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Abstract— This paper studies how to fairly and efficiently
allocate the two limited resources in software-defined data
center networks (DCNs), namely the flow table and the con-
trol channel bandwidth. The problem considers routing path
selection together with allocation of flow table entries and
control channel bandwidths. The objective is to maximize the
satisfaction ratio for flow groups in the network in terms of the
two aforementioned resources, with the routing path optimized
and different fairness constraints enforced. Our approach is to
aggregate individual flows into flow groups and then find the
optimal routing paths and the corresponding resource allocation
vectors for each flow group. We study different fairness models
in this work and also include a mechanism to relax the fairness
constraint, which produces a range of solutions that permits a
trade-off between total demand satisfaction and fairness.

I. INTRODUCTION

Software-defined networking (SDN) has become a pop-
ular candidate for data center networks (DCNs). It enables
flexible network resource management with the controller’s
global view. In SDN, the controller communicates with
the SDN switches through the switch-to-controller link via
southbound protocols and configures the network behaviors
by installing flow entries on the flow tables of switches.
However, the resource allocation problem in software-defined
DCN exposes new design challenges. One of the main
challenges is to cope with the limited resources brought by
the unique architecture of SDN. The primary resources are
the flow tables, which restrict the number of flow entries that
can be stored on switches, and the capacity of the switch-to-
controller links (henceforth referred to as control channels),
which limits the message exchange rate between switches
and the controller. As an illustrative example, in a typical
data center, the number of active flows at the edge switch
can reach as many as 8000 [1], but the flow table size in
OpenFlow switches is limited to a few thousand entries due
to power, cost and chip constraints [2]. As for the control
channel capacity, an edge switch in DCN can see 100k new
flows per second [1], which corresponds to a large traffic load
on the control channel. However, the switch only supports
limited control channel bandwidth due to its low internal con-
trol path bandwidth and limited CPU performance [3]. Thus,
new resource allocation algorithms need to be investigated
to consider these two unique constraints.

In general, high demand satisfaction and fairness are two
fundamental objectives in resource allocation that cannot be
maximized simultaneously. This motivates the investigation
of inherent tradeoffs between the two objectives, where
a common approach is to maximize demand satisfaction

subject to some fairness constraints.
In this paper, we address the resource allocation problem

in software-defined DCNs, with the objective to maximize
the total satisfaction ratio of the aforementioned two SDN
resources, subject to different fairness constraints. Our ap-
proach is to aggregate individual flows into flow groups and
then find the optimal routing paths and the corresponding
resource allocation vectors for each flow group satisfying
our objective. Our main contributions are as follows:
• We address the resource allocation problem coupled

with satisfaction maximization, fairness constraints, and
routing path selection in software-defined DCNs. In-
stead of fixing the routing and allocating the resources
subject to fairness constraints, we include routing path
selection into the optimization problem to better meet
the resource demands. The evaluation results show that
deviating from simple shortest-path routing can improve
the satisfaction ratio by 25%-30% while maintaining
very good fairness.

• We investigate different fairness models, including clas-
sical max-min fairness, a simple max-min fairness, and
an equal share fairness model. The fairness models are
also modified to cooperate with our two-resource satis-
faction maximization case. Moreover, to accommodate
various network requirements, we introduce a relaxation
parameter δ ∈ [0, 1] into these fairness models. It allows
the network operator to control the trade-off between
total demand satisfaction and fairness.

• We consider joint optimization of the two SDN re-
sources, which leads to better network utilization com-
pared with single-resource optimization.

II. RELATED WORK

Some research works propose to maximize the network
flows or network throughput in SDN with limited flow table
size [4], [5], without considering any fairness constraints
among flows. The authors in [6] design a heuristic algorithm
to maximize the minimum throughput satisfaction. That work
considers only a simple max-min fairness model and does
not allow tradeoffs between fairness and satisfaction. The
aforementioned algorithms only consider the flow table size
constraint while the control channel bandwidth is another im-
portant constraint for software-defined DCNs. The controller
processing capacity constraint is added to the SDN through-
put maximization problem in [5], but the control channel
bandwidth limitation is still omitted. Moreover, these works
focuses on maximizing network throughput with limited flow
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table space. However, in current DCNs, the data plane link
utilization level is relatively low [1], and thus the throughput
demands of users can be easily satisfied. On the other hand,
the resource constraints brought by the unique architecture
of SDN are likely to become the bottleneck. Optimization
problems with the objective to improve SDN resource usage
have not been well explored. In this paper, we present the
fairness guaranteed satisfaction ratio maximization problem
in terms of both the flow table usage and the control channel
usage in software-defined DCNs.

III. SYSTEM MODEL

We consider a scenario where the software-defined DCN
is modeled as a graph G = (V,E) and the flows from each
server are aggregated into flow groups at the source switches
based on their destination switches. The set of all aggregated
flow groups F = [f1, f2, · · ·, fN ] and fn is defined as:

fn = (sn, tn, Db(n), Dfe(n), Dsc(n)),

where sn and tn is the source and destination switch of
fn, and Db(n), Dfe(n), and Dsc(n) are the total data plane
bandwidth demand, flow table demand, and control chan-
nel bandwidth demand requested by fn, respectively. The
measured statistical traffic characteristics over time or the
total amount of resource purchased by the users can be used
to form the demands of flow groups. The flow aggregation
step will not only reduce the computation complexity of
the optimization problem significantly, but also help reduce
the flow table usage. While SDN enables individual flow
management, this fine-grained control will cause flow table
overflow problem. Therefore, coarse-grained control is used
in some cases. For example, in the software-defined WAN
deployed by Google, the flows are aggregated to groups
defined by {src, dst,QoS} for scalability [7]. In this work,
we assume that with the flow aggregation, some flow rules
(e.g., rules for the flows with the same source and destination
address, and QoS class, or some mice flows that do not need
full control) can be compressed together. The number of flow
rules demanded after aggregation depends on the number
of QoS classes enforced in the network, and level of con-
trol granularity the service providers prefer. The parameter
Dsc(n) is the control channel bandwidth required to set up
the flow entries, collect the statistics, and maintain the flows.
It can be estimated based on previous traffic statistics, the
controller’s functionality, or the users’ purchased share.

Simple shortest-path routing may lead to unfavorable
cases for resource sharing in the network. Besides, with
SDN deployed, optimized routing becomes possible. Thus
in this work, we explore the resource allocation problem
with routing path selections to improve the optimization
results. The number of paths connecting the sources and
destinations can be of exponential size in network, but in
practice, potential paths for routing the traffic are limited to
a specific set and provided ahead of operation time. We thus
consider a practical case where a set of pre-generated paths
p for flow group fn are provided as inputs. Let Pn be the
set of p for fn and the size of Pn is k.

Fig. 1: Simple network model

Next, we present a simple example as illustration. Con-
sider the scenario in Fig. 1, where three flows a, b and c are
aggregated at switch A. Since flow a and b are destined at
switch B, flow a and b are aggregated as flow group:

f1 = (A,B,Db(1), Dfe(1), Dsc(1)),

where Db(1), Dfe(1), and Dsc(1) are the aggregated data
plane link bandwidth, flow table size, and control channel
bandwidth requested by flow a and b. Assuming the number
of flow entries required by a and b is 1, if both flow a
and b belong to the same QoS class and can be aggregated,
Dfe(1) = 1. On the other hand, if a and b are from different
QoS classes, Dfe(1) = 2. Dsc(1) is the control channel
bandwidth required to maintain flow a and b. Similarly flow
c is aggregated as flow group:

f2 = (A,C,Db(2), Dfe(2), Dsc(2)).

Let k = 2, which is the maximum number in this case,
P1 = {(A,B), (A,C,B)}, and P2 = {(A,C), (A,B,C)}.
Our algorithm should return the optimal routing paths for f1
and f2 on P1 and P2, and the amount of resource allocated to
each group to meet our objective. A feasible solution should
satisfy the following capacity constraints:
• For each flow group fn, the total resources assigned to

it should be equal to or less than its demands.
• For each data plane link e, the total amount of flows

going through it should not exceed Cb(e), where Cb(e)
is the bandwidth capacity for link e

• For each node v, the total number of flow entries
assigned to the flow groups should not exceed Cfe(v),
where Cfe(v) is the maximum flow table size at v

• For each node v, the total traffic going through its
control channel should not exceed its capacity Csc(v)

IV. SATISFACTION MAXIMIZATION AND FAIRNESS

A. Satisfaction Maximization

Since maximizing the actual amount of resources might
lead to unfair solutions where a high-demanded group only
gets a small fraction of resources, we ensure a first level of
fairness in the allocation problem by targeting on maximizing
the ratio between allocation and demand for each group.

The satisfaction ratio of the flow table demand for flow
group fn, Xn ∈ [0, 1], is defined as the ratio between the



allocated flow table space for fn on the selected path, and
its demand Dfe(n). As in our previous simple example, if
Dfe(1) = 2 and the selected path for f1 is (A,C,B), its
maximum satisfaction ratio of the flow table demand, X1, is
0.5 when the available flow table size on switch C is one
entry. In this case, the controller can decide to install the
entry with higher priority or other kinds of admission control
mechanism can be used. The satisfaction ratio of control
channel bandwidth demand, Yn ∈ [0, 1], is defined in a
similar way. The satisfaction ratio vectors/resource allocation
vectors of the two resources are ~X = [X1, X2, · · ·, XN ], and
~Y = [Y1, Y2, · · ·, YN ]. The overall satisfaction ratio of a flow
group is the sum of the two individual ratio (Xn + Yn). We
target on maximizing the total overall satisfaction ratio of
all the flow groups. Additional constraints on the value of
Xn and Yn are set to avoid highly unbalanced solution as
discussed in next section. Since the data plane link utilization
level is relatively low in DCNs [1], we assume that the data
plane bandwidth can always be well satisfied, and so we do
not include it in the maximization objective.

Let the variable xpn ∈ {0, 1} denote whether flow fn goes
through path p ∈ Pn or not, and variable ype , z

p
v ∈ {0, 1}

denote whether path p goes through link e and node v or
not. The capacity constraints can be presented as:∑

n≤N

∑
p∈Pn

xpny
p
e · 1 ·Db(n) ≤ Cb(e) ∀e ∈ E (1)

∑
n≤N

∑
p∈Pn

xpnz
p
v ·Xn ·Dfe(n) ≤ Cfe(v) ∀v ∈ V (2)

∑
n≤N

∑
p∈Pn

xpnz
p
v · Yn ·Dsc(n) ≤ Csc(v) ∀v ∈ V (3)

∑
p∈Pn

xpn = 1 ∀n ≤ N (4)

Dfe(n) is defined as the number of flow entries required by
the fn, which should be an integer. Since we are considering
aggregated flow groups in this work, the value of Dfe(n) is
at the level of hundreds and the flow table capacity is at
the level of thousands. Allowing the value of xpnXnDfe(n)
to be fractional when solving the optimization problem, and
rounding it to its nearest integer when deploying the network
will not affect the performance significantly, but will improve
the computation efficiency by a substantial amount.

We refer to the Pure Maximization case as the optimization
problem with the objective to maximize the total satisfaction
ratio in the network for all flow groups subject to the
above resource constraints. However, since each flow group
represents all the flows generated from a single switch,
fairness should also be considered to avoid severely biased
cases where some flow groups are poorly satisfied in the
Pure Maximization problem. In order to address this issue,
we consider different fairness models as constraints.

B. Fairness Models

1) Simple max-min fairness: We first consider a simple
max-min fairness model. The allocation vectors ~X∗ and ~Y ∗

is said to be simple max-min if min( ~X∗) and min(~Y ∗) is
maximized among all the possible routings and allocations.
Our objective is to seek the maximum satisfaction ratio
among all the simple max-min guaranteed allocations. This
optimization can be formulated as a mathematical problem
composing of two sub-problems: the Max-Min problem to
calculate the maximized minimum satisfaction for all flow
groups, and the total Satisfaction Maximization problem. The
Max-Min problem is defined as:

maximize α+ β

subject to Eq(1)− Eq(4)
Xn ≥ α ∀n ≤ N
Yn ≥ β ∀n ≤ N,

and the Satisfaction Maximization problem is:

maximize
∑
n≤N

Xn +
∑
n≤N

Yn

subject to Eq(1)− Eq(4)
C1 : Xn ≥ δ · α∗ ∀n ≤ N
C2 : Yn ≥ δ · β∗ ∀n ≤ N.

Instead of setting Xn+Yn ≥ α+β, we tighten the constraints
by setting Xn ≥ α and Yn ≥ β. This avoids the highly
suboptimal solutions of very large Xn with very small Yn
or vice versa. Assume the maximized minimum satisfaction
ratio obtained in the Max-Min problem (α+ β)∗ is equal to
α∗ + β∗. Constraints C1 and C2 in the Satisfaction Maxi-
mization problem enforce the fairness constraint by making
sure that each flow group has a minimum overall satisfaction
ratio at δ(α+β)∗. The fairness relaxation parameter δ ∈ [0, 1]
allows controlled tradeoffs between satisfaction and fairness.
When δ = 1, the solution leads to perfect simple max-
min fairness with the minimum satisfaction ratio maximized.
The fairness constraint is relaxed as δ decreases and when
δ = 0, the optimization problem corresponds to the Pure
Maximization case with no fairness constraint.

2) Classical max-min fairness: The classical max-min
fairness is said to be achieved by an allocation if and
only if the allocation is feasible and an attempt to increase
the allocation of any participant necessarily results in the
decrease in the allocation of some other participant with
an equal or smaller allocation. The classical max-min fair
allocation can be obtained by a progressive filling algorithm
where the allocation for each user starts from 0. Since our
objective is to achieve fairness in terms of the satisfaction
ratio with two resources, we propose a slightly different
algorithm than the conventional progressive filling method as
described in Algorithm 1. The algorithm seeks classical max-
min for the flow table satisfaction ratio and control channel
satisfaction ratio separately. The evaluation results show that
this method can actually achieve a high and fair allocation for
both resources at the same time. In Algorithm 1, parameters
Rfe, Rsc denote the unsaturated switches in terms of flow
table and control channel, and Qfe, Qsc denote the non-
bottlenecked flows for the two resources. Ufe(v), Usc(v)
and Tfe(v), Tsc(v) are the current utilization level and total



demands of non-bottlenecked flows on switch v, respectively.
Since our optimization objective is the satisfaction ratio,
we define the most bottlenecked switch vfe, vsc based on
Tfe(v), Tsc(v), instead of the number of flows on switch v
as in the conventional progressive filling algorithm. Besides,
the increment of Xn, Yn is also based on satisfaction ratio.
Algorithm 1 Classical Max-min Fairness Algorithm with
Two Resources
Input: Feasible routing path assignment xpn
Output: ~X, ~Y

1: Initialize : ~X ← ~0, ~Y ← ~0, Rfe ← V,Rsc ← V,Qfe ←
F,Qsc ← F,Ufe ← ~0, Usc ← ~0;

2: Initialize: Tfe(v) =
∑
fn∈Qfe

∑
p∈Pn

xpnz
p
vDfe(n)

3: Initialize: Tsc(v) =
∑
fn∈Qsc

∑
p∈Pn

xpnz
p
vDsc(n)

4: while Qfe 6= ∅ or Qsc 6= ∅ do
5: vfe = argminv

Cfe(v)−Ufe(v)
Tfe(v)

, ∀v ∈ Rfe
6: vsc = argminv

Csc(v)−Usc(v)
Tsc(v)

, ∀v ∈ Rsc
7: Xn+ = min(

Cfe(vfe)−Ufe(vfe)
Tfe(vfe)

,min∀fn∈Qfe
(1 −

Xn)) ,∀fn ∈ Qfe
8: Yn+ = min(Csc(vsc)−Usc(vsc)

Tsc(vsc)
,min∀fn∈Qsc

(1−Yn)),
∀fn ∈ Qsc

9: Ufe(v) =
∑
n≤N

∑
p∈Pn

xpnz
p
v ·Xn ·Dfe(n)

10: Usc(v) =
∑
n≤N

∑
p∈Pn

xpnz
p
v · Yn ·Dsc(n)

11: Rfe ← {v|Cfe(v)− Ufe(v) > 0}
12: Rsc ← {v|Csc(v)− Usc(v) > 0}
13: Qfe ← {fn|fn spans only on v ∈ Rfe and Xn < 1}
14: Qsc ← {fn|fn spans only on v ∈ Rsc and Yn < 1}

Furthermore, in our case, the resource allocation is coupled
with routing path selection and thus the solution cannot
be obtained using only the progressive filling algorithm,
where the routing paths should be provided as inputs. To
solve this problem, a brute-force method which evaluates all
possible routing paths and selects the best one can return
the optimal solution, but since brute-force is not scalable
in a large network, we propose a heuristic approach to
approximate the brute-force method. With a proper initial
routing path, the total satisfaction is calculated subject to
the classical max-min fairness constraint. Next, rerouting of
the bottlenecked flows is considered. The possible reroutings
are evaluated greedily by starting with the flows at the most
bottlenecked switch. To reduce the computation complexity,
we only consider rerouting each flow once and set a limit on
how many reroutings will be explored in each run. Finally,
the routing path selections xp∗n and the allocation vectors
~X∗, ~Y ∗, which generate the highest total satisfaction ratio
with classical max-min fairness, are selected.

To relax the fairness constraint, after we get the optimal
routing path selection xp∗n and the allocation vectors ~X∗, ~Y ∗,
we allow the actual satisfaction ratio for fn (Xn and Yn)
to be in the range of [δX∗n,

X∗
n

δ ] and [δY ∗n ,
Y ∗
n

δ ], where δ ∈
[0, 1]. The maximum satisfaction ratio and the corresponding
routing paths can be obtained with the following optimization
problem:

maximize
∑
n≤N

Xn +
∑
n≤N

Yn

subject to Eq(1)− Eq(4)

δX∗n ≤ Xn ≤
X∗n
δ

∀n ≤ N

δY ∗n ≤ Yn ≤
Y ∗n
δ
∀n ≤ N.

3) Equal Share: Another fairness model considered in this
work is strictly equal share, where all the flow groups should
achieve the same level of satisfaction, which leads to X1 =
X2 = ···XN = α and Y1 = Y2 = ···YN = β. This allocation
will achieve optimal Jain’s fairness index [8]. The maximum
satisfaction ratio with equal share fairness guaranteed can be
obtained by solving the following optimization problem:

maximize α+ β

subject to Eq(1)− Eq(4)

C3 : δα∗ ≤ Xn ≤
α∗

δ
∀n ≤ N

C4 : δβ∗ ≤ Yn ≤
β∗

δ
∀n ≤ N,

and setting δ to be 1. Parameter δ ∈ [0, 1] allows control of
how tightly the solution achieves the fairness objective.

V. PERFORMANCE EVALUATION

The network topology used for performance evaluation
is a fat-tree topology [9], which has been widely used in
DCNs. The topology contains 4 core switches, 8 aggregation
switches, and 8 edge switches, which can represent a typical
scale of a campus data center [1]. Each edge switch is con-
nected to hundreds of servers and the flows are aggregated
into groups such that, for each edge switch, there is one flow
group destined to every other edge switch. The bandwidth
of the data plane links are 10Gbps and the flow tables of
switches are limited to 2000 entries. Multiple connections
between switch and controller are proposed in OpenFlow 1.3
and analyzed in [10]. Thus, we assume the control channel
bandwidth is 2Gbps for the core switches, and 1Gbps for the
aggregation and edge switches. The individual demands are
generated randomly according to a uniform distribution and
all the results are obtained based on eight random trials.

The optimization problems are solved using Gurobi 8.0.1
on a 4-core 3.2GHz Intel i5-6500 processor with 7.7 GB
memory. The average running times for the joint optimization
cases in Section V-A with simple max-min and equal share
fairness model are 0.93s and 0.20s, respectively. Due to mul-
tiple iterations in the classical max-min fairness algorithm,
its average running time is 70.2s. The traffic in a DCN is
relatively stable on the timescale of a few seconds up to a
few minute [11]. In addition, only the amounts of the three
demands need to be collected for calculation, which will
incur only a very small overhead in the network. Given these
conditions, our algorithm can be run periodically in an online
fashion to optimize the network resource allocation.

A. Satisfaction Ratio

We first compare the satisfaction ratio in terms of the
two SDN resources under different optimization scenarios
as shown in Fig. 2. The total demands for the two SDN
resources are set to be larger than the network capacity with



Fig. 2: Satisfaction Ratio Comparison

the average demand being 200 flow entries and 100Mbps
bandwidth per group. The optimization scenarios include: 1)
the Pure Maximization case with no fairness constraint, 2)
the optimization cases for a single resource (Flow Table Only
or Control Link Only) with simple max-min fairness, 3) the
jointly optimized cases for both resources with different fair-
ness constraints, and 4) the optimization case with Shortest
Path routing and simple max-min fairness.

First, as expected, the Pure Maximization case achieves
the highest satisfaction ratio for both resources. However, it
will generate undesirable solutions where some of the flow
groups get very low satisfaction ratio. On average, 7% of the
flow groups get 0% satisfaction ratio for flow table space and
13% of the flow groups get 0% satisfaction ratio for control
channel. To make things worse, the flow groups receiving
no flow entry resource are not identical to the flow groups
receiving no control plane resource. Thus, some resources are
wasted with pure maximization since a flow group cannot be
routed successfully with only one SDN resource.

Second, utilizing optimized routing shows substantial im-
provement compared with the Shortest Path case. Shortest
path routing is 30% and 25% worse compared with the opti-
mized routing case with simple max-min fairness enforced,
in terms of flow table and control channel satisfaction.

Lastly, when the allocation of a single resource is set as
the optimization target (Flow Table Only and Control Link
Only), the satisfaction ratio of the targeted resource is slightly
better than the corresponding jointly optimized case, but
it causes around 10% satisfaction degradation on the other
resource. This fact emphasizes the need to jointly optimize
the allocation of the two resources. The jointly optimized
cases with all three fairness objectives produce well-balanced
allocation of the two resources, and achieve almost as good
a satisfaction ratio as the targeted resource in the single-
resource optimization cases.

Next, we will elaborate on the difference between the
fairness models and the impacts of fairness relaxation. Since
the satisfaction ratios of the two SDN resources can be
optimized jointly with all three fairness models as shown
in Fig. 2, we only show the overall satisfaction ratio (the
sum of the two individual ratios) in the following analyses.

Fig. 3: Satisfaction Ratio with Varying Demand Scaling

B. Comparison of Fairness Models

As the traffic in DCNs has grown dramatically in recent
years and there is an increasing need to manage the traffic
with finer-grained control, the SDN resources might not be
sufficient to satisfy the demands of all flow groups. We
scale up the demands from where the network resources
are sufficient to where resources are insufficient and re-
source allocation optimization is required, and study the
performance using the different fairness models. The overall
satisfaction ratios achieved under different demand scaling
are shown in Fig. 3. A demand scaling of x means x
times the baseline demand (100 flow entries and 50Mbps
bandwidth per group on average). When demand scaling is
low, all models achieve the maximum satisfaction ratio of
200%. As demand scaling increases, the overall satisfaction
ratio decreases, and the pure maximization model achieves
higher satisfaction than the other approaches. However, as
discussed before, the solution to the pure maximization is
undesirable due to unfairness and resource waste. For the
other three fairness models, the simple max-min model yields
the highest satisfaction ratio while the equal share model
generates the lowest at first, but as the demand scaling
keeps increasing, the benefits of the simple max-min over the
classical max-min diminishes and finally, all the three models
achieve similar satisfaction ratios. Based on the individual
satisfaction ratio of the flow groups, we find that with high
demands in the network, the three fairness models tend to
generate the same allocation as discussed below.

To compare the fairness approaches more closely, we
investigate the satisfaction ratios for each flow group when
demand scaling is 3. The allocation for flow table resource
is similar as for control channel resource, so we only show
the allocation of flow table satisfaction in Fig 4. Pure
maximization causes a severe bias where some groups get
0% satisfaction, which means the access to the network for
these flow groups is denied, while other groups get perfect
satisfaction. With equal share model, all flow groups obtain
equal satisfaction ratio for the two resources as expected. For
the two max-min models, the majority of flow groups obtain
the same satisfaction ratio as with equal share fairness. A
few groups get higher satisfaction than others and thus a



Fig. 4: Flow Table Satisfaction Ratio Allocation
TABLE I: Jain’s Fairness Index of Flow Table Demand

δ 0 0.2 0.4 0.6 0.8 1
Simple max-min 0.53 0.54 0.55 0.57 0.60 0.66
Classical max-min 0.53 0.54 0.56 0.59 0.68 0.77
Equal share 0.53 0.54 0.55 0.60 0.70 1.0

higher total satisfaction ratio is achieved than with the equal
share model. With the classical max-min model, the flow
groups are partitioned to several clusters (usually the number
of clusters is very small) and within each cluster, all flow
groups achieve exactly the same satisfaction. As the demand
scaling increases, the allocation of both the max-min models
converges to the equal share model.

C. Fairness Relaxation

Finally, the impacts of the fairness relaxation parameter
δ are studied. When δ = 0, the optimization problems with
different fairness objectives all become a pure maximization
problem. We show the overall satisfaction ratio degradation
compared with the pure maximization when demand scaling
is 3 with varying δ in Fig. 5. As the fairness requirement
is tightened, the achieved satisfaction ratio decreases. When
δ < 0.6, the degradation of the three models is the same. As
δ keeps increasing, simple max-min fairness tends to achieve
the highest satisfaction ratio. With perfect fairness, the per-
formance degradations of simple max-min, classical max-
min, and equal share are 10%, 12%, and 17%, respectively.

We also investigate Jain’s fairness index of the flow table
satisfaction ratio as displayed in Table I. Jain’s fairness index
of the control channel resource follows a similar trend so
we don’t show it here. When the fairness requirement is
relaxed (δ < 0.6), the three models all produce the same
fairness index. Combined with the satisfaction ratio results,
we can infer that with relaxed fairness requirement, the
three models produce identical results. As δ increases, while
the simple max-min model leads to the highest satisfaction
ratio, it also induces the lowest fairness index. The equal
share model will reach the optimal Jain’s index when δ =
1.0. In summary, performance and fairness tradeoff can be
achieved by choosing the proper δ and fairness model. A
service provider can determine the best fairness possible for
a given minimum performance threshold or determine the
best performance for a given minimum fairness threshold.

Fig. 5: Achieved Overall Satisfaction Ratio Compared with
Pure Maximization [%]

VI. CONCLUSION

In this paper, we addressed the high satisfaction and fair
allocation of resources in software-defined DCNs, including
routing path selection. We jointly optimized the allocation
of flow table and control channel resources with different
fairness constraints. The fairness constraints were compared
and a mechanism to relax these constraints was studied. Our
future work will consider the problem of delay-guaranteed
fair allocation of resources in software-defined DCN.
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