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Abstract—Coordinated beamforming in multi-access-point
(AP) systems has been proposed to address the high throughput
and low latency demands of future wireless networks. To tackle
the challenge of distributed fair user scheduling with reduced
overhead, a multi-agent reinforcement learning (MARL)-based
user scheduling scheme is introduced for a two-AP setup. This
approach aims to determine user scheduling and power allocation
at each AP distributively across consecutive time slots to enhance
sum rates while ensuring fairness. In particular, it employs Multi-
Agent Deep Deterministic Policy Gradient (MADDPG) with a
multi-head self-attention mechanism to map channel information
to AP behaviors. Additionally, a general CSI collection and
information exchange scheme between the two APs is proposed
to guarantee acquisition of necessary information. Simulation
results illustrate the effectiveness of the proposed coordination
framework, demonstrating learning convergence, and improve-
ments of data rate optimization and fairness.

Index Terms—Coordinated beamforming, fair user schedul-
ing, multi-agent reinforcement learning, multi-head self-attention
mechanism

I. INTRODUCTION

The demand for wireless data traffic has experienced sub-
stantial growth, primarily driven by emerging applications
such as ultra high-definition video and virtual/augmented real-
ity. To address the challenges of low latency and high through-
put in future wireless networks, the concept of multi-access-
point (AP) coordination has been proposed. For instance, the
IEEE 802.11 working group has initiated the development
of a new standard, IEEE 802.11be, targeted at extremely
high throughput wireless local-area networks (WLANs), and
multi-AP coordination is one of the features being studied for
inclusion in the standard [1].

Among various multi-AP coordination schemes, coordi-
nated beamforming (CBF), also referred to as coordinated
null steering, enables concurrent data transmission by multiple
APs on the same frequency band, where precoding matrices
are designed to create nulls in specific directions to reduce
interference. CBF allows multiple APs to transmit data to their
users while minimizing interference to other APs’ users with
the aim to boost spatial reuse.

To implement CBF in a practical environment, scheduling
users to achieve both satisfactory data rates and fairness is
required. In a single-AP system, exhaustive search must be
performed to achieve optimal user selection that maximizes

data rate, while greedy scheduling is often performed in prac-
tice to realize low computation times [2]. In multi-AP scenar-
ios, designing a user selection scheme with good performance
and reduced overhead remains a major challenge. Traditional
approaches assume that global channel state information (CSI)
is available, while it is not practical to obtain CSI between each
AP and all users in a multi-AP network. Furthermore, these
approaches typically assume a centralized controller exists,
which leads to increased overhead for information exchange
between APs and the controller. This underscores the need for
a more practical distributed CBF approach with reasonable
overhead. It is also desirable for the approach to have near-
optimal performance, and to ensure fairness among users,
which requires joint user scheduling and power allocation.
Previously, these characteristics were only achievable with
global information and exponential-time algorithms.

To address these challenges, reinforcement learning (RL)
has been proposed to coordinate multi-AP behaviors. The
goal of RL to optimize long-term rewards is in line with
optimizing network performance over consecutive time slots
through scheduling. Furthermore, multi-agent RL (MARL)
allows agents to make decisions based on local information
when training is completed, eliminating the need for high-
overhead information exchange. Despite recent work on us-
ing RL for coordination among network components, prior
research on multi-AP coordination has predominantly focused
on maximizing data rates, often overlooking the fairness
aspect [3], which is critical for practical deployment.

This paper proposes a distributed fair user scheduling
scheme based on Multi-Agent Deep Deterministic Policy
Gradient (MADDPG) [4]. MADDPG is an MARL algorithm,
offering distributed execution after training is finished, which
can consider the impact of other APs’ strategies and their effect
on overall network performance. Moreover, our approach
includes a self-attention mechanism to efficiently learn the
mapping from channel information to AP behavior [5]. The
contributions of the paper can be summarized as follows:

• A distributed user scheduling scheme for downlink trans-
mission in a two-AP system using MADDPG is pre-
sented. The scheme is an MARL algorithm enabling
distributed execution with each AP considering the other
AP’s strategy and it jointly optimizes user selection and
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power allocation to optimize overall data rates in a fair
manner.

• Our CBF scheme employs a self-attention mechanism
in MADDPG to extract an implicit relationship among
channel information for efficient learning of a mapping
from channel information to user scheduling.

• A general approach for CSI collection and information
exchange in a two-AP coordination system is also pre-
sented. This approach ensures the acquisition of necessary
information and CSI while minimizing the overhead of
information exchange.

• A novel channel orthogonality metric is presented to
capture critical channel features.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

A typical scenario of coordination between two APs in
downlink transmission is considered. Let Pt denote the max-
imum transmit power at each AP. It is assumed that each
AP has Nt antennas to serve single-antennas users. Let Ai

denote the set of users associated to AP i (i ∈ {1, 2}) where
A1 ∩ A2 = ∅, and K = |A1|+ |A2| denote the total number
of users. Moreover, let Ui ⊆ Ai denote the set of users that
have been selected to receive data streams from AP i, and
Ni ⊆ Ai denote the set of users that are associated to AP i
but will be nullified by AP i, where i is the index of the other
AP with respect to AP i. To meet the constraint of maximum
number of users that each AP can support, we need to have
|Ui|+ |Ni| ≤ ⌈Nt

Nr
⌉ where ⌈·⌉ is the ceiling operation and Nr

is the number of antennas at each user [6]. In this paper, it is
assumed that Nr = 1.

Let Hk,i ∈ C1×Nt denote the channel matrix between AP i
and user k where k ∈ A1 ∪ A2. Moreover, let Bk,i ∈ CNt×1

denote the precoding matrix to precode signals transmitted
from AP i to user k, where ∥Bk,i∥2 = 1. For user k such that
k ∈ Ui, the received signal in time slot n is

yk[n] =
√
ρk[n]Hk,i[n]Bk,i[n]xk[n]+

2∑
j=1

∑
p∈Uj ,p̸=k

√
ρp[n]Hk,j [n]Bp,j [n]xp[n] + nk[n], (1)

where xk[n] is the symbol sent to user k in slot n and
E(∥xk[n]∥2) = 1, ρk[n] is the transmit power allocated to
user k in slot n, and nk[n] is Gaussian noise with distribution
CN (0, σ2). If k ∈ Ui, the signal-to-interference-plus-noise
ratio (SINR) at user k in time slot n is

Sk[n] =
ρk[n]∥Hk,i[n]Bk,i[n]∥2

2∑
j=1

∑
p∈Uj ,p̸=k

ρp[n]∥Hk,j [n]Bp,j [n]∥2 + σ2

. (2)

In this context, the maximum achievable rate of user k in slot
n is dk[n] = log2(1 + Sk[n]). In this paper, it is assumed
that both APs use block diagonalization (BD) precoding to
mitigate inter-user interference among their associated users
and meanwhile reduce interference caused to users associated

to the other AP [6]. The key idea behind BD precoding is to
choose a precoding matrix Bk,i[n] that satisfies the condition
of Hp,i[n]Bk,i[n] = 0 for p ̸= k, if inter-user interference
from user k to user p should be mitigated.

B. Time-Varying Channel Model

The channel between AP i and user k in slot n is de-
fined as Hk,i[n] = βk,ihk,i[n], where βk,i is the channel
gain determined by large-scale fading including path loss
and shadowing, and hk,i[n] denotes the time-varying channel
components related to small scale fading.

A flat-and-block fading channel based on first-order Markov
model is assumed to model hk,i[n] (n ≥ 0) [7], such that

hk,i[n+ 1] = αk,ihk,i[n] +
√
1− α2

k,iωk,i[n+ 1], (3)

where elements in ωk,i[n] and hk,i[0] are independent complex
Gaussian random variables with distribution CN (0, 1). More-
over, αk,i = J0(2πfDTs) is the channel correlation coefficient
where J0(·) is the zeroth-order Bessel function of the first
kind, fD is the maximum Doppler shift, and Ts is the channel
sampling interval.

C. Problem Formulation

A user scheduling and power allocation problem is consid-
ered in a two-AP system. The two APs coordinate to determine
power allocation and user scheduling in N time slots with
the aim to improve overall data rate while ensuring fairness.
One approach to balance data rate and fairness, referred to as
proportional fairness (PF) [8], is to employ the sum of the
logarithms of data rates as the objective function. With this
metric, the problem can be formulated as follows:

max{
ρk[n],U1[n],U2[n],

N1[n],N2[n]
}

n∈T ,
k∈A1∪A2

∑
k∈A1∪A2

log
(
dk,N−1 + ϵ0

)
(4)

s.t. 0 ≤ ρk[n] ≤ Pt,∀k ∈ U1[n] ∪ U2[n], (5)∑
k∈Ui[n]

ρk[n] = Pt,∀i ∈ {1, 2}, (6)

Sk[n] ≥ s0,∀k ∈ U1[n] ∪ U2[n], (7)

where T = {0, 1, . . . , N − 1}, ϵ0 is a positive small value to
guarantee that the value in log(·) is strictly larger than zero and
herein ϵ0 = 0.01. Moreover, s0 is a minimum SINR required
to support a communication link, and dk,n = 1

n+1

∑n
i=0 dk[i]

represents the average data rate of user k up to time slot n.
Note that dk[n] is set as 0 if Sk[n] < s0.

III. MADDPG-BASED COORDINATED BEAMFORMING

A. An Overview of MADDPG

MADDPG, a widely-used MARL algorithm [4], operates
within a scenario of M agents engaging in cooperative or
competitive interactions. In each time slot, agent i selects
action ai based on state si observed from the environment,
then receives reward ri before the state transitions to s′i.
Each agent aims to learn policy πθi , parameterized by θi,
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to maximize the long-term reward Ri =
∑N

n=0 γ
nrni , where

γ ∈ [0, 1] is discount factor, rni is the reward in slot n and N
is the time horizon. Let π = {πθ1 , πθ2 , . . . , πθM }. Agent i has
an actor network πθi to generate action ai based on state si,
and a critic network Qπ

i to assist in training the actor network.
The critic network is used to assess long-term rewards based
on global information including states and actions from all the
agents. With access to global information, the critic network
enables each agent to consider the strategies of other agents.

In MADDPG, a centralized training and decentralized ex-
ecution scheme is adopted. During the training phase, the
objective of updating πθi is to maximize the expected future
reward J(πθi) = E[Ri], and the updating rule is

∇θiJ(πθi) =

Es,a∼D[∇θiπθi(ai|si)∇aiQ
π
i (s, a1, ..., aM )|ai=πθi

(si)], (8)

where D is the replay buffer containing collected tran-
sitions {s,a, s′, r} during the training phase. Herein,
s = {s1, s2, ..., sM}, a = {a1, a2, ..., aM} and r =
{r1, r2, ..., rM} are the sets of states, actions and rewards
from all the agents, respectively. The aim of updating the
critic network is to enhance the accuracy of future reward
predictions. Therefore, the objective function is:

L(θQi
) = Es,a,r,s′ [(Q

π
i (s, a1, ..., aM )− y)2], (9)

y = ri + γQπ′

i (s′, a′1, ..., a
′
M )|a′

i=π′
θ′
i
(si), (10)

where π′
θ′
i

is the target actor network parameterized by θ′i,
π′ = {π′

θ′
1
, π′

θ′
2
, . . . , π′

θ′
M
}, and Qπ′

i represents the target critic
network.

Once the training is completed, each agent can solely rely on
its actor network to make decisions based on locally observed
states, without knowledge of other agents’ actions.

B. CSI Collection and Information Exchange Scheme

In this section, a CSI collection and information exchange
scheme is proposed to collect essential information to enable
decision-making at the APs using MARL. As shown in Fig. 1,
Users i.1 and i.2 are associated with AP i. Notably, Users 1.1
and 2.1 can receive messages from both APs, while Users 1.2
and 2.2 can only communicate with their respective associated
APs. The two APs coordinate user scheduling over N time

AP 1 

AP 2 

Users 1.1 

Users 1.2 

Users 2.1 

Users 2.2 

CSI  
1-1.1  

CSI  
2-1.1 

CSI  
1-1.2 

CSI 
1-2.1   

CSI  
2-2.1 

CSI  
2-2.2  

AP 1  AP 2  

Users 1.2 
Users 1.1 

Users 2.1 Users 2.2 
CSI collection  

and information  
exchange 

Data transmission 

… … … 

N slots N slots N slots 

CSI  
(2-2.1, 2-2.2, 2-1.1)  

CBF 
decision 

Extra phases for  
non-learning CBF methods 

Centralized controller 

CSI  
(1-1.1, 1-1.2, 1-2.1) 

CBF 
decision 

CBF  
request 

CBF  
Info 1 

CBF  
respond 

CBF  
Info 2 

Channel 
estimation  

message 

Channel 
estimation  

message 

Fig. 1. CSI collection and information exchange scheme

slots. Without loss of generality, AP 1 is assumed to initiate
the AP coordination process. Each slot consists of two phases:

(1) CSI collection and information exchange, and (2) data
transmission. In the first phase, AP 1 initiates the process
by sending a CBF request, including a CBF Info 1 field
with MARL-relevant information which will be introduced
in Sec. III-C1. Then AP 2 responds along with CBF Info
2, which also includes MARL-relevant information. Then the
two APs sequentially transmit packets used for channel estima-
tion and CSI feedback coordination. For example, orthogonal
frequency-division multiple access (OFDMA) can be used for
simultaneous CSI feedback [9]. Since Users 1.1 and Users
2.1 can hear the channel estimation messages from both APs,
users in these two user groups can estimate channels between
themselves and both APs. Eventually, AP 1 collects CSI
between itself and Users 1.1, 1.2, and 2.1, as well as CSI
between AP 2 and Users 1.1, 2.1. Similarly, AP 2 collects
CSI between itself and Users 2.1, 2.2, and 1.1, as well as CSI
between AP 1 and Users 1.1, 2.1. For CSI feedback, singular
value decomposition (SVD) is used to decompose Hk,i as
Hk,i = Uk,iSk,iV

H
k,i, and AP obtains Vk,i and Sk,i from

CSI feedback [6]. When partial CSI is unavailable (e.g. AP 2
does not know channels between AP 1 and Users 1.2), Vk,i

and Sk,i are simply set as zero matrices in this case. Therefore,
we define H̃j

k,i = S̃j
k,iṼ

j
k,i

H as the information received at AP
j about the channel between AP i and user k.

Non-learning methods could obtain CSI using the same
scheme, where the CBF Info field can be used to exchange
fairness-related information. However, such methods need
global CSI, requiring two additional phases as shown in Fig. 1:
(1) global CSI collection at the controller, and (2) transmission
of the CBF decision, resulting in an increase in communication
overhead compared to the proposed MARL-based method.

C. Transformation of CBF Problem into MARL
In the framework of MARL, the two APs are treated as two

agents. To address the problem in Sec. II-C, critical MARL
elements, including states, actions, and rewards, are defined.

1) States: The states involve two components: (1) fairness-
related information, and (2) channel information to enable APs
to prioritize users with good channel conditions.

• Average data rates: For fair scheduling between APs,
information relevant to global fairness should be incor-
porated. Therefore, the fairness information f i[n] of AP i
is comprised of the average data rate of user k (k ∈ Ai)
up to time slot n, such that

f i[n] = {dk,n}k∈Ai
. (11)

AP i will use CBF Info field introduced in Sec. III-B to
send f i[n] to the other AP.

• Channel orthogonality metric: A channel orthogonality
metric is proposed by leveraging the fact that channel
orthogonality within user groups is advantageous for null
steering. Herein, a vector ϕi,j [n] ∈ R1×K2

(i, j ∈ {1, 2})
is used to characterize channel orthogonality between
every user pair based on H̃i

k,j [n]. In particular, the
element ϕi,j

k,p[n] (k, p ∈ A1 ∪A2) in ϕi,j [n] characterizes
orthogonality between H̃i

k,j [n] and H̃i
p,j [n], which is
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ϕi,j
k,p[n] =

log2(1 +
Pt∥H̃i

k,j [n]∥
2

σ2
), if k = p,

log2(1 +
Pt∥H̃i

p,m[n]∥2

σ2 + Pt∥H̃i
k,l[n]Ṽ

i
p,l[n]Ṽ

i
p,l[n]

H∥
2 ),

if k ∈ Al, p ∈ Am, l ̸= m, and l,m ∈ {1, 2},

log2(1 +
Pt∥H̃i

p,j [n](I− Ṽi
k,j [n]Ṽ

i
k,j [n]

H
)∥

2

σ2
),

Other.
(12)

In summary, the states observed by AP i in time slot n
is si[n] = {ϕi,i[n], ϕi,i[n − 1], ϕi,i[n − 2], ϕi,i[n], f i[n − 1],
f i[n − 1], n}. All the elements in ϕi,i[n − 1], f i[n − 1] and
f i[n − 1] are set as 0 when n = 0, and those in ϕi,i[n − 2]
are set as 0 when n = 0 or n = 1. Specifically, the goal of
choosing ϕi,i[n], ϕi,i[n− 1] and ϕi,i[n− 2] is to provide the
APs with insights into channel variation.

2) Actions: The action of each AP contains two parts: (1)
user selection, and (2) power allocation.

• User selection: Let D = ⌈Nt

Nr
⌉ (Nr = 1 in this paper)

be the number of users that one AP can support. To
reduce the dimension of action output, a vector ui =
[uk1 , uk2 , . . . , ukK

] ∈ R1×K is used to represent user
selection action at AP i, where ukj

denotes the weight
assigned to select user kj ∈ A1 ∪A2. An approximation
of a D-hot vector is used for ui using top-k relaxation
based on Gumbel-max trick [10], which is represented by
the top-k Gumbel-softmax layer in Fig. 2(a). AP i will
finally select D users with the top D highest weights.
Among these D users, AP i will transmit data to user
kj ∈ Ai, and steer a null to user kp ∈ Ai. If all the D
users selected by AP i are associated to AP i, AP i will
stay silent.

• Power allocation: The power allocation action is defined
as pi = [pk1 , pk2 , . . . , pk|Ai|

] ∈ R1×|Ai| where kj ∈ Ai,
∥pi∥1 = 1, and pkj

∈ [0, 1] indicates that the power
allocated by AP i to user kj is pkj

Pt.
In summary, the overall action of AP i is defined as ai =

[ui,pi] ∈ R1×(K+|Ai|).
3) Rewards: The reward at AP i in slot n is determined by

the variation of PF metric from slot n− 1 to slot n as follows

ri[n] =
1

2

∑
k∈A1∪A2

log(
dk,n + ϵ0

dk,n−1 + ϵ0
), (13)

where dk,n−1 is set as 0 if n = 0.

D. MADDPG-Based CBF Scheme

1) Network structures:
• Actor network: The actor network structure is shown

in Fig. 2(a). To capture relationships among channel

orthogonality metrics, multi-head self-attention layers
shown in Fig. 2(c) are employed. The top-k Gumbel-
softmax in Fig. 2(a) is used to generate a continuous
approximation of D-hot vector ui [10]. The masked
normalization is designed to generate power allocation
action as pi = ũi ⊙ p̃i/∥ũi ⊙ p̃i∥1, where ⊙ indicates
element-wise multiplication, and p̃i is the output of the
fully-connected layer before the masked normalization as
shown in Fig. 2(a). Moreover, ũi ∈ R1×|Ai| only contains
weights from ui corresponding to users associated to AP
i, serving as a mask to push power ratios of non-selected
users to nearly 0. Moreover, note that layer normalization
is applied before the activation function, as is the case in
the critic network, which will be introduced next.

• Critic network: The critic network structure is shown
in Fig. 2(b). Similar to the actor network, it employs
two multi-head self-attention layers to capture implicit
relationships among the channel orthogonality metrics.

2) MADDPG training: In the centralized training phase,
transitions {si,ai, ri, s′i} collected by AP i are sent to the
cloud via backhaul links for training. After training is com-
plete, the actor network can be used at APs for distributed
decision-making. The MADDPG-based CBF training scheme
is shown in Algorithm 1. Target networks are used to improve
training stability. Additionally, exploration in RL helps agents
discover better strategies. In the proposed CBF framework,
exploration is achieved by adding Gaussian noise to action
ui and pre-action p̃i such that ûi = (ui + nu,i)

+, p̂i =
(p̃i + np,i)

+, where (x)+ represents the operation of truncat-
ing negative values in vector x to 0. Moreover, nu,i ∈ R1×K

and np,i ∈ R1×|Ai| represent two independent noise vectors
such that E(nH

u,inu,i) = σ2
uI and E(nH

p,inp,i) = σ2
pI. The

noise variances decrease as the number of training episodes
increases.

IV. SIMULATION RESULTS

A. Simulation Setting

A two-AP system is considered to evaluate the proposed
CBF scheme. The system parameters are set as follows. The
total number of users is K = 4. Each AP has two associated
users and is equipped with two antennas to serve its single-
antenna users. The distance between the two APs is 30 m.

The two-AP system coordinates user scheduling in an
episode with N = 15 slots, with slot duration Ts = 3 ms.
In the initial slot of each episode, users are randomly lo-
cated around the APs, with distances uniformly distributed
in [2m, 30m] from their associated APs. At the beginning of
each episode, each user chooses a speed uniformly distributed
in [0.2 m/s, 1.5 m/s], which is maintained throughout the
episode and then engages in a random walk by picking a
random direction1 at each time slot of the episode.

The operating frequency is 5 GHz and the transmit power
of each AP is 24 dBm. The noise power is set as -93 dBm.
The minimum SINR s0 to support a communication link is set

1Only north, south, east, or west in these simulations, for simplicity.
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(c) Multi-head self-attention layer
Fig. 2. Illustration of neural network structures

Algorithm 1 Training of MADDPG-based CBF scheme
Input: Mini-batch size Bm, learning rates for actor and critic
networks, replay buffer size, soft update rates απ , αQ

Output: Actor and critic network parameters θπi
, θQi

1: Initialize θπi , θQi , and corresponding target network pa-
rameters θ′πi

and θ′Qi
for AP i, where i ∈ {1, 2}

2: for each episode do
3: Initialize ϕi,i

0 , ϕi,i
1 and f i0 as zero vectors for i ∈ {1, 2}

4: for each time slot n do
5: for AP i, i ∈ {1, 2} do
6: Collect CSI to compute ϕi,j using Eq. (12), and

obtain the state si = {ϕi,i, ϕi,i
1 , ϕi,i

0 , ϕi,i, f i0, f
i
0, n}

7: Get action ai with exploration noise according to
Sec. III-D2, execute ai, then get reward ri and s′i

8: Store transition {si,ai, s′i, ri} into replay buffer
9: ϕi,i

0 ← ϕi,i
1 , ϕi,i

1 ← ϕi,i, f i0 ← f i, f i0 ← f i

10: if The number of transitions in replay buffer ≥ Bm

then
11: Update actor network according to Eq. (8)
12: Update critic network according to Eq. (9)
13: Update target actor network and target critic

network accoring to θ′πi
← απθπi

+(1−απ)θ
′
πi

,
and θ′Qi

← αQθQi + (1− αQ)θ
′
Qi

14: end if
15: end for
16: end for
17: end for

as 2 dB. A path loss model for an indoor office environment
is used based on ITU P.1238-12 [11], which is defined as
L(d, f) = 10A log10(d)+B+10C log10(f)+n0, where d is
the distance between the AP and the user, f is the operating
frequency (GHz), and n0 is an additive zero mean Gaussian
random variable with a standard deviation σl (dB). The path
loss parameters are chosen as A = 1.46, B = 34.62, C =
2.03, and σl = 3.76 [11].

The training parameters are as follows. The relay buffer size
is 5× 104, and the mini-batch size is 256. The learning rates
for actor and critic networks are 1 × 10−4 and 1 × 10−3,
respectively. The discount factor γ is 0.95. The standard
deviations of two types of exploration noise are σp = 0.3 and
σu = 0.3, gradually decreasing to 0 as the number of training
episodes increases. The soft update rates are απ = 0.01
and αQ = 0.01. Additionally, the number of heads in the
self-attention layer is 2. In the actor network, the number
of neurons in fully-connected layers (represented by f1, f2,

f3, f4, f5, fu, fp in Fig. 2(a)) are 64, 32, 16, 16, 16, 4, 2,
respectively. In the critic network, the number of neurons in
fully-connected layers (represented by h1, h2, h3, h4, h5, h6

in Fig. 2(b)) are 128, 64, 32, 16, 16, 1, respectively.

B. Baseline Cases

To evaluate the performance of MADDPG-based coordi-
nated beamforming, three baseline cases are provided:

1) Case 1 (CentralMax) - Centralized data rate maximiza-
tion: Both APs have access to global CSI. Exhaustive search
is used to maximize the sum rate of the two-AP system in
each slot without considering fairness. This case provides an
upper bound on data rate, but comes with the drawback of
heavy information exchange overhead between the two APs.

2) Case 2 (Selfish) - Selfish data rate maximization: Each
AP only has access to local CSI, and the goal is to maximize
its individual data rate. Therefore, each AP always transmits
data to both of its users. This represents a case with lack of
coordination between the APs and, as a result, tends to provide
a very low data rate due to heavy cross-AP interference.

3) Case 3 (CentralPF) - Centralized proportional fair
scheduling: Both APs have access to global CSI. The opti-
mization goal in slot n is to maximize the PF metric, which
is

∑
k∈A1∪A2

log(dk,n + ϵ0). This case represents a trade-off
between fairness and data rate, offering insight into optimal
performance of MARL.

Note that both CentralMax and CentralPF are based on
exhaustive search, which are impractical for networks with
more than a few users. We could simulate these methods only
because of the small number of possible CBF configurations
in the evaluated scenario.

C. Simulation Results
Fig. 3(a) shows the PF metric,

∑
k∈A1∪A2

log(dk,N−1+ϵ0),
assessed over N slots for the proposed MADDPG-based
scheme and the three baseline cases. Note that the PF metric
of the MADDPG-based scheme increases with the number
of training episodes, and eventually converges. Among the
baseline cases, Selfish exhibits the poorest performance, while
CentralPF yields the highest PF metric. Selfish’s poor per-
formance is attributed to the APs failing to nullify users
associated with the other AP, resulting in low data rates
due to interference and consequently leading to a lower PF
metric value. Note that CentralMax produces a moderate PF
metric. While it offers the best data rate through centralized
user selection, it does not account for fairness, as it con-
sistently favors users with the optimal conditions, especially
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Fig. 3. Simulation results of coordinated beamforming in a two-AP system

when the channel remains relatively stable. This inherent bias
diminishes the PF metric performance of CentralMax. The
PF metric of the MADDPG-based scheme approaches that
of CentralPF after convergence. CentralPF outperforms the
MADDPG scheme due to the availability of global CSI and
centralized decision-making. However, the MADDPG scheme
still achieves a very good PF metric close to that of CentralPF,
but with the advantages of reduced overhead and distributed
implementation.

The sum rate in the two-AP system is shown in Fig. 3(b).
The best and worst data rates are provided by CentralMax
and Selfish, respectively. CentralPF slightly sacrifices data
rate to provide greater transmission opportunities to users
with poor channel conditions compared to CentralMax. In
the MADDPG-based scheme, data rate increases with more
training episodes, eventually reaching approximately 95% of
CentralPF’s data rate after convergence.

To evaluate whether different users receive equal data rates,
a fairness index based on [12] is evaluated. This metric is
defined as F = exp(− 1

K

∑
k∈A1∪A2

| log( dk,N−1

DK,N−1
)|), where

DK,N−1 = 1
K

∑
k∈A1∪A2

dk,N−1. The fairness index takes
values in [0, 1], with 1 indicating that the average data rate in
N slots is identical for all the users.

CentralMax and Selfish exhibit poor fairness since users
with good channel conditions are favored. CentralPF, driven
by the objective function of proportional fairness, achieves the
highest fairness index. However, the MADDPG-based solution
significantly outperforms both CentralMax and Selfish, reach-
ing a fairness index of approximately 0.85 upon convergence,
getting close to the performance of CentralPF. This validates
the efficacy of fair scheduling using the proposed MADDPG-
based solution with local CSI and distributed decision-making.

In summary, the proposed MADDPG-based method can
reach a balance between data rate and fairness. Unlike non-
learning methods requiring extra information exchange among
the centralized controller and APs, the proposed method is
more practical due to distributed decision-making without a
centralized controller, resulting in lower overhead by utilizing
local CSI and minimal information exchange.

The proposed scheme could be extended to scenarios with
more than two coordinated APs, where each AP is an agent
within the MARL framework. With an increase in the number
of APs and associated users, the dimensions of the action space
and state space will increase. A challenge with the increased
dimensionality is to develop efficient RL exploration strategies

that converge to a good solution within a reasonable training
time. This scalability aspect is an open research question.

V. CONCLUSIONS

A coordinated beamforming scheme based on MADDPG
is proposed for a two-AP system. This approach integrates a
self-attention mechanism for more efficient feature extraction.
It has the advantage of distributed decision-making using local
CSI and minimal inter-AP information exchange. Simulation
results validate that the approach closely approximates a
centralized proportional fairness scheme while only using local
CSI and with minimal information exchange.
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