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Abstract—We propose an algorithm to allocate streams and
find the corresponding beamforming and combining weights
that maximize the sum rate of a set of interfering multiple-
input multiple-output (MIMO) links. Our algorithm iteratively
computes the beamforming and combining weights of each link
and determines how many streams, if any, are allocated to each
link. Assigning zero streams to a link is desirable whenever the
interference introduced by activating that link outweighs the
throughput contributed by the link. We present numerical results
to illustrate that our algorithm achieves a sum rate higher than
previously reported algorithms at high interference, and that it
achieves similar performance to the top-performing algorithms at
medium and low interference. In one high-interference example
with many links, our algorithm achieves a 65% higher sum rate
than the best-known alternative.

Index Terms—joint transceiver, minimum weighted sum mean-
squared-error, sum rate

I. INTRODUCTION

The performance of a wireless link can be improved without
the need of additional spectrum or power by equipping the
transmitter and the receiver with multiple antennas [1], leading
to a multiple-input multiple-output (MIMO) link. A single
MIMO link, in the absence of interference, can perform spatial
multiplexing to transmit multiple streams in parallel. In the
MIMO interference channel, where multiple interfering MIMO
links are active simultaneously, MIMO links can perform a
combination of spatial multiplexing and interference suppres-
sion, so that each transmitter can send multiple streams that
can be decoded reliably and independently by their intended
receivers. Computing the beamforming and combining weights
that maximize the aggregate performance in the MIMO in-
terference channel is, however, complicated by their inherent
interdependence.

We tackle the problem of maximizing the sum rate of
the MIMO interference channel. This problem includes the
problems of determining which subset of transmitters should
transmit, how many streams each transmitter should send
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(if any), and the corresponding beamforming and combining
weights for each stream.

Most prior work has focused on a subset of these problems.
The works of [2–4] focused only on computing the beam-
forming and combining weights. The works of [5–7] focused
on determining how many streams each transmitter should
transmit and their corresponding beamforming and combining
weights (or transmit covariance matrices). However, the works
of [5–7] require a separate algorithm to determine which
transmitters should transmit. The works of [8–14] focused on
determining which transmitters should transmit and how many
streams each transmitter should transmit, but their solutions do
not necessarily maximize the sum rate since the decisions are
not based on the beamforming and combining weights of the
links, which ultimately determine the performance. To the best
of our knowledge, the only algorithms that consider all three
problems are the MMSE algorithm from [15] and the SDP
algorithm from [16].

In this paper, we present an algorithm that maximizes the
sum rate for a set of interfering MIMO links by jointly
optimizing which subset of transmitters should transmit, the
number of streams for each transmitter (if any), and the beam-
forming and combining weights that support those streams.
As a stepping stone, we first extend the results of Sampath
et al. [17] to design, for a particular link, the joint opti-
mal beamforming and combining weights that minimize the
weighted sum MSE across all streams in the network. The
transceiver has the ability to deactivate itself if it minimizes
the weighted sum MSE. We show that the optimal combiner
is a minimum mean-squared-error (MMSE) combiner, and
that the optimal beamformer can be viewed as the MMSE
combiner of a virtual network. Using our transceiver and the
results from [5, 17, 18] that relate the minimum weighted
sum MSE to the maximum weighted sum rate, we design our
proposed algorithm to maximize the sum rate. Our algorithm
finds which subset of transmitters should transmit since it
will deactivate links, by allocating zero streams to them, if
it improves the overall performance. Numerical results at high
interference show that our algorithm outperforms previously



reported algorithms.
This paper is organized as follows. In Section II, we define

our model for the physical layer. In Section III, we design the
joint beamforming and combining weights for a single link.
In Section IV, we review the relationship between the sum
rate and the minimum weighted sum MSE. In Section V, we
propose our algorithm for computing the beamforming and
combining weights for all links. In Section VI, we present
numerical results. Finally, in Section VII, we present our
conclusions.

II. PHYSICAL-LAYER MODEL

Consider a set of M half-duplex links. Let dk be the number
of multiplexed streams on link k, and let ntk and nrk be the
number of antenna elements at the transmitter and receiver of
link k, respectively. Let Hkl ∈ Cnrk

×ntl be the matrix of
complex channel gains between the antennas of transmitter l
and those of receiver k.

The received vector at receiver k is given by

yk = HkkVkxk +

M∑
l=1,l 6=k

HklVlxl + nk︸ ︷︷ ︸
zk

, (1)

where Vk ∈ Cntk
×dk is the beamforming matrix of transmitter

k; xk ∈ Cdk is the transmit signal vector from transmitter
k, assumed to be independently encoded Gaussian codebook
symbols with unit-energy so that E[xkx†k] = I , where (·)†
is the conjugate transpose of (·); nk ∈ Cnrk is a vector of
Gaussian noise elements with covariance matrix E[nkn†k] =
Rnk

; and zk ∈ Cnrk is the total received interference plus
noise with covariance matrix

Rk̄ = E[zkz†k] =
M∑

l=1,l 6=k

HklVlV
†
l H

†
kl +Rnk

. (2)

In order to meet a power constraint of pk, the beamforming
weights for transmitter k must satisfy tr

(
VkV

†
k

)
≤ pk.

The instantaneous capacity in bits/sec/Hz of link k before
combining is given by [19]

Ck = log2

∣∣∣I +R−1
k̄

HkkVkV
†
kH

†
kk

∣∣∣ . (3)

After combining, the received signal at receiver k is given
by

x̂k = U †kyk, (4)

where Uk ∈ Cnrk
×dk is the combining matrix of receiver k,

and the instantaneous capacity in bits/sec/Hz is given by

Ĉk = log2

∣∣∣I +
(
U †kRk̄Uk

)−1

U †kHkkVkV
†
kH

†
kkUk

∣∣∣. (5)

III. JOINTLY COMPUTING THE BEAMFORMING AND
COMBINING WEIGHTS FOR A SINGLE LINK

We begin by optimizing the beamforming and combining
weights for a single link in the presence of interfering links
as a stepping stone towards computing the beamforming and

combining weights for all links. In this section, we design
the joint transceiver that minimizes the weighted sum MSE
across all streams in the network. We choose the weighted
sum MSE criterion because, as we will review in Section IV,
it reduces to maximizing the sum rate as a special case [5,
17, 18]. Later, in Section V, we will use the joint transceiver
to design an algorithm that computes the beamforming and
combining weights of all links.

A. The Minimum Weighted Sum MSE Problem

We formulate the weighted sum MSE optimization for the
beamforming and combining weights of link k as

(V ∗k ,U
∗
k ) = arg min

Vk,Uk

M∑
l=1

tr (WlEl)

such that tr
(
VkV

†
k

)
≤ pk, (6)

where
Ek = E[(x̂k − xk)(x̂k − xk)

†] (7)

is the error covariance matrix of link k and contains the MSE
of the streams of link k in the diagonal. In (6), Wk ∈ Rdk×dk
is a diagonal matrix of nonnegative weights associated with
the MSE of the streams of link k.

Note that due to the inequality constraint tr
(
VkV

†
k

)
≤

pk in (6), we have formulated the problem so that the link
will deactivate itself by setting Vk to zero if it is optimal
to do so. As we will see using numerical results in Section
VI, deactivating links is desirable at high interference since
interference caused by one link highly affects the performance
of all other links in the network.

B. The Minimum Weighted Sum MSE Solution

The solution to (6) can be expressed in terms of the
following compact singular-value decomposition (SVD):

R
−1/2

k̄
HkkP

−1/2

k̄
= FkDkG

†
k, (8)

where Dk ∈ Rdk×dk is a diagonal matrix containing the
nonzero singular values of R

−1/2

k̄
HkkP

−1/2

k̄
ordered in de-

creasing order from top left to bottom right; Fk ∈ Cnrk
×dk

and Gk ∈ Cntk
×dk have orthonormal column vectors that cor-

respond to the left and right eigenvectors of R−1/2

k̄
HkkP

−1/2

k̄
with nonzero singular values, respectively; and Pk̄ is

Pk̄ =

M∑
l=1,l 6=k

H†lkUlWlU
†
l Hlk + µkI, (9)

where µk ≥ 0 is a Lagrange multiplier that must satisfy the
Karush-Kuhn-Tucker (KKT) conditions for the optimization
of (6) (see Appendix). The SVD in (8) requires that Pk̄ be
invertible, which is clearly true whenever µk > 0, and which
we conjecture to be true whenever µk = 0.

In the following, we will assume that we already know
µk and present the beamforming and combining weights that
solve (6). Later in this section, we will show how to obtain
µk.



Theorem 1. The joint beamforming and combining weights
that solve (6) are given by

Vk = P
−1/2

k̄
GkΘk, (10)

Uk = R
−1/2

k̄
FkΦk, (11)

where

Θk =
(
W

1/2
k D−1

k −D−2
k

)1/2

+
, (12)

Φk = W
−1/2
k Θk, (13)

and (·)+ is the matrix (·) with the negative entries replaced
with zeros.

Proof: See Appendix.
Using Theorem 1, we can rewrite (4) as

x̂k = Φk (DkΘkxk + n̂k) , (14)

where n̂k = F †kR
−1/2

k̄
zk is a vector of white Gaussian noise

satisfying

E[n̂kn̂†k] = F †kR
−1/2

k̄
Rk̄R

−1/2

k̄
Fk = I.

Therefore, the beamforming and combining weights in (10)
and (11) diagonalize the MIMO channel.

To complete the solution to (6), we must find µk. Because a
closed-form solution to µk is unknown, and because tr(VkV

†
k )

is a decreasing function of µk [15], we search for the value of
µk as follows. First, we test for µk = 0. If the beamforming
weights satisfy tr(VkV

†
k ) ≤ pk, then the search is done

because all KKT conditions are satisfied. If, however, Pk̄
is singular or tr(VkV

†
k ) > pk, then we search for the

µk > 0 such that tr(VkV
†
k ) = pk, thereby satisfying all KKT

conditions. In our simulations, we use the bisection method to
perform the search for µk > 0.

C. Interpreting the Solution

The beamforming and combining weights in (10) and (11)
have three components that can be inter-related through the
use of a virtual network in which receivers become virtual
transmitters and transmitters become virtual receivers. The
concept of a virtual network has been previously used to aid
the design of the transmitter’s beamforming weights in the
works of [2–4, 20].

To build the virtual network that relates (10) and (11), let us
define

←−
H lk = H†kl as the virtual MIMO channel between the

virtual transmitter of link k and the virtual receiver of link l;←−
V k = UkW

1/2
k as the virtual beamforming weights of link k;←−

U k = VkW
−1/2
k as the virtual combining weights of link k;

and
←−
Rnk

= µkI as the virtual noise covariance of the virtual
receiver of link k.

Figure 1 shows a block diagram of the transmit and receive
structure for link k and highlights the three components of the
joint transceiver using dotted boxes. The three components and
their functions are as follows:
• Whitening Component – The first component of the

transceiver is a whitening component. At the receiver

Fig. 1. Block diagram of the components of the joint beamforming and
combining weights.

side, the receiver whitens the interference plus noise
of the received signal. In Figure 1, the dashed box at
the receiver groups the receiver-side whitener and the
components that are whitened. At the transmitter side,
this whitening component performs a similar function
by whitening a “virtual” interference plus noise with
covariance matrix given by

←−
R k̄ =

M∑
l=1,l 6=k

←−
Hkl
←−
V l
←−
V †l
←−
H†kl +

←−
Rnk

= Pk̄. (15)

In Figure 1, the dashed box at the transmitter groups the
transmitter-side whitener and the components of the real
network that are whitened.

• Rotating Component – The second component is a rotat-
ing component. Using this component, both the transmit-
ter and the receiver rotate their signal so as to diagonalize
their MIMO channel. The rotating matrices are chosen
based on the SVD of the cascade of the whitening
components and the MIMO channel (R−1/2

k̄
HkkP

−1/2

k̄
).

• Power Allocating Component – The third component is
a power allocating component that scales each element
of the signal vector. Due to the (·)+ operator in (12),
the power allocating component at the transmitter can
potentially prevent some, if not all, streams from being
transmitted. On the virtual network, the receiver’s power
allocating component acts similarly to the transmitter’s
power allocating component by scaling some signal ele-
ments and even reducing the number of streams on the
virtual link.

Using the MMSE combining weights for link k, as given
by [5, 15]

UMMSE
k =

(
HkkVkV

†
kH

†
kk +Rk̄

)−1

HkkVk, (16)

we can further relate the joint beamforming and combining
weights. Specifically, it is easy to show that if the beamforming
weights are given by (10), then the MMSE combining weights
will be equal to (11). Similarly, at the transmitter side, it is
easy to show that if the combining weights are given by (11),
then the MMSE combining weights of the virtual network are



given by
←−
UMMSE
k = P

−1/2

k̄
GkΦk, and so the beamforming

weights of the real network are given by (10).

IV. THE WEIGHTED SUM MSE AND THE SUM RATE

We have chosen the weighted sum MSE as our objective
function because with a proper choice of the error weight ma-
trix Wk, minimizing the weighted sum MSE also maximizes
the sum rate. This relationship was exploited for the single
MIMO link in the absence of interference by Sampath et al.
in [17], for the MIMO broadcast channel by Christensen et
al. in [18], and for the MIMO interference channel by Negro
et al. in [5]. In the latter, the authors find that the gradient of
the sum rate and the gradient of the weighted sum MSE are
equal if

Wk = I +B†kV
†
kH

†
kkR

−1
k̄

HkkVkBk, (17)

where Bk is an arbitrary unitary matrix.
Notice that Wk in (17) is a function of Vk, which is itself

one of the variables to optimize. To solve this interdependency,
the authors of [5] propose to compute Wk and Vk in separate
steps in an iterative algorithm. We follow the same approach.

In our formulation of (6), we require that Wk be diagonal.
To guarantee that (17) is always diagonal, we choose Bk in
(17) from the following SVD:

AkSkB
†
k = R

−1/2

k̄
HkVk, (18)

where Sk ∈ Rdk×dk is a diagonal matrix containing the
singular values of R

−1/2

k̄
HkVk ordered in decreasing order

from top left to bottom right; Bk ∈ Cdk×dk is a unitary
matrix; and Ak ∈ Cnrk

×dk has orthonormal column vectors.
This way, (17) becomes

Wk = I + S2
k. (19)

This choice of Bk was used by Christensen et al. in [18]
to design the WSRBF-WMMSE-D algorithm with diagonal
weighting matrix for the MIMO broadcast channel.

V. COMPUTING THE BEAMFORMING AND COMBINING
WEIGHTS FOR ALL LINKS

We now propose an algorithm for maximizing the sum rate
of a set of interfering MIMO links by jointly optimizing the
number of streams (if any) on each link as well as their
beamforming and combining weights.

The proposed algorithm is summarized in Figure 2. Our al-
gorithm begins by activating all links and allocating the maxi-
mum number of streams at every transmitter, as shown on Line
1 of Figure 2, where Intk

×dk is an ntk ×dk matrix with ones
on its diagonal and zeros elsewhere. Then, on lines 2-6, the
algorithm computes the beamforming and combining weights
iteratively. In Line 3, the receivers compute their interference-
plus-noise covariance, error weights and combining weights
using the previously computed beamforming weights. In Line
4, the transmitters compute their beamforming weights using
the previously computed interference-plus-noise covariance,
error weights, and combining weights. During the computation

of the beamforming weights, a transmitter will disable, or re-
enable, itself if it determines that doing so improves the overall
performance.

Using the technique from [18], we can show that this
algorithm is guaranteed to converge, since at every iteration the
algorithm moves monotonically towards a bounded objective.

1: Initialize dk = rank (Hkk), Vk =
√

1
dk
Intk

×dk for all
k ∈ {1, . . . ,M} ;

2: for iteration← 1 to Nmax do
3: Compute Rk̄ using (2), Wk using (19), and UMMSE

k

using (16) for all k ∈ {1, . . . ,M} ;
4: Compute Vk using (10) for all k ∈ {1, . . . ,M} ;
5: Stop if the maximum absolute value of the difference

of elements between the previous Qk = VkV
†
k and the

newly computed Qk is less than ε for all k ∈ {1, . . . ,M};
6: end for

Fig. 2. Pseudocode of proposed algorithm for computing the beamforming
and combining weights of all links.

VI. NUMERICAL RESULTS

In this section we present numerical results comparing
the proposed algorithm to previously reported algorithms in
various levels of interference. For all simulations, we fix
the distance between the transmitter and its corresponding
receiver to 50 meters. We set each node to have four antenna
elements. Also, we assume that noise at each receiver is white,
satisfying Rnk

= I for all k ∈ {1, . . . ,M}. We assume a
“quasi-static” flat-fading Rayleigh model where the channel
is assumed constant for the duration of a burst, but random
between bursts [21]. We set the reference signal-to-noise ratio
and interference-to-noise ratio at one meter to 65.3 dB. We
assume a path-loss exponent of three. We uniformly distribute
the center of each link within a circle of a given radius. Also,
we uniformly distribute the angles from the horizontal axis
to the line that goes through the transmitter and receiver of
every link from zero to 2π. For all algorithms, we initialize
the beamforming weights as shown on Line 1 of Figure 2, and
use the convergence criterion as shown on Line 5 of Figure 2
with ε = 0.0001. Additionally, we set the maximum number
of iterations to Nmax = 10000. If an algorithm reaches the
maximum number of iterations, the algorithm stops and we
record the sum rate.

In the following, we consider two scenarios. In Section
VI-A, we fix the number of links and vary the radius of the
circle in which the links are placed. In Section VI-B, we fix
the radius of the circle and vary the number of links.

A. Sum Rate Versus Circle Radius

We consider ten MIMO links and vary the radius of the
circle in which these links are placed. Figure 3 shows the
sum rate, averaged over 100 trials, plotted as a function of
the radius of the circle in which the center of the links are
placed. A large radius in Figure 3 corresponds to a sparse
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Fig. 3. Sum rate as a function of the radius of the circle where the center of
the ten links are placed.

scenario where interference from other links is low. In contrast,
a small radius in Figure 3 corresponds to a dense scenario
where interference from other links is high. In Figure 3, we
show results for the two top-performing previously reported
algorithms, namely, the MWSR algorithm from [5] and the
GP algorithm from [6]. We also show results for the MMSE
algorithm from [15], since, as we will see in Section VI-B, it
has good performance when the number of links is high. We
do not include a comparison against the SDP algorithm from
[16], because on the few sample runs we attempted, we found
the execution time of the SDP algorithm to be about two to
three orders of magnitude higher than other methods.

The results of Figure 3 show that our proposed algorithm
achieves at least 30% higher sum rate at the lowest radius
tested (10 meters), as compared to the other algorithms. In
this range, interference is high and the degrees-of-freedom
available from the multiple antennas on the nodes are not
enough to support high performance on all links. Our proposed
algorithm overcomes this limitation by deactivating some links
so that the remaining links achieve higher aggregate perfor-
mance. The MMSE algorithm from [15] also has the capability
to deactivate links, but because the algorithm minimizes the
unweighted sum MSE, it does not necessarily achieve a high
sum rate. Figure 3 also shows that our proposed algorithm
achieves similar sum rate to those of the previously reported
algorithms at medium and low interference.

In terms of CPU time and number of iterations for this
simulation, the MMSE algorithm requires the least, followed
by the MWSR, then our proposed algorithm, then the GP.

B. Sum Rate Versus Number of Links at High Interference

In this section, we fix the radius of the circle to ten meters
and vary the number of links placed within this circle. Figure
4 shows the sum rate, averaged over 100 trials, plotted as
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Fig. 4. Sum rate as a function of the maximum number of active links when
the radius of the circle is fixed to ten meters.

a function of the maximum number of active links when
the radius of the circle is fixed to ten meters. The results
show that as the number of links increases, the performance
of the GP, MWSR, and MMSE algorithms decrease while
the performance of the proposed algorithm increases. Our
algorithm achieves a sum rate that is at least 65% better than
the sum rate of the other algorithms at the largest number of
links tested. The decrease in performance of the GP and the
MWSR is due to the algorithms being unable to deactivate
links. The MMSE algorithm also suffers performance loss
but performs better than the GP and the MWSR because it
is able to deactivate links. The proposed algorithm achieves
high performance since it is able to deactivate links, and its
performance increases as the number of links increases, since
the algorithm has diversity on which links to activate and
deactivate.

In terms of CPU time and number of iterations for this
simulation, the MMSE algorithm requires the least, followed
by our proposed algorithm, then the MWSR, and then the GP.

VII. CONCLUSIONS

We have presented an algorithm for maximizing the sum
rate of a set of interfering MIMO links. Our algorithm jointly
optimizes which link should be active, the number of streams
(if any) on each link, and their corresponding beamforming
and combining weights. Our simulation results showed that, in
terms of sum rate, the proposed algorithm is able to outperform
previously reported algorithms at high interference and main-
tain high performance at medium and low interference. Also,
our simulation results showed that at high interference, the
sum rate of our proposed algorithm increases as the number of
links increases, because the proposed algorithm can deactivate
links and has diversity on which links to deactivate.



APPENDIX
PROOF OF THEOREM 1

Proof: Before we begin, let us expand (8) to include the
zero singular values as follows. Let

R
−1/2

k̄
HkkP

−1/2

k̄
=
[
Fk F̃k

] [Dk 0
0 0

] [
Gk G̃k

]†
(20)

by singular-value decomposition (SVD), where F̃k ∈
Cnrk

×(nrk
−dk) and G̃k ∈ Cntk

×(ntk
−dk) have orthonor-

mal column vectors that correspond to the left and right
eigenvectors of R

−1/2

k̄
HkkP

−1/2

k̄
with zero singular values,

respectively.
We will first prove that the joint beamforming and combin-

ing weights have the structure given in (10) and (11), where
Φk and Θk are arbitrary dk × dk matrices. The Lagrangian
for (6) is given by

L(Vk,Uk, µk) =

M∑
k=1

tr (WkEk)

+ µk

(
tr
(
VkV

†
k

)
− pk

)
. (21)

where µk is the Lagrange multiplier for link k, and

Ek = U †kHkkVkV
†
kH

†
kkUk +U †kRk̄Uk

−U †kHkkVk − V †kH
†
kkUk + I, (22)

by expanding (7) using (4). The Karush-Kuhn-Tucker (KKT)
conditions to solve the optimization problem in (6) are

∇U†
k
L = 0, (23)

∇V †
k
L = 0, (24)

tr
(
VkV

†
k

)
− pk ≤ 0, (25)

µk

(
tr
(
VkV

†
k

)
− pk

)
= 0, (26)

µk ≥ 0. (27)

Setting the gradient of L with respect to U †k to zero, we get

HkkVk = HkkVkV
†
kHkkUk +Rk̄Uk, (28)

and the gradient of L with respect to V †k to zero, we get

H†kkUkWk = H†kkUkWkU
†
kHkkVk

+

M∑
l=1,l 6=k

H†lkUlWlU
†
l HlkVk + µkVk. (29)

Now, assume the most general expression for the beamform-
ing and combining weights of link k as follows:

Uk = R
−1/2

k̄
FkΦk︸ ︷︷ ︸

U||

+R
−1/2

k̄
F̃kΦ̃k︸ ︷︷ ︸

U⊥

, (30)

Vk = P
−1/2

k̄
GkΘk︸ ︷︷ ︸

V||

+P
−1/2

k̄
G̃kΘ̃k︸ ︷︷ ︸

V⊥

, (31)

where Φ̃k is any (nrk−dk)×dk matrix and Θ̃k is any (ntk−
dk)×dk matrix. Note that Rk̄ does not impose any constraint
on (30) since Rk̄ is square and full rank. Also, Pk̄ does not
impose any constraint on (31) since Pk̄ is square and assumed
full rank.

To get (11) for arbitrary Φk, we premultiply (28) with U †⊥
to get

U †⊥Rk̄Uk = 0 (32)

since

U †⊥HkkVk = Φ̃†kF̃
†
kR
−1/2

k̄
HkkP

−1/2

k̄

(
GkΘk + G̃kΘ̃k

)
= Φ̃†kF̃

†
kFkDkG

†
k

(
GkΘk + G̃kΘ̃k

)
= 0,

and F̃ †kFk = 0. Expanding (32), we get

Φ̃†kF̃
†
kFkΦk + Φ̃†kF̃

†
k F̃kΦ̃k = 0,

Φ̃†kΦ̃k = 0, (33)

since F̃ †k F̃k = I . From (33), it is clear that Φ̃k = 0, and
therefore U⊥ = 0.

To get (10) for arbitrary Θk, we premultiply (29) by V †⊥ to
get

V †⊥

 M∑
l=1,l 6=k

H†lkUlWlU
†
l Hlk + µkI

Vk = 0,

V †⊥Pk̄Vk = 0, (34)

because

V †⊥H
†
kkUk = Θ̃†kG̃

†
kP
−1/2

k̄
H†kkR

−1/2

k̄
FkΦk

= Θ̃†kG̃
†
kG
†
kDkF

†
kFkΦk = 0,

and G̃†kG
†
k = 0. Expanding (34), we get

Θ̃†kG̃
†
kGkΘk + Θ̃†kG̃

†
kG̃kΘ̃k = 0,

Θ̃†kΘ̃k = 0, (35)

since G̃†kG̃k = I . It is clear from (35) that Θ̃k = 0, and
therefore V⊥ = 0.

Now we will prove that matrices Φk in (11) and Θk

in (10) are diagonal matrices. Premultiplying (28) with U †k ,
premultiplying (29) with V †k , and simplifying using (20) we
get

Φ†kDkΘk = Φ†kDkΘkΘ
†
kDkΦk + Φ†kΦk, (36)

Φ†kDkΘkWk = Θ†kDkΦkWkΦ
†
kDkΘk + Θ†kΘk. (37)

From (36), we see that Φ†kDkΘk is Hermitian since the
other terms are Hermitian. Similarly, Φ†kDkΘkWk in (37)
is Hermitian since the other terms are Hermitian. Assuming
that Wk has distinct diagonal entries, then Θk and Φk are
diagonal since Φ†kDkΘk is Hermitian, Wk is diagonal, and
their multiplication Φ†kDkΘkWk is Hermitian. For the case
where the diagonal elements of Wk have repeated entries,
we follow [17, 18] and add a perturbation matrix 4Wk

that
ensures that the elements of Wk are distinct. Since Uk and



Vk are continuous functions of Wk in (28) and (29), and
lim4Wk

→0 Vk(Wk + 4Wk
) = Vk(Wk), then we can treat

Φ†kDkΘk to be diagonal for any Wk.
Now, we show that Φk and Θk have nonnegative diagonal

entries. Let D1,D2, . . . denote diagonal matrices. Then, let

D1 = Φ†kDkΘk, (38)

D2 = Φ†kΦk � 0, (39)

D3 = Θ†kΘk � 0, (40)

where (·) � 0 denotes that (·) is a positive semidefinite matrix.
Let U and V be unitary matrices, then (39) and (40) can be
rewritten as

Φk = UD1/2
2 , (41)

Θk = VD1/2
3 . (42)

Plugging in (41) and (42) into (38), we get

D1 = D1/2
2 U†DkVD1/2

3 ,

D4 = D−1/2
2 D1D−1/2

3 = U†DkV . (43)

By left and right multiplication of (43) with its conjugate
transpose, we get

D2
4 = V†D2

kV , (44)

D2
4 = U†D2

kU , (45)

respectively. From (44) and (45) , it is clear that

V = U = D5, (46)

where D5 has elements ejθ1 , . . . , ejθdk in its diagonal, for
arbitrary θi ∈ [0, 2π]. Because the choice of θi does not impose
any restrictions on the solution, we choose θi = 0 for all
i ∈ {1, . . . , dk} so that D5 = I . Therefore,

Φk = D1/2
2 � 0, (47)

Θk = D1/2
3 � 0, (48)

which proves that Φk and Θk are diagonal matrices with real
nonnegative entries.

Finally, we derive (12) and (13). Simplifying (36) and (37)
using (38), and then plugging in (47) and (48) into the resulting
expressions and into (38), we get

D1 = D2
1 +D2, (49)

D1Wk = D1WkD1 +D3, (50)

D1 = D1/2
2 DkD1/2

3 . (51)

Solving (49) for D2, (50) for D3, plugging the results into
(51), and simplifying, we get

W
1/2
k D1 (I −D1)Dk = D1. (52)

Solving for D1, we get

D1 =
(
I −W

−1/2
k D−1

k

)
+
, (53)

where (·)+ is necessary since D1 � 0. Plugging in (53) into

(49) and (50) we get

D2 =
(
W
−1/2
k D−1

k −W−1
k D−2

k

)
+
, (54)

D3 =
(
W

1/2
k D−1

k −D−2
k

)
+
. (55)

Finally, plugging in (54) and (55) into (47) and (48), we get
(13) and (12), respectively.
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