children nodes and clusters.

In addition, these approaches were based on the premise that

all federated clusters should conform to a uniform communi-

cation protocol, as done in Modbus, BACnet, OPC, or SNMP,
to transfer device signals from edge devices to a central device.

It is impractical to impose such a solution on many loosely-

coupled, heterogeneous, distributed sites.

B. RBay’s decentralized Infrastructure

Instead of using centralized infrastructure with one static

tree to poll resource updates, RBAY uses a decentralized

infrastructure with many dynamic trees, achieving attractive

scalable and lightweight nature, as described next.

141014071346

…

Cluster A

Node Node Node Node Node
…

Cluster B

Node Node Node Node Node

Cluster A’s admin
multicasts policy

Cluster B’s admin
multicasts policy

Customers query RBay
for resources using anycast

Scribe tree management

Pastry DHT-based overlay

…

Cluster A

Node Node Node Node Node
…

Cluster B

Node Node Node Node Node

Cluster A’s
master

Cluster B’s
master

Central
manager

Customers connect central manager
to query for resources

Admins connect to central manager
to enforce policies

Poll

Poll

Poll

Poll

(a) Previous centralized infrastructure (b) RBay’s decentralized infrastructure

Fig. 3: Comparison of (a) general hierarchical datacenter management infrastructure with (b) our decentralized datacenter

management infrastructure.

1) Pastry DHT-based overlay: First, RBAY’s participating
nodes are self-organized into a Pastry peer-to-peer overlay. In

Pastry [17], each node is assigned a unique identifier, 128-bit

NodeId that is used to identify nodes and route messages. The

set of NodeIds is uniformly distributed; this is achieved by

basing the NodeId on a secure hash (SHA-1) of the node’s IP
address.

Given a message and a destination NodeId, Pastry routes

the message to the node whose NodeId is numerically closest

to the destination within limited �logb
2N� hops, where b is a

base with the typical value 4, and N is the number of nodes.

Routing table. Each Pastry node has two routing structures,
a routing table and a leaf set. The routing table consists of node

characteristics (IP address, latency information, and Pastry

NodeId) organized in rows by the length of common prefix.

When routing a message, each node forwards it to the node

in the routing table with the longest prefix in common with

the destination NodeId.

Leaf set. The leaf set for a node is a fixed number of

nodes that have the numerically closest NodeId to that node.

This assists nodes in the last step of routing messages and in

rebuilding routing tables when nodes fail.

2) Scribe tree management: After nodes are organized into
a Pastry DHT-based overlay, RBAY uses an application-level

group communication substrate called Scribe [24] to construct

many dynamic trees, ensuring nodes having the same attribute

can be automatically gathered together to be a tree, e.g., GPU
tree, CPU_utilization<10% tree, Matlab tree, and the like.
Scribe builds spanning trees upon Pastry. All nodes join

Pastry, and subsequently, nodes may join and leave Scribe

trees by their will. Scribe can handle tree sizes varying from

one to millions, and it efficiently supports rapid changes in

tree membership.

RBAY uses a pseudo-random Pastry Id to name a tree, called

TreeId. Usually, the TreeId is the hash of the tree’s textual

name concatenated with its creator’s name. The node whose

NodeId is numerically closest to the TreeId automatically

becomes the root of the tree.

The tree construction is done as depicted in Figure 3(b).

The node satisfying tree’s predicate will route a JOIN message

towards the TreeId. Since all nodes having the same resource

attribute use the same TreeId, their JOIN messages will

eventually arrive at a rendezvous node, the root of the tree. The

unions of all messages’ paths are registered to construct the

tree, in which the internal node, as the forwarder, maintains a

children table for the tree containing an entry (IP address and

NodeId) for each child. Note that the uniformly distributed

TreeId ensures the even distribution of trees across all nodes,

and thus the load is well-balanced.

3) Multicast, anycast and aggregate: Scribe itself supports
two properties: multicast and anycast. RBAY extends Scribe

code to support another important property: aggregate.
Multicast. Any node can initiate creating a tree; other

nodes can join the tree and then multicast message to all

members of the group. Multicast messages are disseminated

from the rendezvous point along the multicast tree. RBAY uses

multicast to quickly inform members about the admin’s policy

changes, such as hide or expose available resources, raise or

lower rental prices and etc.

Anycast. This is implemented using a distributed depth-
first search algorithm of the tree. Any node can anycast to

a Scribe tree by routing the message towards the TreeId.

Pastry’s local route convergence ensures that the message

reaches a tree member near the message’s sender with high

probability. RBAY uses anycast to serve customer query and

quickly discover available resources close to the customer.

Aggregate. The states from tree leaves can be periodically

‘aggregated’ to the tree root within �logb
2N� hops. All interme-

diate nodes in the path aggregate the states from their children

and progressively roll up the result to the root, in which the

141114081347

aggregation function can be any composable function, such

as filter, sum, maximum or minimum, as long as it

satisfies the hierarchical computation property [24]. RBAY

uses ‘aggregate’ to calculate a global view of the tree to the

root without loading her too much, such as the size of the tree,

the average value of all nodes’ attributes and etc.

C. Design rationale and benefits

1) Reducing the central computation and I/O bottleneck:
As shown from Figure 3(a), in previous management model,

all cluster snapshots are flowing to the central master to

inform their updates, incurring considerable bandwidth cost.

In RBAY, see Figure 3(b), scalable aggregation trees are

constructed to take over the central master and each of them

only needs to be responsible for one part of cluster snapshot,

i.e., one type of resource attribute. Therefore, the central load

of tracking availability could be balanced to decentralized

peers, reducing the central computation and I/O bottleneck.

2) Decentralized and scalable solution: The TreeId is the
hash of the resource attribute’s textual name concatenated with

its creator’s name. The hash is computed using the same

collision resistant SHA-1 hash function, ensuring a uniform

distribution of TreeIds. Therefore, the tree roots, which are

considered the most overloaded nodes, are now uniformed

spread over different NodeIds.

Further, because all of these trees share the same set of

underlying nodes, each node can be an input leaf, an internal

node, the root, or any combination of the above. Besides, the

overheads of maintaining a proximity aware overlay network

are amortized over all these group spanning trees, resulting in

a decentralized solution in which the load is well balanced.

Therefore, RBAY is scalable to the number of resource at-

tributes, the number of nodes and sites.

III. RBAY DESIGN AND IMPLEMENTATION

RBAY infrastructure offers attractive scalability and

lightweight features. This section describes RBAY’s active

attribute and prototype implementation which offers attractive

extensible nature.

A. Software architecture

Figure 4 shows a high-level architecture of a RBAY single

node. Each RBAY node consists of three basic components.

First is the routing substrate (Figure 4 bottom), which inter-

acts with other RBAY nodes to implement the DHT-based

O(logN) mapping.
The second component is the key-value map, which main-

tains a set of key-value pairs on each node representing

resource attributes and their current values. The value can be

any type such as boolean, character, integer, floating-point and
the like, as long as the admin sets and the other site admins

approve this setting. We assume that all sites have a uniform

way of major resources’ key-value pair settings. Examples of

these settings are like that 〈GPU, true〉 indicates that this node
has GPU; 〈CPU, 50%〉 indicates that this node’s average CPU

50%

9.0

True

CPU_Utilization

AA Value

UbuntuOS

AA Name

GPU_Availability

Matlab_Version

Routing Substrate

S
an

db
ox

Local RBay Node

Query

Remote
RBay Node

subscribe/
unsubscribe

Key-value Map Active Attribute
Runtime

onGet()
onSubscribe()
onUnsubscribe
onDeliver()
onTimer()

Fig. 4: Local RBay node architecture.

utilization is 50%; 〈Matlab, “9.0”〉 indicates that this node’s
Matlab version is 9.0.

The third architectural component is the active attribute

(AA) runtime. The runtime system handles AA invocations

and realizes admin’s policy on that node. Here is how it

works. When a node initially joins RBAY, RBAY assigns it a

key-value map (the second RBAY component) which directly

reflects resource attribute updates through an underlying moni-

toring infrastructure (e.g., Libvirt API [12]). Then, a procedure

code is associated with this key-value map, which is capable of

manipulating the key-value pair’s value arbitrarily by admin’s

will. The code is structured as a set of handlers that specify

how the the value changes when certain event occurs, such

as the event of expiration of valid sharing time. For example,

a node’s onGet handler will be invoked whenever a remote
client performs a get operation to access this node.
The following subsections describe the implementation of

the AA runtime (Sec. III-B), the flexible naming scheme

(Sec. III-C), the query example (Sec. III-D), also discussed is

the additional functionality needed for administrative isolation

(see Sec. III-E).

B. Active attribute API and executing environment

Table I shows the handlers run in response to (i) resource

lookup events from clients —get— and (ii) resource manage-

ment events from admins —subscribe, unsubscribe,
deliver.
OnGet is the callback function for the get event. If a

query arrives at the node and tries to fetch the NodeId,

onGet handler will be triggered to perform some simple

operations on the query, such as password check, history

credit check and etc. OnSubscribe, OnUnsubscribe and
onDeliver are the callback functions for the subscribe,
unsubscribe and deliver events. Periodically (the inter-
val is determined by the onTimer function), onSubscribe
and onUnsubscribe are triggered to check if the node be-
longs to the tree. For example, if it is a CPU_utilization<10%
tree and the node suddenly becomes overloaded, the node

141214091348

onGet(callerNode, payload)
Invoked when a get is performed on the node. Returns a value
which will be passed back to the caller. The handler can take
an optional payload argument of arbitrary type, e.g., user’s
password, access level.
onSubscribe(callerNode, topic)
Invoked upon initial subscribe when node joins RBAY and
and periodically invoked by RBAY at runtime. Returns the
value that determines whether joining the topic tree (e.g.,
itself or nil). The topic argument is usually a string pre-
specified by admins.
onUnsubscribe(callerNode, topic)
Periodically invoked by RBAY system at runtime. Returns
the value that determines whether leaving the topic tree (e.g.,
itself or nil).
onDeliver(callerNode, payLoad)
Invoked upon receiving a control message from administrator.
Returns the value that should be updated. It is usually
used for administrator to uniformly and interactively manage
attribute values. The handler can take an optional payload
argument of arbitrary type, e.g., new expiration time.
onTimer()
Invoked periodically. No return value. It is usually used to
perform periodic maintenance such as updating subscription,
scheduling to join or leave the system.

TABLE I: Active attribute API.

will unsubscribe the CPU_utilization<10% tree at the next
interval.

we use Lua [13], a lightweight and easily constrained

scripting language, to implement a safe runtime for AAs. Lua

technically only has one data structure, a table (an associative

array). RBAY represents AAs as Lua table that encapsulates

both persistent state and the handlers to be invoked on that

state. The name-value mappings in Lua table help us map

different events to different handlers. In particular, if the AA

table contains an associative array with the names “onGet”,
“onSubscribe”, “onUnsubscribe”, “onDeliver”, or
“onTimer” and those names are associated with values that
are Lua functions, then the runtime invokes those functions

when the corresponding events occur. For example, while

performing a get operation on a certain resource attribute,

the runtime system automatically matches it to onGet handler.
Admins can implement various onGet handlers.
For the RBAY runtime, we make several modifications to

the standard Lua interpreter. The first is to limit the resource

consumption, by strictly limiting the number of bytecode

instructions a handler can execute. If a handler exceeds that

limit, its execution is immediately terminated. The second is

to limit library accesses. The core libraries relating to kernel

access, file system access, network access are excluded from

the executing environment. As a result, handlers can only do

simple math, string, and table manipulation on AA’s values.

Figure 5 is a password handler example that restricts the

node to be accessible only to certain customers. AA represents

the node and it has two properties, NodeId and Password,
saved in AA table. The NodeId or IP address is returned to the

customer’s query only if the query present some predetermined

AA = {NodeId = 27 ,
IP = " 1 3 1 . 9 4 . 1 3 0 . 1 1 8 " ,
Password = "3053482032"}

f unc t i on onGet (c a l l e r , password)
i f (password == AA. Password) then

return AA. NodeId
end
return n i l

end

Fig. 5: Password handler example.

password, provided as an argument to the get operation. Our
current implementation simply passes a plaintext password,

but can easily be enhanced via encryption primitives involving

the AA and public/private key pairs. The node’s AA stores the

public key, and the query authenticates itself by presenting the

corresponding private key.

C. Flexible naming scheme

As we all know, any device includes a batch of proper-

ties, such as its type, year of manufacture, version number,

manufacturer, model, and the like, e.g., 〈Processor Intel(R)
Core(TM) i7-5500U CPU @ 2.40GHz 2.39GHz〉. If we create
an independent aggregation tree for any single property, it

indeed has the benefit of simplifying the query model, as

no matter what property the customer requires, RBAY can

easily forward the query to the specific tree that groups nodes

satisfying this property.

However, the disadvantages of this setting are obvious.

First, the RBAY platform could be overwhelmed with plenty

of unnecessary ‘overlapping’ trees due to the nest relations

among properties. For example, the brands of ‘Intel CPU’ and
‘AMD CPU’ both belong to ‘CPU’, resulting in creating three
independent trees in which the last one contains members of

the other two. Second, for the purpose of querying resources

across sites, federated sites need to maintain a consistent way

of resource naming. Maintaining a tree for every new added

property means that if a site purchases a cutting-edge device

with many new properties, then all sites have to acknowledge

the new property names and new trees are created accordingly.

Such setting brings about a lot of complexity and inconve-

nience.

RBAY instead uses a hybrid structure to organize aggrega-

tion trees by following the nest relations between properties.

For example, the ‘model’ trees are subtrees of ‘brand’
trees because it is the manufacturer that sets the model and

different manufacturers usually have different models. As the

‘core_size’ is highly related to the ‘model’, so we also
make the ‘core_size’ trees as the subtrees of ‘model’
trees.

To build a hybrid tree structure, RBAY only needs to make

a pointer for each subtree root to link to the global root in

which each subtree is still a DHT-based flat aggregation tree.

By using a hybrid structure, we avoid maintaining unnecessary

duplicated aggregation trees.

141314101349

Furthermore, if a new device with new property is going

to be added into the system, the admin only needs to link

this new attribute to certain major tree without creating a new

aggregation tree. All site admins comply with major trees.

Later, when query comes, RBAY query interface parses the

query, forwards it to major trees and searches the available

nodes recursively. More details will be discussed in subsequent

subsection.

D. Query model

RBAY develops a SQL-like query interface based on

Zql [25], which takes as input SQL-like queries from nearby

clients. Figure 6 shows an example query that finds out k
servers from all available sites, satisfying both CPU_model
equals to “Intel Core i7” and CPU_utilization is less

than “10%”.

SELECT k
FROM ∗
WHERE CPU_model = " I n t e l C o r e i 7 "

AND CPU_u t l i z a t i o n < 10%
GROUPBY CPU_u t l i z a t i o n DESC ;

Fig. 6: Query example.

RBAY uses the following steps to finish this query (see

Figure 7):

• Step 1: The query interface encapsulates two empty

messages to send to two different addresses with NodeIds
equal to hash(“Intel Core i7”) and hash(“10%”).

• Step 2: DHT routing guarantees that the root of

tree(“Intel Core i7”) and the root of tree(“10%”) receive
the empty messages, fill in the messages with their tree

sizes and return the results to the query interface.

• Step 3: After receiving the results, the query interface

chooses the tree with smaller size (Let’s say tree(“Intel
Core i7”)) to send another ‘anycast’ message. This

anycast message has a buffer of k empty entries, where
k denotes k candidate nodes.

• Step 4: The tree(“Intel Core i7”) receives the anycast
message and search its members recursively. Each receipt

will (i) check if its node has less CPU utilization (<10%);

(ii) trigger the AA handler to see if the query has the

authorization to obtain the node.

– If both checks pass, this receipt will reserve the node

for the query, fill in one entry of the buffer with its

NodeId inside the anycast message, and forward the
anycast message to the next hop.

– If not pass, this receipt will do nothing but just

forward it to the next hop. The above procedures

repeat until k entries have been filled or all tree

members have been visited.

• Step 5: After finishing the above steps, the last hop is

returning to the query interface, which decapsulates the

anycast message and fetches the k NodeId out. Then the
query interface will commit the nodes for the customer.

Query = SELECT NodeId FROM *
 WHERE CPU_model=“IntelCorei7” AND CPU_utilization<10%
 GROUPBY CPU_utilization DESC;

Query
Processor

hash(“IntelCorei7”) hash(“10%”)

1. Sent empty message

2. Return tree size

4. Search candidates
recursively

3. Anycast to smaller tree

Fig. 7: Steps to handle the sample query.

However, if the customer decides not to take them, the

locks on those reserved nodes will be released after a

short time window.

Each query interface works independently to look up re-

sources for its nearby customers. As a result, if concurrent

customers attempt to access the same resource, a conflict

occurs when the available resources can only satisfy a portion

of customers. The worst case is a ‘deadlock’ scenario that

blocks all customers to access it.

To avoid the ‘deadlock’ conflict, a truncated exponential

backoff time is used for the failed customer to schedule re-

query after a failure. The re-query is delayed by an amount of

time derived from the slot time and the number of attempts

to re-query. After c fails, a random number of slot times

between 0 and 2c-1 is chosen. As the number of failed

attempts increases, the number of possibilities for delay in-

creases exponentially. Therefore, if the customer is much more

aggressive to get more nodes than others, this customer has
more possibilities to fail.

E. Administrative isolation

Administrative isolation is important because of (1) security

— so that updates and probes flowing in a site are not

accessible outside the site, and (2) efficiency — so that site-

scoped queries can be locally processed in parallel.

Existing DHTs do not support such site convergence. To

route a packet to an arbitrary destination key, the packet can

be routed to the destination node in another site as long as it

has a longer NodeId prefix matching the key. To ensure site

boundaries, like SDIMS [24], we make some simple changes

to routing table construction and key-routing protocols. First,

each node maintains a separate leaf set, in which each node

entry (next hop) is marked with the site to which it belongs.

Second, whenever two nodes in a site share the same prefix

with respect to a key and no other node in the site has a

longer prefix, we introduce a virtual node at the boundary

of the site with the prefix plus the next digit of the key, so

that all packets towards the key will eventually flow to that

virtual node residing on the existing node whose NodeId is

numerically closest to the virtual node.

Finally, in order to ensure queries traverse multiple sites

to search global resources, we choose certain nodes at the

boundaries to act like “routers” to route queries across sites.

141414111350

Virginia Oregon California Ireland Singapore Tokyo Sydney Sao Paulo
Virginia 0.559 ms 60.018 ms 83.407 ms 87.407 ms 275.549 ms 191.601 ms 239.897 ms 123.966 ms
Oregon 0.576 ms 20.441 ms 166.223 ms 200.296 ms 133.825 ms 190.985 ms 205.493 ms
California 0.489 ms 163.944 ms 174.701 ms 132.695 ms 186.027 ms 195.109 ms
Ireland 0.513 ms 194.371 ms 274.962 ms 322.284 ms 325.274 ms
Singapore 0.540 ms 92.850 ms 184.894 ms 396.856 ms
Tokyo 0.435 ms 127.156 ms 374.363 ms
Sydney 0.565 ms 323.613 ms
Sao Paulo 0.436 ms

TABLE II: Average round trip latency between Amazon sites.

(a) Scale with #nodes. (b) Scale with #queries. (c) Scale with #resource attributes.

Fig. 8: Scalability evaluation of RBAY with varying number of nodes, concurrent queries, and resource attributes, respectively.

IV. EVALUATION

RBAY is evaluated with microbenchmarks and a representa-

tive real-world usecase. Experimental evaluations answer the

following questions:

• How does RBAY scale with the number of nodes, re-

source attributes and queries? (Sec. IV-B)

• What are the processing latencies seen for RBAY queries

in federated heterogeneous sites? (Sec. IV-C)

• What are the overheads seen for the construction

of RBAY aggregation trees in heterogeneous sites?

(Sec. IV-D)

A. Testbed and usecase scenario

Experiments are conducted on Amazon EC2 using 160

medium-sized virtual machine instances located at eight sites:

Virginia (US East), Oregon (US West), California (US West),

Ireland (EU), Singapore (Asia Pacific), Tokyo (Asia Pacific),

Sydney (Asia Pacific), and Sao Paulo (South America). Each

VM has 2 virtual cores and 4GB of RAM. Each VM runs

Ubuntu 14.04 LTS 64 bit, Sun Java SDK 1.6. Unless otherwise

noted, queries are issued evenly distributed in all sites. Table II

shows the average round trip latencies between pairs of sites.

We begin the evaluation with microbenchmark measure-

ments to evaluate RBAY’s scalability with the number of

simulated agents (JVMs), resource attributes and queries,

within each single site. We also evaluate RBAY’s memory

costs on local node, particularly those pertaining to active

attribute (AA) handlers. Microbenchmarks indicate RBAY’s

scalable and lightweight nature.

We next evaluate RBAY’s extensible nature by implementing
a password control policy, and evaluate RBAY’s tree construc-

tion overheads and query processing latencies in heteroge-

neous sites. We federate Amazon EC2’s eight sites into a big

resource pool, which consists of 160 VMs, 20 for each site.

We launch a total of 16,000 RBAY JVMs to simulate 16,000

RBAY nodes and each node holds 1,000 resource attributes.

Amazon EC2 provides a wide selection of instance types 1

optimized to fit different customer needs. To simulate Amazon

EC2’s instance family, we create 23 RBAY aggregation trees

to represent 23 different instance types in each site. Instance

types comprise varying combinations of resource attributes

that we mix up randomly. The tree size follows a Gaussian dis-

tribution. For example, the center tree of ‘c3.8xlarge’ has more
members than the edge tree of ‘t2.micro’ or ‘hs1.8xlarge’.
In this set of experiments, we sent queries in a speed of

1000 per second to different sites. Each query randomly asks

for available nodes holding three random resource attributes

and we vary the ‘location’ predicate from local single to

eight sites. During RBAY runs, the onGet handler is invoked
for each query to return the NodeId list, only checking if

the password matches or not. The onSubscribe handler and
onUnsubscribe handler are invoked to periodically check the
current utilization (availability) of each node to determine

whether to leave current tree and subscribe to another tree

or not.

1including t2.micro, t2.small, t2.medium, m3.medium, m3.large, m3.xlarge,
m3.2xlarge, c3.large, c3.xlarge, c3.2xlarge, c3.4xlarge, c3.8xlarge, g2.2xlarge,
r3.large, r3.xlarge, r3.2xlarge, r3.4xlarge, r3.8xlarge, i2.xlarge, i2.2xlarge,
i2.4xlarge, i2.8xlarge and hs1.8xlarge.

141514121351

(a) US (N. Virginia) (b) Asia (Singapore) (c) SA (Sao Paulo)

Fig. 9: (a), (b) and (c) show the CDF of latencies for composite queries issued by users in Virginia, Singapore and Sao Paulo

respectively, while each query randomly asks for resources from 1-site ∼ 8-site (onGet).

B. Microbenchmark measurements

We begin the evaluation with microbenchmark measure-

ments to evaluate RBAY’s scalability with numbers of nodes,

resource attributes and queries within single site. We also

evaluate RBAY’s memory costs, particularly those pertaining

to AAs, and compare to the ‘Past’ key-value store [16].

1) Scale with #nodes: We first explore the per query

latency by scaling the number of participating nodes. In this

experiment, 10,000 RBAY agents are launched to emulate

10,000 heterogeneous nodes, possessing 10 attributes each,

while every attribute has a 10% probability to be ‘true’ in
being exposed to the public for the purpose of sharing. We

inject 1,000 atomic queries at a rate of 10 per second, each

of which randomly chooses to ask for one unique resource

attribute.

Figure 8a shows the average numbers of hops taking by each

query to arrive at the destination agent, with varying sizes of

datacenter. Result shows that the number of hops increases

linearly with an exponential increase in datacenter size. This

is because RBAY uses DHT routing protocols for resource

discovery, governing hops to be O(logN), where N is the

number of nodes in the overlay.

2) Scale with #queries: Continuing this experiment, to

study RBAY’s scalability with queries and decentralization in

lookup services, we track these 1,000 queries’ footprints and

present the intermediate nodes’ NodeIds that forward these

queries. As illustrated in Figure 8b, results illustrate a good

load balance among participating agents when performing the

routing tasks for the distributed queries. Specifically, since

the routing paths of the queries with the same key eventually

converge according to DHTs no matter which sources, we can

assume the last hop’s forwarder to be the node with the highest

load. Results show that queries, marked as Q1, Q2,...Q10, are

evenly distributed across all NodeIds, with an average of 100

forwards. This is because of the independent nature of the

resources’ keys mapped to different locations in the overlay

to divide the central lookup load, resulting in a great potential

to host large scale queries.

3) Scale with #attributes: Instead of associating attributes
with plain NodeIds, RBAY associates attributes with AAs that

consist of NodeIds and admin-specified codes, so it incurs

additional memory cost. A natural worry is whether RBAY

thereby influences other running applications by occupying

excessive memory if the system’s attribute space is large. In

this experiment, we store an increasing numbers of AAs in

the nodes. For RBAY nodes, each attribute is associated with

an extra “password” handler besides NodeId, while for Past

nodes, only the NodeId is saved, which returns the same list

of NodeIds upon a get request. Figure 8c shows that when
the number of attributes is in the 1000s, the difference in
memory consumption at this level is negligible (less than

10MB for both RBAY and Past). In the rare case, for 10,000s
attributes, the overhead relative to RBAY AAs is about 55%

to the baseline, but even then the total memory footprint is

still reasonable.

C. Query latency

We now shift our attention to the latencies seen by users,

by issuing composite queries towards multiple sites, and

evaluating how they scale with the number of requesting

sites. For these experiments, every site issues 1,000 evenly

distributed queries, each of which randomly asks for three

attributes focusing on one instance type. We vary the ‘location’
predicate from local single to eight sites, asking for return

values for the available NodeIds that satisfy the composite

query predicate.

Figure 9 shows the CDF for user observed latencies for

US’s Virginia, Asia’s Singapore, and SA’s Sao Paulo sites,

respectively. For querying a single site, all of the site’s users

experience comparable latencies. For querying more than one

site, the users located in Singapore experience higher latencies,

compared to the users located in Virginia and Sao Paulo.

Figure 10 shows overall latency and standard deviation for

varying numbers of requesting sites. Results show that as the

number of requesting sites increases, average latency increases

gradually, and then trends to be stable when for 6 sites, 7 sites,

and 8 sites. Generally, it takes less than 200 ms for discovering

141614131352

(a) US (N. Virginia) (b) Asia (Singapore) (c) SA (Sao Paulo)

Fig. 11: Latencies for constructing admin-specified on-demand trees (onSubscribe) and latencies for delivering admin-specified
commands to tree members (onDeliver) in geographically distant sites.

resources in any local site, and it takes around 600 ms for
searching multiple sites.

The linear increase in latency from 1 site to 5 sites is due to

the fact that when a query searches multiple sites, it searches

multiple sites in parallel. The user observed latency is mostly

limited to the RTT time to the most remote site plus local

query time. Whenever the query is issued, if searching 5 sites,

it happens to cover all US, EU, Asia, and SA areas over the

world, and thus, the latency experiences the worst value that

happens to cover the most distant site. That is also the reason

why latency tends to stabilize for querying 5∼8 sites, as the
max RTT is already included for all.

D. Overhead analysis

Figure 11 shows the comparison of latencies for construct-

ing instance trees and the latencies for delivering admin-

specified commands along these trees, for geographically

distant sites in the US, EU, Asia, and SA, respectively.

Results show that the latencies of tree construction stabilize

around 50 ms for all trees and all sites. In contrast, the

latencies of command delivery fluctuate; they are 100 ms
for US and EU sites, but 200∼500 ms for the Asia and SA

Local-site 2-site 3-site 4-site 5-site 6-site 7-site 8-site
0

200

400

600

Q
ue

ry
 la

te
nc

y
(m

s)

N.Virginia
Oregon
N.California
Ireland
Singapore
Tokyo
Sydney
Sao Paulo

Local-site 2-site 3-site 4-site 5-site 6-site 7-site 8-site
0

200

400

600

Q
ue

ry
 la

te
nc

y
(m

s)

Fig. 10: The average latency and standard deviation for queries

issued by users in different locales as the number of involving

sites is increased, respectively.

sites. Low latency for onSubscribe is due in part to RBAY’s
fully decentralized overlay in which any RBAY agent only

needs to ping its neighboring set to establish a connection for

successfully joining the tree, so time cost is not much affected

by network conditions. However, onDeliver cost is linear with
the depth of the tree, which is O(logN).
In this experiment, it may cost 1∼3 hops for the command

to reach tree leaves, thus experiencing a higher probability to

be interrupted, particularly for sites with unstable networks

like the Asia and SA sites.

V. RELATED WORK

RBAY includes an extensible local node handler for active

attribute and an overlay construction containing dynamic trees

for mediating between resource providers and customers. In

this section, we compare and contrast RBAY with related work

in the literature.

A. Extensible systems

Systems offering extensibility to support application’s spe-

cific needs have been explored widely. For instance, active

networks allow users to inject customized programs into

network nodes (e.g., routers) and run the code when nodes are

traversed by packets. Database triggers [1] allow applications

to define procedural code that is executed in respond to

the database operations such as insert, update and delete.
Comet [9] is a key-value store that associates each key-value

pair with procedural code that is executed in response to

storage operations such as get and put.

B. Overlay construction

Concerning datacenter management tools used for con-

structing overlay, PlanetLab has management tools like

CoMon [7], CoTop [8] and Mon [11]. CoMon and CoTop

are web-based general monitors that monitor most PlanetLab

nodes. Mon is an on-demand monitoring service that con-

structs a multicast tree on the fly to serve a one-shot query, but

Mon is mainly used for multicasting user commands and has

no prior knowledge about the resource attributes. Ganglia [14]

141714141353

uses a single hierarchical tree to collect all data of federated

clusters. GENI [3] uses centralized aggregate manager as

a mediator, which aggregates resources from site providers,

advertises and allocates resources to experimenters.

The above tools use a relatively centralized infrastructure

without in-network aggregation; hence, all individual data are

returned to a local machine, even though only their aggregates

are of interest. This has limited scalability with the size of the

system and the number of attributes.

C. Data aggregation

Astrolabe [23] provides a generic aggregation abstraction

and uses a single static tree to aggregate all states. SDIMS [24]

uses the same approach but constructs multiple trees for

better scalability. Unlike SDIMS, which still assumes a single

group for the entire system, Moara [10] maintains many

groups for aggregation trees based on different query rates

and group churn rates, thus reducing bandwidth consumption.

Mariposa [19] is a federated database system which uses an

economic paradigm to integrate the data sources into a com-

putational economy to determine the cost, and thus can take

into account factors such as resource consumption, staleness

of data, supply and demand and etc. In Condor [21], queries

and resources advertise themselves to a matchmaker, which

is responsible for matching potentially compatible agents and

resources.

Different from the above systems, RBAY’s novelty lies

in ‘active’ data aggregation using a fully ‘decentralized’
infrastructure with hybrid trees. ‘Active’ means that admins

are granted lots of freedom write their own code inside the

callback functions (AA runtime API), as long as it does not

violate the executing environment. Admins can also actively

interact with RBAY to make changes to their policies by

simply reloading the AA table because all callback functions

take effect on the next event. ‘Decentralized’ means that

each peer acts like a mediator between queries and resources,

which runs in parallel with other peers to make independent

decisions.

VI. CONCLUSION

RBay is a light-weight, non-intrusive and decentralized

platform that federates resources and optimizes resource shar-

ing for geographically distributed sites, meanwhile preserving

local site autonomy and giving site admins considerable flex-

ibility in specifying their management policies. RBay benefits

customers and site admins in several ways. In general, it

provides site admins or people who are willing to share their

redundant resources a new offering, RBay, in which the re-

sources can be registered easily and admins retain full control

over what and how their resources are shared through simple

APIs. At the same time, RBay’s decentralized architecture

also delivers high levels of performance for resource discovery

for geographically distributed queries, and low overhead for

maintenance. RBay’s prototype can be realized in a scalable

fashion, without requiring changes to datacenter facilities.

Future work will go beyond additional implementation

steps to evaluate RBay’s performance under different levels

of churn in resources and attribute values, using methods

that capture past and predict future churn, based on history,

environmental interference, physical location, and other QoS-

related or user-relevant factors for AAs. Such factors can also

be used to better select appropriate resources in response to

user queries, that is, to further optimize the quality of results

for queries, including improved consistency, accuracy, and

cost-effectiveness.

REFERENCES

[1] Mysql database triggers. http://dev.mysql.com/doc/refman/5.0/
en/triggers.html.

[2] M. S. Ardekani and D. B. Terry. A self-configurable geo-
replicated cloud storage system. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14),
pages 367–381. Oct. 2014.

[3] M. Berman, J. S. Chase, L. Landweber, A. Nakao, M. Ott,
D. Raychaudhuri, R. Ricci, and I. Seskar. GENI: A feder-
ated testbed for innovative network experiments. Computer
Networks, 61(0):5–23, Mar. 2014.

[4] R. Buyya. Parmon: A portable and scalable monitoring system
for clusters. Softw. Pract. Exper., 30(7):723–739, June 2000.

[5] R. Campbell, I. Gupta, M. Heath, S. Y. Ko, M. Kozuch,
M. Kunze, T. Kwan, K. Lai, H. Y. Lee, M. Lyons, D. Milojicic,
D. O’Hallaron, and Y. C. Soh. Open cirrustmcloud computing
testbed: Federated data centers for open source systems and
services research. In Proceedings of the 2009 Conference on
Hot Topics in Cloud Computing, HotCloud’09. 2009.

[6] CloudWatch. https://aws.amazon.com/cloudwatch/?nc1=h_ls.

[7] CoMon. http://comon.cs.princeton.edu/.

[8] CoTop. http://codeen.cs.princeton.edu/cotop/.

[9] R. Geambasu, A. A. Levy, T. Kohno, A. Krishnamurthy, and
H. M. Levy. Comet: An active distributed key-value store.
In Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation, OSDI’10, pages 1–13.
2010.

[10] S. Y. Ko, P. Yalagandula, I. Gupta, V. Talwar, D. Milojicic, and
S. Iyer. Moara: Flexible and scalable group-based querying sys-
tem. In Proceedings of the 9th ACM/IFIP/USENIX International
Conference on Middleware, Middleware ’08, pages 408–428.
2008.

[11] J. Liang, S. Y. Ko, I. Gupta, and K. Nahrstedt. Mon: On-demand
overlays for distributed system management. In Proceedings
of the 2Nd Conference on Real, Large Distributed Systems -
Volume 2, WORLDS’05, pages 13–18. 2005.

[12] Libvirt. http://libvirt.org/.

[13] Lua. https://www.lua.org/.

[14] M. L. Massie, B. N. Chun, and D. E. Culler. The ganglia
distributed monitoring system: design, implementation, and
experience. Parallel Computing, 30(5-6):817–840, 2004.

[15] OpenManage. https://www.dell.com/en-us/work/learn/
openmanage-essentials.

[16] A. Rowstron and P. Druschel. Storage management and caching
in past, a large-scale, persistent peer-to-peer storage utility. In
Proceedings of the Eighteenth ACM Symposium on Operating
Systems Principles, SOSP ’01, pages 188–201. 2001.

[17] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decen-
tralized object location, and routing for large-scale peer-to-peer
systems. In Proceedings of the IFIP/ACM International Confer-

141814151354

ence on Distributed Systems Platforms Heidelberg, Middleware
’01, pages 329–350. 2001.

[18] M. J. Sottile and R. G. Minnich. Supermon: A high-speed
cluster monitoring system. In Proc. of IEEE Intl. Conference
on Cluster Computing, pages 39–46, 2002.

[19] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah,
J. Sidell, C. Staelin, and A. Yu. Mariposa: A wide-area
distributed database system. The VLDB Journal, 5(1):048–063,
Jan. 1996.

[20] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan, M. K.
Aguilera, and H. Abu-Libdeh. Consistency-based service level
agreements for cloud storage. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles,
SOSP ’13, pages 309–324. 2013.

[21] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing
in practice: the condor experience. Concurrency - Practice and
Experience, 17(2-4):323–356, 2005.

[22] Tivoli. https://www.ibm.com/software/tivoli.

[23] R. Van Renesse, K. P. Birman, and W. Vogels. Astrolabe: A
robust and scalable technology for distributed system monitor-
ing, management, and data mining. ACM Trans. Comput. Syst.,
21(2):164–206, May 2003.

[24] P. Yalagandula and M. Dahlin. A scalable distributed infor-
mation management system. In Proceedings of the 2004 Con-
ference on Applications, Technologies, Architectures, and Pro-
tocols for Computer Communications, SIGCOMM ’04, pages
379–390. 2004.

[25] Zql. http://zql.sourceforge.net/.

141914161355

