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Abstract

In a network with quality of service (QoS) support,
pricing is an effective means of dealing with conges-
tion control and revenue generation. In the Internet,
the needs of the customers and their applications are
constantly evolving. An auction based algorithm is
the best choice for this environment because it needs
minimal a priori information. In this paper, we pro-
pose an auction based pricing algorithm which lets
customers choose the price as well as the service re-
quired, and in which the service provider decides on
the admission price threshold and the service level of
the differentiated service provided. We then investi-
gate the system’s adaptive behavior by simulating it
in various environments and situations.

1 Introduction

Over the years, quality of service (QoS) has attracted
the attention of researchers. The DiffServ framework
has been proposed to provide multiple QoS classes
over IP networks. Within the framework, there are
two types of Per-Hop-Behaviors (PHB): Expedited
Forwarding (EF) and Assured Forwarding (AF). The
DiffServ domain is a class-based network. Since the
network supports multiple class services, a differen-
tiated pricing strategy is necessary in place of the
flat-rate pricing model.

Other than fix pricing, capacity-based pricing as-
sumes that there is perfect a priori knowledge of
demand and does an off-line calculation of optimal
prices. We chose auction as our pricing method. Auc-
tion is a pricing approach with minimal a priori in-
formation needed [3]. It consists of clients submitting
bids which specify the desired amount of resources
and the price they are willing to pay, and the auc-
tioneer allocating shares of the resources to the clients

based on their bids.
We consider a scenario in which the auctioneer

takes the customers’ bids and returns the admission
rates (which are also defined as thresholds) for both
price and service offered for each class in a way that
aims at maximizing the service provider’s revenue.
The customers bid for the base price, the price sensi-
tivity and the required resource assignment. Auction
based pricing schemes have typically been developed
in a simplified model — the single-link network [3] [6].
The algorithm we present in this paper does away
with this limitation.

Our contributions can be summarized as follows:
1) We model the transaction between the customers
and the service provider. We analyze the service
provider revenue optimization problem based on a
bidding mechanism. The novelty is that customers
have the freedom to propose their required service
and the price. The service provider aims to maximize
their profit by deciding which customers to service.
2) We show that auction models can work better than
flat rate pricing both in a congestion or in a non con-
gestion situation. The reasons are: a) In the auction
model, when the network gets congested, the service
provider can choose which flows to pass and which
not, in favor of maximizing his revenue. b) When the
network is over-provisioned, in the auction model, the
service provider can reject lower class traffic if leav-
ing them in gives the service provider lower revenue.
Flat rating pricing does not have this facility.
3) The thresholds generated by the auctions also gives
a guideline for future reference as to the condition for
admitting new clients.

2 Problem Formulation

A price bid has two parts. The base price, and the
price sensitivity coefficient. Besides the price, the
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clients need to specify the desired minimum band-
width requirement. The base price is the amount the
customer is willing to pay for the minimum required
bandwidth. The sensitivity coefficient represents a
customer’s willingness to pay for extra bandwidth be-
yond his proposed minimum bandwidth requirement.
For example, a customer wants to submit a video
conference application. There is a minimum amount
of resource required for this application to sustain
communication. This corresponds to the minimum
bandwidth requirement, along with which the client
chooses a base price. If extra bandwidth is available,
the customer has use for it because he can get better
quality, thus in addition he specifies his valuation for
extra bandwidth.

In order to keep the ”extra assigned bandwidth”
from eating up all resources, the growth of extra rev-
enue should diminish as extra bandwidth grows. We
choose a logarithmic increase. Therefore, a general
revenue function is adopted as [5]:
Uij = U0ij + Wij log Xij

Lij

The auctions operate on sealed bids periodically. Uij

stands for the revenue from client i, who belongs to
class j. U0ij is client i’s bid on U0 — the base price.
Wij is client i’s bid on the sensitivity coefficient. Lij

is his minimum required bandwidth. Xij is the band-
width allocated to customer i.

Customers bid for the base price, sensitivity coef-
ficient and minimum required bandwidth. The ob-
jective is to maximize the service provider’s revenue,
subject to the restrictions imposed by the system’s
available resources. We introduce a superscript l to
represent the value on the link l. A customer’s bid
is valid for all the links that his routing path crosses.
The bandwidth capacity of link l, is denoted by Cl

(l=1,2,..., L). Let lij represent the set of links that
flow i of class j crosses in the network. A flow’s
bandwidth assignment also needs to be consistent on
the routing path, thus we enforce X l1

ij = X l2
ij , where

l1, l2 ∈ lij . The problem formulation is as follows.
Decision variables:

Zij =
{

1; if client i is admitted to class j
0; otherwise

U0ij : final base price for client i in class j;
U l

0ij : base price for client i in class j on link l;
U l

0j : base price for class j on link l;
Xij : final Bandwidth obtained by client i in class j;
X l

ij : Bandwidth obtained client i in class j on link l;
Lij : final minimum bandwidth for client i in class j;
Ll

ij : minimum bandwidth for client i in class j on
link l;
Ll

j : minimum bandwidth for class j on link l;

Wij : final price sensitivity for client i in class j;
W l

ij : price sensitivity for client i in class j on link l;
W l

j : price sensitivity for class j on link l;
Objective function:

max
2∑

j=1

∑
i

(U0ij + Wij log
Xij

Lij
) ∗ Zij (1)

Subject to:


∑2
j=1

∑
i X l

ij ≤ Cl;
X l1

ij = X l2
ij , l1, l2 ∈ lij ;

Xij ≥ Lij − (1 − Zij) ∗ M ;
U l

0j ≤ U l
0ij + (1 − Zij) ∗ M ;U l

0j ≥ 0;
W l

j ≤ W l
ij + (1 − Zij) ∗ M ;W l

j ≥ 0;
Ll

j ≥ Ll
ij + (1 − Zij) ∗ M ;Xij ≥ Xj − (1 − Zij) ∗ M ;

Xij ≥ 0 + Zij ∗ M ;
∀i, U0ij ≥ U l

0j + (1 − Zij) ∗ M ;Wij ≥ W l
j + (1 − Zij) ∗ M ;

Lij ≤ Ll
ij + (1 − Zij) ∗ M ; l ∈ lij

Parameters:
Cl : link l’s capacity
M : a very large positive number

Each customer proposes his desired values of U0ij ,
Wij and Lij . We have to decide which flows to ad-
mit for each class in order to maximize the service
provider’s revenue. On each link and in the same
class, the accepted customers will pay the same price
— namely the lowest bid among those accepted. An-
other complication arises because a client might be
across multiple links and two links might have differ-
ent thresholds. We resolve this by setting the client’s
price to the highest among those thresholds. Since
the threshold for each auction equates the lowest bid
among the winners, this scheme still ensures that the
customer pays at most his own bid. The solution to
the optimization problem formulated above provides
an optimal bandwidth assignment to each individual
customer as well as maximizing the service provider’s
revenue.

3 Pricing Strategies

The problem formulated as in Section 2 is a non-
convex integer and nonlinear problem. To the best
of our knowledge, it does not fall into any existing
optimization problem category that has an absolute
global optimal solution. Due to the complexity of
the problem, we are resorting to heuristic algorithms
which can generate better results in terms of accu-
racy, time consumed and calculation delay as opposed
to strict optimization methods.
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3.1 Intra-link and Inter-link Solution

We approximate the optimal solution by splitting the
problem in two steps. First we find an assignment
for each individual link. Then we integrate the as-
signments into one multi-link assignment for the big
picture. We first present the intra-link solution.

3.1.1 Intra-link auction

The optimal solution on one link is a special case for
a network with only one link. All the assumptions
that we made for the network case works for single
link as well.

There is an optimal solution to this problem [6].
However, the search space and time complexity is
high, so it is not appropriate to adopt the optimal
solution here, especially when a large amount of cus-
tomers are involved. We propose a simple heuristic
algorithm to approximate the optimal results.

1. Golden search [4] is employed to decide each
class’ bandwidth allocation. Golden search is used
here to find the optimal point. If each class’ band-
width allocation is known, step 2 is to find a good
customer assignment and its corresponding revenue.

2. For each class, we perform the following opera-
tions. a) Build a queue of the bidding clients in de-
creasing order of their U0i/Li such that S1:{U01/L1,
U02/L2,...,U0n/Ln}. b) Dequeue the first client, say
flow i. If we can admit it, do so. Otherwise drop the
client from the auction. By ”can admit” we mean
c/m ≥ max{L1,..,Lm}, where c is the total band-
width assigned to this class, m the number of ad-
mitted flows (including flow i) and max{L1,..,Lm} is
the maximum L value from those flows which have
been admitted. Repeat this step until the queue is
empty. c) Calculate the total revenue R1. Let the
accepted clients be denoted Acc1:{i, j,...}. U0i/Li is
the ratio of quality to price. The larger U0i/Li is,
the more revenue the SP generates, thus the prior-
itizing of the clients with larger U0i/Li. However,
there might be the case that a customer requires a
huge amount of bandwidth, and is willing to pay a
lot more as well — he has a high U0 bid. In this
case, U0i/Li might be low, which gives the clients a
low priority. If this customer gets a good amount of
bandwidth, he could generate very good revenue be-
cause of his high U0, possibly more than the sum of
the “small” clients. To address this, we create an-
other queue to detect these valuable customers. d)
Create a queue in decreasing order of U0i such that
S2 :{U01,U02,..., U0n}. e) Apply the same procedure
as applied to S1 to queue S2. The total revenue R2

is calculated at the end and we denote Acc2 the ac-
cepted clients. f) We let simply take the better of
these two results: R = max{R1,R2} and Acc the ac-
cepted clients corresponding to R. g) Now we look at
the W value. W affects the secondary charge that the
customer pays if he is allocated more bandwidth than
his minimum requirement. When two customers bid
the same U0, the one with a higher W should have a
better chance of winning the auction. So it is reason-
able to use W bids as a complimentary judgement on
the admission, in addition to the procedure we intro-
duced above. Again we form a customer queue, this
time of all the clients yet to be admitted, in decreas-
ing order of W — S3:{Wi, Wj ,...,Wn}. h) Dequeue
the W-queue and check if swapping the client with
the last accepted client in Acc yields a better rev-
enue. If it does, perform the swap. Repeat this step
until half of the clients are left on the W-queue. W
becomes smaller, it has less and less impact on the
original accepted flow list and it is not necessary to
adjust it any more. i) At this point we have the as-
signments for the accepted clients for each link and
class. We let Xij = Xj for all i, be the bandwidth
allocated to the link and class divided by the number
of clients admitted. Now, it is time to put the pieces
together.

3.1.2 Inter-link Adjustments

We need to perform inter-link adjustments to make
the flows’ assignment consistent throughout the net-
work. We require X l1

ij = X l2
ij , where l1, l2 ∈ lij . 1)

For each flow, set its assigned bandwidth to that of
its bottleneck link — the link in the flow whose band-
width per client is the lowest, i.e. the bandwidth for
the relevant class in the link divided by the num-
ber of admitted clients. That can be expressed by
:Xij = min{X l

ij}, where l ∈ lij . This will satisfy
the consistency requirement. After this is done for
all flows, there may be free bandwidth on some links
for a certain class. Since the assignment was done
independently on each link, it is very likely that the
bottleneck links of various flows are spread out in the
network, which yields a better chance for there to be
extra bandwidth. In order to utilize some of this free
bandwidth, the following adjustment is performed.
2) A set L is built to represent all the links which are
currently under utilized. Start from the link k which
has the minimum gap between the current usage and
link capacity. For each class c and link k that has
extra bandwidth, denote the flows in class c running
on link k flowk. We generate a set of related links
for link k. A link l is said to be related to link k if k
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and l both belong to some flow f, or is related to any
link that is related to l by the previous way. If all the
links related to k are under utilized, do the following.

On each link, we impose the inequality: m × x +
CurrentUsage ≤ Capacity , where m is the number of
flows on the link from one class. x is the additional
bandwidth for each flow in the class. CurrentUsage
is the sum of the flows’ assigned bandwidths.
We solve these inequalities independently and then
pick the smallest x. Now we need only to add x to
the assigned bandwidth of each affected flow. 3) Up-
date the links’ current usage and delete link k from
set L. Repeat the procedure above to the remaining
links in the set until it’s exhausted. After the inter-
link adjustments are done, we reach the local optimal
solution.

4 Simulation and Analysis

We now study the performance of our algorithm
in various settings in a multiple-bottleneck-link net-
work. The scenario is that for auctions, each client
bids for base price, minimum required bandwidth and
the price sensitivity coefficient, the service provider
uses the algorithm to calculate the bandwidth as-
signment, thresholds and total revenue. We compare
these results to flat rate pricing by using the same
set of customers to calculate the revenue generated
by flat rate pricing.

4.1 Simulation Design

As an example, assume that the Best Effort (BE)
class is charged $35 per client per month. On average
BE traffic needs to pay 0.00135 cents per minute.
Let a mcent (or a unit) be equal to 1/1000 cents,
so the charge for BE as 1.35 mcents. Based on this,
we define EF traffic’s price twice as much as BE’s,
which is 2.7 mcents per minute. Meanwhile, AF’s
price is 2 mcents per minute. These values are the
service provider’s price thresholds for each class. Any
customer who bids lower than the threshold price will
be rejected. The customers’ valuations for EF and
AF are assumed to be normally distributed.

In the flat rate scenario, a customer is admitted if
and only if his valuation (which is same as the bid in
the auction context) is greater or equal to the fixed
price set by the service provider. The revenue is the
number of customers multiplied by the price.

In the bidding system, the valuations of the cus-
tomers are used as their bids. The service provider
would set the threshold values using the algorithm

presented. When we have the thresholds, we also
calculate the total revenue generated by the auction.

The comparison between revenue generated from
the fixed price and the auction are done in various
ways by varying the set of customers (and also their
valuations), the network topology, the network load
and the assumed fixed prices.

4.2 Simulation Results

Graphs are commonly used to model the topologi-
cal structure of internetworks for studying problems
ranging from routing to resource allocation. We use
the GT Internetwork Topology Models to generate
graphs that model the topological structure of the
Internetwork. The details of this tool may be found
in [8].

Group 1 (Figure 1, 2 and 3): In this simula-
tion group, we vary the fixed rate cost from 0.2 to
2.2 times the mean valuation (MV) of what the cus-
tomers are willing to pay. Customers’ mean valua-
tions are 4 mcents for EF, 3 mcents for AF in this
case. There are 20 nodes and 200-400 customers
in the network. The network load is 70% and the
customers’ valuations are normally distributed with
mean of 3.5 mcents and standard deviation 2 for EF,
and a mean of 2.5 mcents and a standard deviation
2 mcents for AF. Figure 1 shows a comparison of
the bidding system and fixed pricing. Figures 2(b)(c)
show how the network behaves when the network load
is 100% and 140%.

We run the same simulations on different network
topologies, with 200 nodes and 400-1000 customers
(Figure 2 with 70%, 100% and 140% network load)
and 1000 nodes and 3500-5000 customers (Figure 3
with 70%, 100% and 140% network load).

Group 2 (Figure 4): This group of experiments
examines what happens to the revenue as the net-
work load increases. We compare three cases: 1)
fixed pricing, 2) auction where customers always bid
the same way, and 3) auction where customers may
change their bids at each auction. The customers’
valuations are normally distributed with mean of 4.5
mcents and a standard deviation of 2 mcents for EF,
and mean of 3.5 and a standard deviation of 2 for
AF. The fixed price rate is 4.5 mcents for EF and
3.5 for AF and is constant for this group of experi-
ments. We observe the revenue as the network load
increases, shown in Figure 4. The X-axis in the figure
represents the network load.
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4.3 Analysis of Results

The first group of simulations shows that in three
different load conditions, auction beats fixed pricing
on average. As shown in Figure 1(b), as the fixed
price rate is increasing, the revenue increases and
then drops again. At the peak of this curve, flat rate
can beat auction in revenue generated. Therefore,
if the service provider knows the exact network load
and customers’ valuations, there exists an optimal
price that can generate the most revenue. However,
in reality because those values cannot be obtained
beforehand and time to generate a solution is lim-
ited, it is very hard to find the optimal solution in
real time. Therefore, auctions are more adaptive to
network conditions and generate more revenue on av-
erage. Figure 1(a), 2(b) and 3(b) show that as the flat
price increases, the revenue generated by fixed price
fluctuates. This is because when the fixed price in-
creases, the number of admitted customers decreases.
This is the reason that the revenue function is not lin-
ear.

The most important characteristic of the auction is
that it is dynamic. So it is important to examine how
a fixed price approach behaves compared to an auc-
tion when the network condition is changing dynami-
cally. Such is the purpose of the group 2 experiments.
In these simulations, the network topology and the

flat rate prices for EF and AF are fixed, and we vary
the network load. It is evident that when the network
is not congested, flat rate pricing and auction behave
similarly. When the network is overloaded, auction
performs better. Intuitively, when customers lose an
auction, they may have the intention of increasing
their bids in order to win in the future. To try to
model this behavior, we assume that at each auction,
a certain percentage of the losers intend to increase
their bids in the following auction. Compared to flat
rate pricing, either that losers increase their bids or
not give the service provider more room to make the
selection in favor of more valuable customers while
discarding the low bids. When there is congestion in
the network, customers compete with each other for
resources, which causes the price to go up an extra
amount. This extra amount is what sets the auction
apart from flat pricing.

From the results of the experiments that we have
conducted, in most cases auctions outperform the flat
rate pricing in either a congested or non-congested
network. Moreover, the auction algorithm works
adaptively to maximizing the service provider’s rev-
enue. Meanwhile, customers also benefit from this
pricing model because they are given the freedom to
express their valuation of service.
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5 Conclusion

This paper was motivated by the problem of provid-
ing differentiated QoS to clients to maximize a ser-
vice provider’s profit through pricing. In our model,
clients are allowed to bid on the price that they are
willing to pay and the service that they require. The
service provider decides the resources to allocate to
each individual as well as thresholds for each DiffServ
class based on the clients’ bids, in a way that aims to
maximize his revenue. Most of the work that has been
done in the past considers one single bottleneck link.
We have considered the problem in a larger network
scope, which can contain hundreds to thousands of
nodes and many bottleneck links. We presented our
heuristic algorithm and the results of various simu-
lations. The results showed that fixed pricing beats
auction in revenue if the optimum price, represent-
ing the exact supply and demand balance can be se-
lected. However, since the network changes rapidly,
the best fixed price at one time could be the highly
sub-optimal for the next moment in time. Auctions
adjust the pricing adaptively as the network changes,
which makes them a better strategy in the long run.
The results of our experiments show that overall the
bidding system brings the service provider more rev-
enue than does fixed pricing.
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