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Abstract—We tackle the problem of determining the beam-
forming and combining weights in a network of interfering
multiple-input multiple-output (MIMO) links. We classify any
strategy for computing these weights as either unilateral or
bilateral. A unilateral strategy is one for which the responsibility
of cancelling interference from one node to another is preassigned
to lie solely with only one of the two nodes, so that the other
node is free to ignore the interference. Many existing strategies
for managing interference in a network of MIMO nodes adopt
the unilateral approach. In contrast, a bilateral strategy is one
for which the responsibility of cancelling interference from one
node to another is not preassigned, but is instead shared by
both sides as the weights are computed. We present numerical
examples to illustrate that bilateral strategies can significantly
outperform unilateral strategies, especially for large networks
and high interference. In one example, a bilateral approach
delivers an aggregate capacity that is 227% higher than that of the
best unilateral approach. We conclude that, although unilateral
strategies are useful for determining whether or not the streams
allocated in a network of MIMO links can coexist, the weight
computation should be done bilaterally to prevent throughput
loss.

Index Terms—MIMO, degrees of freedom, beamforming, com-
bining, weights, network

I. INTRODUCTION

A multiple-input multiple-output (MIMO) link with nr
antennas at the receiver and nt antennas at the transmitter
can perform spatial multiplexing to potentially increase its
capacity by a factor of n = min(nr, nt) without the need of
additional spectrum or power [1]. Moreover, the performance
improvement can be larger in multi-link networks when nodes
use a combination of spatial multiplexing and interference
cancellation [2, 3]. To achieve these performance gains, the
network-wide beamforming and combining weights that sup-
port multiple streams and perform interference cancellation
must be computed accordingly. We classify any strategy for
computing these weights as either unilateral or bilateral.

We define an interference cancellation strategy as unilateral
whenever the responsibility of cancelling interference is pre-
assigned to either the transmitter or the receiver of this
interference, but not both. Many existing strategies for man-
aging interference in a network of MIMO links adopt a
unilateral approach. Examples of unilateral strategies include
the SRP/SRMP-CiM [4], SPACE-MAC [5], CAS [6], OBIC
[7, 8], ExtendedGreedy [9], OSTM [10], and CLOM [11].

In contrast, we define an interference cancellation strategy
as bilateral whenever the responsibility for cancelling inter-
ference is not preassigned to one of the two involved nodes,
but is instead shared by both nodes in the process of deter-
mining the beamforming and combining weights. Examples
of bilateral strategies include the SRMP-NiM [4], Max-SINR
[12], IMMSE [13], incremental-SNR algorithm [14], and the
MMSE and Max-SINR from [15].

A key distinction between the two classifications is that with
unilateral interference cancellation, interference from one node
to another can be ignored by one of the two nodes involved,
whereas with bilateral interference cancellation, neither node
can ignore this interference.

In this paper, we show that, for a three-link network,
a proposed bilateral interference cancellation approach per-
forms better than all known unilateral interference cancellation
approaches, even after exhaustively searching for the best
unilateral solution. For larger networks where an exhaustive
search is infeasible, we use heuristics to search for the best
possible unilateral and bilateral solution and we show that
the sum capacity using bilateral interference cancellation can
be significantly higher than the sum capacity using unilateral
interference cancellation. We also show that by handling the
cyclic interdependencies of the beamforming and combining
weights, unilateral strategies can support a higher number of
streams and achieve better performance.

This paper is organized as follows. In Section II, we define
our model for the physical layer. In Section III, we provide
a mathematical description of unilateral interference cancella-
tion and the constraints necessary to determine feasibility of
streams allocated in a network of MIMO links. In Section IV,
we describe strategies for computing the beamforming and
combining weights locally for a single node. In Section V,
we present an algorithm that computes the beamforming and
combining weights globally for every node. In Section VI, we
present numerical results. Finally, in Section VII, we present
our conclusions.

II. PHYSICAL-LAYER MODEL

Consider a set of M active links L =
{(t[1], r[1]), . . . , (t[M ], r[M ])}, where no node appears as
an endpoint of more than one link, and t[k] and r[k] denote
the transmitter and receiver of link k, respectively. Let d[k]



be the number of multiplexed streams on link k, and let n[k]t

and n
[k]
r be the number of antenna elements at t[k] and r[k],

respectively. Let H [kl] ∈ Cn[k]
r ×n

[l]
t be the matrix of complex

channel gains between the antennas of t[l] and those of r[k].
We assume that E[|h[kl]i,j |2] = 1 for all i and j, where h[kl]i,j is
the element at the ith row and jth column of H [kl].

The received vector after combining at r[k] is given by

y[k] = U [k]†
M∑
l=1

√
ρ[kl]H [kl]V [l]x[l] +U [k]†z[k], (1)

where (·)† is the conjugate transpose of (·); ρ[kk] is the
signal-to-noise ratio (SNR) of link k; ρ[kl] for l 6= k is
the interference-to-noise ratio (INR) caused by t[l] at r[k];
V [k] ∈ Cn

[k]
t ×d

[k]

is the beamforming matrix of t[k]; U [k] ∈
Cn[k]

r ×d
[k]

is the combining matrix of r[k]; x[k] ∈ Cd[k]

is the
transmit signal vector from t[k], assumed to be independently
encoded Gaussian codebook symbols with unit-energy so
that E[x[k]x[k]†] = Id[k] ; and z[k] ∈ Cn[k]

r is a vector
of zero-mean circularly symmetric additive white Gaussian
noise (AWGN) elements with unit variance. To satisfy the
transmitter power constraint, the beamforming weights must
satisfy tr

(
V [k]V [k]†) = 1, for all k ∈ {1, . . . ,M}.

The signal-to-interference-plus-noise ratio (SINR) of stream
i in link k is then given by [16]

SINR[ki] =
γ[ki]

U
[k]†
∗i B[k]U

[k]
∗i − γ[ki]

, (2)

where (·)∗i is the ith column of (·) and

γ[ki] = ρ[kk]U
[k]†
∗i H [kk]V

[k]
∗i V

[k]†
∗i H [kk]†U

[k]
∗i , (3)

B[k] = I
n
[k]
r

+

M∑
l=1

ρ[kl]H [kl]V [l]V [l]†H [kl]†. (4)

Finally, the instantaneous capacity in bits/sec/Hz of link k is

C [k] =

d[k]∑
i=1

log2

(
1 + SINR[ki]

)
. (5)

III. UNILATERAL INTERFERENCE CANCELLATION AND
FEASIBILITY

It will be convenient to characterize a unilateral interference
cancellation strategy by a pair of matrices: one (At) for the
transmitters, and one (Ar) for the receivers. These matrices
contain the interference cancellation assignment that specifies,
for each node, which nodes’ interference must be cancelled
and which nodes’ interference can be safely ignored. The entry
atl,k ∈ {0, 1} at the lth row and the kth column of At is one
if t[l] is assigned to cancel its interference at r[k] and zero
otherwise. Similarly arl,k ∈ {0, 1} is one if r[l] is assigned to
cancel the interference from t[k] and zero otherwise.

The entries for At and Ar are set according to the following
rules. We set ark,l = atl,k = 0 if ρ[kl] < % for some threshold
%. For ρ[kl] ≥ % and k 6= l, however, interference is either
cancelled at the transmitter or the receiver, but not both, and

so ark,l = 1− atl,k. Finally, for convenience, we define ark,k =
atk,k = 1 for all k ∈ {1, . . . ,M}.

For a unilateral interference cancellation strategy, we define
a stream allocation d = [d[1], d[2], . . . , d[M ]] as feasible if
and only if there exist interference cancellation assignment
matrices At and Ar as defined above such that the degrees-of-
freedom constraints

∑M
l=1 a

t
k,ld

[l] ≤ n
[k]
t and

∑M
l=1 a

r
k,ld

[l] ≤
n
[k]
r are satisfied for all k ∈ {1, . . . ,M}.

IV. LOCALLY CALCULATING THE BEAMFORMING AND
COMBINING WEIGHTS

The computation of weights in a network is complicated
by the fact that the transmitter beamforming weights and
receiver combining weights are interdependent: the beamform-
ing weights that cancel interference depend on the correspond-
ing combining weights, while the combining weights that
cancel interference depend on the corresponding beamforming
weights. In Section V, we propose an iterative algorithm that
deals with this problem. For now, as a stepping stone, we
show in this section how to compute the combining weights
as a function of the relevant beamforming weights, and how to
compute the beamforming weights as a function of the relevant
combining weights.

For convenience we normalize the combining weights at r[k]

according to

U [k] = Ŵ [k]

√
1

d[k]
, (6)

where Ŵ [k] is the matrix formed after dividing each column
vector of W [k] with its corresponding Euclidean norm. In the
following, we specify different ways of computing W [k].

A. Zero-Forcing Combining for Unilateral Cancellation

The zero-forcing (ZF) combining weights eliminate all
interference, despite the penalty of reducing its signal energy
[17]. In the context of a unilateral strategy, for which the
cancellation responsibilities are preassigned according to At

and Ar, the ZF combining weights at r[k] are

W
[k]
∗i = h

[k]
i − }}}[k]i , (7)

for all i ∈ {1, · · · , d[k]}, where h
[k]
i = H [kk]V

[k]
∗i , and }}}[k]i is

the projection of h[k]
i onto the span of all columns of h[k]

j 6=i and
all columns of ark,lH

[kl]V [l] for l 6= k. Notice that these ZF
weights eliminate interference from node l only if ark,l = 1,
and ignores it otherwise.

B. Minimum Mean-Squared-Error Combining for Unilateral
and Bilateral Cancellation

A minimum mean-squared-error (MMSE) receiver relaxes
the zero interference constraint with the advantage of allowing
more signal to be collected [17]. In the context of a unilateral
strategy, for which the cancellation responsibilities are preas-
signed according to At and Ar, the MMSE combining weights
at r[k] are

W [k] =
(
R[k] + I

n
[k]
r

)−1
H [kk]V [k], (8)



where

R[k] =

M∑
l=1

ark,lρ
[kl]H [kl]V [l]V [l]†H [kl]†. (9)

The presence of ark,l in (9) ensures that these weights cancel
only the interference that they are assigned to cancel.

MMSE can also be defined in the context of bilateral
interference cancellation. To do so, we set atl,k = ark,l = 1

for ρ[kl] ≥ % and k 6= l, i.e. both r[k] and t[l] include
this interference in the computation of their weights. With
this modification, we can use (8) and (9) to compute the
MMSE combining weights at r[k] in the context of bilateral
interference cancellation.

The MMSE weights for bilateral interference cancellation
are equal to the Max-SINR weights from [12] since weights
that minimize the mean-squared-error also maximize the SINR
[16]. We prefer to use MMSE weights instead of Max-SINR
weights because MMSE weights can be computed with lower
complexity than Max-SINR weights, since all weight columns
of MMSE can be computed after one matrix inversion instead
of computing a matrix inversion for each weight column of
Max-SINR.

C. Beamforming Via a Virtual Network

To compute the beamforming weights for a transmitter
that performs interference cancellation, we follow [18] and
reverse the channel, creating a virtual network in which we
compute the beamforming weights assuming the transmitter is
a virtual receiver. Specifically, to compute the beamforming
weights, add a ←− to all variables in (6) to (9), then compute←−
H [lk] = H [kl]†,

←−
V [k] = U [k],

←−
U [k] = V [k], and ←−a r

k,l = atk,l.
The resulting beamforming weights allocate equal power to
each stream since V

[k]†
∗i V

[k]
∗i =

←−
U

[k]†
∗i
←−
U

[k]
∗i = 1

d[k] for all
i ∈ {1, . . . , d[k]}.

The combination of this virtual procedure, and the MMSE
receiver weights (8) results in a set of beamforming weights
that we will loosely refer to as MMSE, even though strictly
speaking they do not minimize the sum mean-squared error at
the receivers.

V. GLOBALLY CALCULATING THE BEAMFORMING AND
COMBINING WEIGHTS

The interdependency of the beamforming and combining
weights can create dependency cycles that significantly com-
plicate their optimization. For example, consider the three
link example shown in Figure 1. For a unilateral interference
cancellation strategy, there are two interference cancellation
assignments in which two streams per link are feasible. Figure
1 depicts one of the two interference cancellation assignments,
namely

At = Ar =

1 0 1
1 1 0
0 1 1

 . (10)

The other assignment can be obtained by transposing (10).
Given (10), the ZF and MMSE weights of r[1] are dependent

on the weights at t[1] and t[3]. Furthermore, t[3]’s weights de-
pend on the weights of r[3] and r[2]. If the nulling assignment
is followed, this sequence traverses every node and completes
a cycle when calculating the weights of t[2], which depend on
the weights of r[1], the initial node.

Link's Channel

Null Directionr[1]

y

y

x

t
[1]

r[2] t
[2]

r[3]t
[3]

Fig. 1. Topology of simulated three-link network. At least one high
interfering node is located at a distance y from every receiver.

Our solution to the problem of dependency cycles is to
iteratively compute the beamforming and combining weights.
Similar iterative approaches were taken in the previous re-
ported bilateral algorithms of [12–15].

Our algorithm, called ComputeWeights, computes the
weights of every node in a network by initializing the beam-
forming and combining weights according to the highest
eigenmodes of the desired channel’s singular value decompo-
sition (SVD) [1] and computing the interference cancellation
weights iteratively until the weights converge (within a thresh-
old ε) or a maximum number of iterations Nmax is reached.

For convenience, we define Algorithm ComputeWeights as
a general algorithm so that we can reuse it in the context
of unilateral or bilateral interference cancellation. As we will
show in the next section, the inputs of ComputeWeights
vary depending on the interference cancellation strategy. The
possible inputs for ComputeWeights are: the set of all channels
{H}; the set of all SNRs and INRs {ρ}; the interference
cancellation assignment matrices At and Ar; a stream al-
location d; a node schedule s that defines the order in
which weights are computed (important since different node
orderings produce different results); and a flag F that indicates
ZF (F = 0) or MMSE (F = 1) weights.

Next, we describe two unilateral interference cancellation
algorithms and a bilateral interference cancellation algorithm
that compute the particular weights of all links based on
Algorithm ComputeWeights.

A. Global Weights for Unilateral Interference Cancellation

We use ComputeWeights to create two instances that
can compute the unilateral interference cancellation weights,
namely ComputeWeights with ZF unilateral interference can-
cellation, and ComputeWeights with MMSE unilateral in-
terference cancellation. ComputeWeights with ZF unilateral
interference cancellation can be obtained using the inputs



Algorithm ComputeWeights: Algorithm for computing
the weights of each node.

Input: ({H}, {ρ},At,Ar,d, s, F )
Output: Beamforming and combining weights of each

node in the network.
1 for each link k do
2 Initialize r[k]’s and t[k]’s weights to link k’s SVD

corresponding to the highest d[k] eigenmodes;
3 if link k performs interference cancellation then
4 Allocate equal power

√
1

d[k] ;
5 Remove any node in link k from s that does not

perform interference cancellation;
6 else
7 Allocate optimal power on the d[k] highest

eigenmodes via waterfilling;
8 Remove t[k] and r[k] from s;
9 end

10 end
11 for iteration← 1 to Nmax do
12 for each si in increasing i do
13 Set k equal to the link number of node si;
14 if si is a receiver then
15 Compute r[k]’s weights using (7) if F = 0, or

(8) and (9) if F = 1;
16 else si is a transmitter
17 Reverse the communication link ;
18 Compute ←−r [k]’s weights using (7) if F = 0,

or (8) and (9) if F = 1;
19 end
20 end
21 Stop if the maximum absolute value of the difference

of elements between the previous weights and the
newly computed weighs is less than ε for all si;

22 end

({H}, {ρ},At,Ar,d, s, F = 0), and ComputeWeights with
MMSE unilateral interference cancellation can be obtained
using the inputs ({H}, {ρ},At,Ar,d, s, F = 1). Here, d
must be feasible, and At and Ar must be the corresponding
interference cancellation assignment.

B. OBIC: A Cycle-Free Unilateral Strategy

Another unilateral strategy is the order-based interference
cancellation (OBIC) strategy from [7, 8], which is based
on the rule that nodes being scheduled must cancel interfer-
ence from previously scheduled interfering nodes. OBIC is
inherently unilateral since each node ignores interference to
and from all nodes that are scheduled after it. The entries
of Ar and At are populated as nodes are scheduled. We
define a node schedule as feasible under OBIC if for every
scheduled node, the node can cancel the interference from all
previously scheduled nodes without violating the degrees-of-
freedom constraints.

OBIC will not generally consider all stream allocations that
are feasible. For example, in the context of the three-link
example in Figure 1, the stream allocation d = [2, 2, 2] is not
feasible under OBIC. The reason is that the OBIC scheduling
mechanism specifically excludes cycles.

In [7], the authors propose that interference cancella-
tion under OBIC be done with ZF. However, we also
define an MMSE-based OBIC strategy called OBICmmse
that uses MMSE instead of ZF to perform interference
cancellation on the previously scheduled interfering nodes.
We implement OBIC using ComputeWeights with the in-
puts ({H}, {ρ},At,Ar,d, s, F = 0) and OBICmmse using
ComputeWeights with inputs ({H}, {ρ},At,Ar,d, s, F =
1). These instances of ComputeWeights execute a single
iteration (Nmax = 1). Also, the input node schedule s must
be feasible under OBIC and it defines At and Ar.

C. Global Weights for Bilateral Interference Cancellation

We reuse Algorithm ComputeWeights to iteratively com-
pute the beamforming and combining weights for the case
of bilateral interference cancellation. For this instance of
ComputeWeights, we fix the node schedule to s◦ =
[r[1], r[2], . . . , r[M ], t[1], t[2], . . . , t[M ]], i.e., all receivers first,
followed by all transmitters. We obtain ComputeWeights
with bilateral interference cancellation using the inputs
({H}, {ρ},At,Ar,d, s = s◦, F = 1). For this instance of
ComputeWeights, the definition of At and Ar are modified
for bilateral interference cancellation, so that atl,k = ark,l = 1

for ρ[kl] ≥ %.

VI. NUMERICAL RESULTS

This section is organized as follows. In Section VI-A, we
present a specific example where the performance of bilateral
interference cancellation is significantly better than that of
the best unilateral interference cancellation. In Sections VI-B
and VI-C, we present results comparing the bilateral versus
the unilateral strategies in a three-link network and in a
random eight link network, respectively. In section VI-D, we
show the advantage of overcoming dependency cycles over
avoiding them for unilateral interference cancellation. For all
simulations, we fix % = −2.9 dB, we fix ε = 0.0001, we set
the reference SNR and INR at one meter to 57.1 dB, and unless
otherwise stated, the SNR and INR vary inversely proportional
to the distance cubed. Except for the example on section
VI-A, we assume a “quasi-static” flat-fading Rayleigh model
where the channel is assumed constant for the duration of a
burst, but random between bursts, and the channel elements
are independent and identically distributed, complex Gaussian
with zero mean and unit variance [19].

A. An Example

Consider three links where each node has two antenna
elements spaced at half-wavelength and each link carries a
single stream. For this example only, we consider a channel
without fading. We locate the transmitters and receivers as
shown in Figure 1 with y = 25, and x = 50. For t[1],
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Fig. 2. Maximum capacity of all stream allocations, node
schedules, and interference cancellation assignments for the three
link network of Figure 1.
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Fig. 3. Topology of simulated
eight link network.
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Fig. 4. Plot of maximum sum capacity versus interference
path-loss exponent αI for fixed signal path-loss exponent
αS = 3.

t[2], and t[3], the angles as measured counterclockwise from
the horizontal axis to the line through the two antennas are
131.1◦, 136◦, and 29.8◦, respectively. For r[1], r[2], and r[3],
these angles are 23.4◦, 134.1◦, and 135◦, respectively. Taking
t[3] as the origin, we place a reflector with 0.9 attenua-
tion at (25, 70). We set Nmax = 1000, and exhaustively
search for the node schedule and interference cancellation
assignment that produces the highest aggregate capacity for
the unilateral approaches. In this scenario, the sum capacity
using ComputeWeights with bilateral interference cancellation
is 10.22 bits/sec/Hz, while the sum capacity using the best
unilateral strategy (ComputeWeights with MMSE unilateral
interference cancellation) is 3.12 bits/sec/Hz. The bilateral
strategy thus outperforms the best unilateral strategy by 227%.

B. Three-Link Results

Unlike the previous Section VI-A, we return to Rayleigh
fading. We consider the three-link example of Figure 1, where
every node has four antennas. For each link, we allocate zero
to four streams. Where applicable, we calculate weights for all
stream allocations, interference cancellation assignments, and
node schedules. We set Nmax = 1000, and we record only the
highest capacity of every interference cancellation assignment
and node schedule that converge.

We show how the aggregate capacity varies with interfer-
ence for this three-link example. Figure 2 shows the maximum
capacity of all stream allocations, averaged over 100 trials,
plotted as a function of the distance y for fixed x = 50. As
can be observed, as interference decreases (y increases), the
capacities of ComputeWeights with bilateral interference can-
cellation, ComputeWeights with MMSE unilateral interference
cancellation, and OBICmmse increase. The slope, however, is
larger for ComputeWeights with bilateral interference cancel-
lation and ComputeWeights with MMSE unilateral interfer-
ence cancellation than for OBICmmse. The sum capacity of
ComputeWeights with MMSE unilateral interference cancel-
lation is between 5.8% and 8% less than the sum capacity
of ComputeWeights with bilateral interference cancellation
for all values of y. Figure 2 also shows that the OBIC,

ComputeWeights with ZF unilateral interference cancellation,
OBICmmse, and ComputeWeights with MMSE unilateral in-
terference cancelation strategies had at worst a 20%, 18%,
14%, and 8% capacity loss as compared to ComputeWeights
with bilateral interference cancellation.

C. Larger Network Results

We now present results for the eight MIMO links shown
in Figure 3 in which each receiver is 50 meters from its
transmitter. We fix all nodes to have four antenna elements,
and we allocate zero to four streams at each link. For such a
network size, the computation time required to test all possible
stream allocations, all possible node schedules, and all pos-
sible interference cancellation assignments is excessive. For
this reason, we use the feasibility heuristic ExtendedGreedy
from [9] to find a stream allocation space that is feasible.
We use At and Ar provided by ExtendedGreedy as input
to ComputeWeights with ZF/MMSE unilateral interference
cancellation. We heuristically determine the node schedule
for ComputeWeights with ZF/MMSE unilateral interference
cancellation by scheduling nodes that depend the least on other
nodes first. For OBIC, we average the results over a maximum
of five random OBIC feasible node schedules for each stream
allocation. We fix Nmax = 10000 and we only record data for
stream allocations that converge.

Let αS be the desired signal’s path-loss exponent, and αI be
the path-loss exponent between every interfering transmitter-
receiver pair. We fix αS = 3 and vary αI to vary the
interference. We let % = −2.9 dB and so αI = 2.5, αI = 2.7,
αI = 3, αI = 3.2, and αI = 3.5 corresponds to 100%, 87%,
48%, 21%, and 13% of all interference satisfying ρ[kl] ≥ %,
respectively.

Figure 4 depicts the maximum sum capacity as a function
of αI averaged over 50 random channel realizations. OBIC
based strategies performed poorly at high interference (αI =
2.5) possibly due to their limited stream allocation space.
ComputeWeights with bilateral interference cancellation out-
performed the best unilateral interference cancellation method
(ComputeWeights with MMSE unilateral interference cancel-



lation) by 26%, 8%, and 4% at high, medium, and low in-
terference, respectively. Also, ComputeWeights with bilateral
interference cancellation outperformed OBIC and OBICmmse
by 71% and 60%, 42% and 14%, and 15% and 5% at high,
medium, and low interference, respectively. It is possible that
other stream allocations exist in which ComputeWeights with
bilateral interference cancellation performs better than that
of the results shown in Figure 4 since we have constrained
the stream allocation space to be feasible. Clearly, Figure
4 shows that deviating from ComputeWeights with bilateral
interference cancellation in large networks, where many links
are scheduled concurrently, can result in large penalties in the
aggregate throughput.

D. The Advantage of Overcoming Cycles
Using the same simulation setup from Section VI-B, we

now look at how the aggregate capacity varies with different
stream allocations to show the benefit of overcoming cycles.
We compare only between ComputeWeights with ZF/MMSE
unilateral interference cancellation and OBIC/OBICmmse, but
we also show results for ComputeWeights with bilateral in-
terference cancellation. Figure 5 shows the average capacity
of 100 random channel realizations for the most relevant
stream allocations and x = y = 50. The stream allo-
cations d = [1, 1, 2], d = [1, 2, 1], d = [2, 1, 2], and
d = [2, 2, 2] are the allocations in which OBIC/OBICmmse,
ComputeWeights with ZF unilateral interference cancellation,
ComputeWeights with MMSE unilateral interference cancella-
tion, and ComputeWeights with bilateral interference cancel-
lation achieved the highest capacity, respectively. Notice that
for d = [2, 1, 2] and d = [2, 2, 2] an OBIC feasible node
schedule does not exist (cycles cannot be avoided) and so we
show no results for OBIC/OBICmmse for these allocations.
Figure 5 shows that ComputeWeights with MMSE unilateral
interference cancellation for d = [2, 1, 2] outperforms the best
of OBIC and OBICmmse by 14% and 8%, respectively. For a
unilateral interference cancellation strategy, these results show
that overcoming cycles results in higher sum capacity than
avoiding cycles because more streams can be allocated per
link when cycles are present.
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Fig. 5. Capacities of most relevant stream allocations for the three-link
topology of Figure 1.

VII. CONCLUSION

We showed that, for a three-link example, a bilateral
interference cancellation strategy performs better than the

best unilateral interference cancellation strategy even after
considering all node schedules and all interference cancella-
tion assignments for the unilateral interference cancellation
strategy. We showed that the performance loss of unilateral
strategies can be greater in larger networks. Using the three-
link example, we showed that overcoming dependency cycles
leads to a higher number of streams in the network than
preventing cycles, which improves the performance of the
network. We conclude that while the unilateral interference
cancellation strategy can aid network designers in determining
the feasibility of a stream allocation in the network, it is ulti-
mately the weight algorithm that determines the performance
of the network, so the weights should be computed bilaterally
to find the best weights for network operation.
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