
GeoShare: Experience with a Geographically Diverse
Cloud Data Storage Service

Kyle Bilbray, Douglas Sigelbaum and Douglas M. Blough
School of Electrical and Computer Engineering

Georgia Institute of Technology

Abstract—In this report, we describe our experiences in
developing GeoShare, a geographically diverse cloud data storage
service. Users are becoming increasingly wary of storing their
sensitive data within servers physically located in one country
or within one political or legal boundary. GeoShare facilitates
the fragmentation of information across administrative and
geopolitical boundaries, thereby maintaining data confidentiality
from powerful adversaries such as cloud administrators and
nations. Our approach includes a method to calculate placements
of information fragments to satisfy users’ geographic constraints
and simultaneously optimize system performance. We also present
an approach to optimize cost/performance by considering the
storage cost versus latency tradeoff that arises from replicating
data across far-flung geographic regions. Our approaches have
been fully implemented, tested, and evaluated in the GeoShare
prototype cloud storage service, which runs on top of Amazon
Web services and makes use of 8 world-wide regions accessible
through the Amazon S3 cloud storage service. We demonstrate the
system through experiments having Amazon EC2 clients all over
the world simultaneously creating, uploading, and downloading
objects using the GeoShare service.

I. INTRODUCTION

Within the past few years, cloud storage has exploded.
Users have flocked to cloud storage services due to their ability
to provide access from anywhere and across multiple devices,
along with assurances that data will always be available.
Cloud storage is also an ideal medium for sharing data among
multiple users, and services such as DropBox, GoogleDrive,
and OneDrive are all routinely used for this purpose. However,
users are becoming increasingly concerned about the security
of their data stored in the cloud. High profile data breaches of
both single individuals’ data and data across many users have
brought increased attention to security issues. Due to the multi-
tenancy nature of cloud systems, the fact that cloud providers
have access to the low-level cloud software and hardware,
and potential abuses by authoritarian governments in certain
locations, cloud data is extremely vulnerable to theft and abuse.

One simple solution to protecting data in the cloud is
encryption. This solution works very well for a single user’s
data, which is always accessed from a specific device. In
this situation, data is stored in the cloud only in encrypted
form and the encryption/decryption key resides only on the
user’s device. This effectively eliminates the threat of the
data being breached solely by accessing what is stored in the
cloud. However, encryption does not work well when a single
user wants to access the data from multiple devices nor when
multiple users share data. In these situations, key distribution
and management becomes complicated and changes to access

permissions are costly. Storing encryption keys in the cloud
directly does not solve the problem since it is, in general,
possible that both an encrypted object and its encryption key
are compromised, thereby allowing the data to be breached.

A common approach to this problem is to encrypt data, and
use threshold secret sharing [1] to fragment the information
about the encryption key into multiple shares (fragments),
which can then be stored across multiple cloud servers. How-
ever, if an entity has access permission to a sufficient number
of servers that are storing fragments of the encryption key, then
the key, and consequently the encrypted object, are still at risk.
If fragments are stored across multiple servers or datacenters
within the same administrative domain, or if the servers or
datacenters are all within a single political boundary where,
for example, an authoritarian government could access them
all, then this approach is not sufficient.

In this paper, we consider geographic dispersal of key
fragments to provide stronger protections against these threats.
Fragments are spread across geographically diverse regions
that span political boundaries. We assume that each of these
regions are administered separately and administrators do not
collude across regions. This could naturally be satisfied by
using a different cloud provider in each region. Alternatively,
we envision that completely isolated administrative domains
for different regions could become a selling point for a single
cloud provider to attract security-conscious users. Users can
specify constraints on what regions to use, or not to use,
and which groups of regions might collude. Given these
constraints, fragments are then spread in such a way that no
single entity or colluding group can access enough fragments
to reconstruct the key.

We have demonstrated this approach by building a proto-
type of a cloud storage service, called GeoShare, which spreads
key fragments and replicas of encrypted data objects across
geographically distinct regions provided by Amazon’s S3 cloud
storage service. This provides protections against entities that
can compromise individual regions, or groups of regions as
specifed by the user. We also exploit latency distributions
to optimize performance in this setting. We have developed
a key fragment placement algorithm that generates a non-
deterministic set of fragment locations that satisfies the given
geographic constraints and favors regions that tend to reduce
average access latency. We also exploit geographic diversity to
optimize the replication of encrypted objects across regions.
For a fixed number of replicas, we show how to compute
the replica locations that minimize average access latency. We
also define a utility function that can be used to quantify



the tradeoff between storage cost and latency based on the
number of replicas. We show how this function, along with the
optimal replica placement solution, can be used to choose the
best number of replicas and optimally assign them to different
regions. All of these features are demonstrated and evaluated
through a prototype cloud storage service built using various
Amazon Web services with Amazon S3 providing the back-end
cloud storage service with 8 geographically distinct regions.

II. RELATED WORK

Most prior work on spreading data across a cloud storage
service has focused on erasure coding data or using other
types of coding schemes that provide similar properties to
erasure codes, e.g. [2], [3], [4], [5], [6]. However, these codes
do not provide the strict confidentiality required by our use
case. While a threshold number of data pieces are required to
fully reconstruct the data, partial information is leaked from
individual pieces. In addition, these approaches typically just
consider a cloud storage service as a collection of servers and
do not consider its organization into datacenters and regions.
In [7], cloud data is encrypted with keys that are secret shared
across multiple servers. However, the work assumes that a
dedicated set of servers outside of the main cloud storage
service are provided for key storage. The work also does not
consider geographic distribution nor the organization of the
cloud storage service itself since the key service is separate.

Several works explicitly consider the use of multiple iso-
lated administrative cloud storage domains, usually in the
form of separate cloud storage service providers [8], [9], [10],
[11]. In [10], the authors propose to directly secret share data
objects across multiple cloud storage providers. The primary
consideration in this work is cost, where it is assumed that
different providers have different pricing. Thus, the paper
determines how to distribute data fragments in a lowest cost
fashion. One issue with this work is that the overhead of
secret sharing is extremely high, which has prevented practical
solutions where potentially large data items are directly secret
shared. Also, the work focuses solely on an abstract model
of multiple providers and pricing, but does not provide an
implementation nor consider geographic constraints. Meta-
sync [9] is a multi-provider system where encrypted data
is replicated across different cloud storage providers. The
paper places the burden of key management on users, and
thus does not consider how to handle keys within the cloud
storage services. The system is fully implemented and supports
Box, Baidu, Dropbox, Google Drive, and OneDrive backend
cloud storage services. DepSky [8] is similar to GeoShare
in that it replicates encrypted data and secret shares keys.
However, DepSky targets multi-provider settings but is not
concerned with geographic constraints. So, if key fragments
are stored across separate providers but the servers storing
those fragments are all located in one country controlled by
an unfriendly government, data is still at risk.

The only cloud storage work of which we are
aware that specifically considers geographic constraints is
SPANStore [11]. However, this work only considers replication
across geographically-diverse locations but does not consider
the confidentiality aspect. Also, the work primarily considers
optimization of latency and cost but not geographic constraints
imposed by users’ concerns about collusion between sites.

III. BACKGROUND ON AMAZON WEB SERVICES

While the architecture and approach that are described
in Section IV are general, we have chosen to implement,
test, and evaluate the approach in a real cloud environment.
After examining several cloud providers, such as the Google
Cloud Platform and Microsoft Azure, we chose to use Amazon
Web Services (AWS) both as a base model for the GeoShare
system and as our implementation platform. At the time of
this project’s inception, AWS supported more regions than
both the Google Cloud Platform and Microsoft Azure, and
at more reasonable prices. It also was much better established,
having already existed for many years with many significant
commercial clients, while the Google and Microsoft platforms
were still in their formative stages.

AWS is a collection of remote computing services that
make up a cloud platform. Amazon’s two most popular ser-
vices are Elastic Compute Cloud (EC2) and Simple Storage
Service (S3). EC2 allows a user to instantiate a virtual machine
in one of 8 geographically distinct regions around the globe.
This is ideal for emulating GeoShare users employing our
service from locations we cannot directly access ourselves,
allowing for a comprehensive testbed. At the same time, we
can run the GeoShare Web server in EC2, circumventing the
issues of maintaining a local webserver. Amazon S3 provides
storage of objects in the same 8 regions as EC2, with inherent
intra-region replication for fault tolerance within a single
region. While 8 regions is not quite as diverse an environment
as we desired, it still has some amount of control that GeoShare
can leverage.

While the list of Amazon regions is expanding, the 8
regions that were present when our experiments began and
that were used in our implementation and evaluation are as
follows:

• us-east-1 (use1), located in Northern Virginia

• us-west-1 (usw1), located in Northern California

• us-west-2 (usw2), located in Oregon

• sa-east-1 (sae1), located in Sao Paulo

• eu-west-1 (euw1), located in Ireland

• ap-northeast-1 (apne1), located in Tokyo

• ap-southeast-1 (apse1), located in Singapore

• ap-southeast-2 (apse2), located in Sydney

IV. SYSTEM ARCHITECTURE AND IMPLEMENTATION

A. High-level Architecture

The GeoShare system is divided into three key components,
as seen in Figure 1: the client, the metadata and access control
service, and the backing cloud storage service(s). In our current
implementation, the backing cloud storage service is Amazon
S3 but, architecturally, this could be a different storage service
with geographically diverse regions or it could be comprised
of multiple storage services from different cloud providers.
Similarly, the metadata and access control service currently
runs in Amazon EC2 but could run on any cloud provider or
dedicated server. By only allowing specific pieces of informa-
tion to be passed from one system component to another, our

2



Service Host

Metadata
&
Access Control 
Service

Database Service

Metadata 
Database

User 
Access 
Privileges

Client N
...

Backing Cloud 
Store

Independent 
Storage Entitiy 1

Client 2 (Download)

Browser

User info & prefs. 
(encrypt scheme,
fragment 
placement 
constraints,
& access ctrl)

File System

Sender/Receiver

...

Object

Data
fragmentation
algorithm

Client 1 (Upload)

Browser

User info & prefs. 
(encrypt scheme,
fragment 
placement 
constraints,
& access ctrl)

File System

Sender/Receiver

...

Object

Data
fragmentation
algorithm ISE 2

ISE 3

ISE 4

ISE n

ISE 5

Fig. 1. High-level system architecture of GeoShare system

system can use data fragmentation and encryption to ensure
that no single component has the ability to independently
recover stored objects that are shared among multiple clients.

Our primary objective is to preserve data confidentiality
while allowing data to be shared among multiple users. The
standard mechanism for data confidentiality is encryption,
which works quite well for individually-owned data, where
the data owner can manage encryption keys independently of
other users. However, for shared data, it is well known that the
complexity of key management makes it untenable for users to
store encryption keys locally. Thus, the storage service must
somehow store and manage encryption keys, which means that
the service must also guarantee confidentiality of the keys in
addition to the data. One convenient solution to this problem is
to encode encryption keys using secret sharing techniques [1]
and spread the key shares across multiple storage servers.
We adopt this approach in GeoShare. To be specific, users
encrypt objects, replicate the encrypted objects, secret share the
encryption keys, and store encrypted replicas and key shares
across the independent storage entities in the GeoShare system.

For simplicity, we adopt S3’s bucket storage model within
GeoShare. Thus, users create buckets, which are required to
have globally unique names across the GeoShare system, and
each object is placed in one specific bucket. This makes the
use of S3 for the backing storage service straightforward but
this model can also be implemented on other cloud storage
services that emply different storage models. For example, in
hierarchical file system models, such as are used by Google
Drive, Microsoft OneDrive, and DropBox, we can simply
create a unique folder for each user-created bucket.

Client: A client accesses our GeoShare system through
a RESTful web interface within a standard browser. This
page handles all communication with the metadata and access
control service and the backing cloud store, as well as any
necessary encoding/decoding operations involving raw object
data. The authentication information required for these com-
munications is known only by the client and consists of the
following:

• GeoShare – a username and password are used to au-
thenticate the user to the metadata and access control
service

• Amazon S3 – unique credentials generated by Ama-
zon are used to send requests to S3

Metadata and access control service: Data placements are
generated and maintained by the metadata and access control
service based on a client request’s specified parameters and
performance data from the backing cloud storage service. All
requests are validated against the client’s GeoShare account
information for object permissions and correct credentials
before modifying or returning any requested metadata. Any
generic Web server can run the metadata and access control
service, which also makes use of an auxiliary database service
to store critical data needed by the service. In our case,
we chose to run the Web server in Amazon EC2, and we
use Amazon RDS for metadata storage, in order to ensure
continuous and consistent operation.

Backing cloud store: The backing cloud store(s) must have
the ability to store, retrieve, and delete objects in multiple
independent locations. It also must have some basic access
control, e.g. the ability for users to share objects with specific
other users of the same service(s). We chose the Amazon
Simple Storage Service (S3) for its 8 independent world-wide
regions, and its high degree of customizability. However, other
cloud storage services, such as Google Drive and DropBox,
also satisfy these requirements.

A typical request follows the flows shown in Figure 1.
Generally speaking, a client making a request queries the
metadata and access control service for some information and
then completes the operation by accessing multiple regions
in the backing cloud storage service. The two most commonly
used requests are the upload and download of an object, which
are described next.

Upload: The client fills out a form with their GeoShare
account information, the name of their object file, and require-
ments on how their object should be stored, e.g. bucket name
and (optional) data placement constraints. The account infor-
mation and object preferences are consolidated into a single
HTTP GET request, which is sent to the metadata and access
control service. If the account is valid and has permission to
modify the given object, the service uses the specified object
parameters along with known inter-region performance data to
generate placements for the object replicas and key fragments.
Note that the metadata and access control service does not
receive the object itself but only knows its name and where its
parts will be stored. All received and generated object metadata
is stored by GeoShare in its metadata database and associated
with the appropriate account, while the new placements, and
any previous placements of the same object, are returned to the
client. The client then encrypts the object with a random key,
secret shares the key into the appropriate number of fragments,
replicates the encrypted object the specified number of times,
and uploads the replicas and key shares to the backing cloud
store using its storage credentials and the received placements.

Download: In addition to the GeoShare account informa-
tion required for every request type, the client needs only to
specify the name of the object they are trying to retrieve,

3



along with the bucket it is stored in. This information is
sent to the metadata and access control service in an HTTP
GET request. The account itself is validated against existing
GeoShare accounts, and the requested object is checked for
permissions. Assuming the access is permitted, the placements
of all object replicas and key fragments are returned to the
client, as well as any object metadata necessary for recovery.
The client then downloads the object’s key fragments and one
object replica from the cloud storage service, uses the key
fragments to recover the key, and uses the key to decrypt the
object replica.

At no point in any request does any component but an
authorized client have enough information to recover a raw
object. The metadata and access control service knows the
placements of data with the cloud storage service but does
not have the account permissions necessary to actually access
them. Any group of storage entities, as defined by the user
(see Section IV-B2), sees less than the threshold number of
key fragments and so cannot recover the key for any object
replica.

B. Metadata and Access Control Service Design

1) Metadata: The metadata and access control service
calculates and maintains object storage metadata for each
user, as well as access control data for each bucket. Our
implementation is a persistent Java HTTP server application
running on an Amazon EC2 instance, connected to a MySQL
database.

When uploading an object, the client needs to know where
to send object replicas and key fragments after encrypting
the object and generating secret shares of the encryption key.
Because S3 buckets are globally unique and can only exist in
a single pre-defined region, only the Amazon S3 bucket and
object names are required. On each upload, the client sends an
HTTP GET request to the metadata and access control service
that includes (* = optional):

• GeoShare bucket and object names

• client location

• encoding parameters*

• S3 region groupings, exclusions, and/or demand*

The metadata and access control service receives the request,
calculates the necessary replica and fragment placements and
sends the results back to the client.

For a GeoShare object download, the client again sends
an HTTP GET request to the metadata and access control
service, containing the GeoShare bucket and object names.
The metadata and access control service receives the request,
queries the metadata database, and sends back any pertinent
encoding information with the exact S3 bucket and object
names to describe where all object replicas and key fragments
are stored.

2) Key Fragment Placement: An important part of the
GeoShare system, essential to data confidentiality, is the algo-
rithm to calculate key fragment placements for newly gener-
ated AES-256 object keys. A deterministic fragment placement
scheme could provide assistance to an adversary attempting to

subvert the system. Thus, fragment placement selection is done
using a biased random process. This process is parameterized
by a table of latency data from every S3 region to every
other S3 region. Additionally, it can be constrained by a
maximum number of fragments allowed in a region or group
of regions. The probability distribution is initialized from the
empirical download times of each of the regions to the client’s
location. More specifically, the normalized set of probabilities
of storing a fragment in each region is calculated by taking
these download times and dividing each by the sum of all
download times. This probability distribution favors regions
that have low latencies relative to the client’s region, but also
provides an element of randomness so that the same regions
are not selected for every one of a client’s keys.

When calculating the fragment placements, the metadata
and access control service will also know which regions the
client chooses to group together so that it does not place more
than the threshold number of fragments in a single group. By
default, there is a group for each individual region because it
is assumed that the user never wants more than the threshold
number of fragments in a single region. However, if the user
wants to restrict all regions in the U.S. from collectively
receiving the threshold number of fragments, then a group will
be created containing all S3 regions in the U.S. (USE1, USW1,
and USW2). During the fragment placement selection, if a
group gets selected (threshold - 1) times, then each region in
that group is removed from the set of regions to choose from,
the probability distribution is reinitialized, and the selection
process continues.

3) Replica Placement: We assume that objects are shared
world-wide and, hence, we replicate objects across geograph-
ical regions to try to avoid long inter-region latencies. A
side benefit of replication is that an entire region outage can
be tolerated. While most storage services, such as S3, auto-
matically replicate data within a region to tolerate individual
datacenter outages, certain regions might have all of their
datacenters fairly close together. For example, many S3 regions
are confined to a single city, such as Tokyo, Sydney, Singapore,
Frankfurt, or Sao Paulo. Thus, it is possible that a natural
disaster could potentially affect all datacenters within a single
region.

Given that objects are replicated in GeoShare the system
must decide where to place the replicas.1 Because replicas
are encrypted, and key fragments randomly distributed, ob-
ject replicas can be placed deterministically, e.g. to provide
the minimum average download latency for all users. Using
the same inter-region transfer latency data used by our key
fragment placement algorithm, the system can determine the
optimal regions in which to place replicas. With only 8 S3
regions, it is sufficient to determine replica locations through
an exhaustive brute-force calculation. If available, the user
demand distribution can also be factored into the optimal
placement (e.g. a region with more user demand might have a
larger effect on the overall average latency than a region with
less demand).

1In this subsection, we assume that the number of replicas is pre-determined,
e.g. specified by the client as a parameter when submitting the upload request.
In the “Utility Function” subsection, we consider the case where both the
number of replicas and their locations must be chosen.

4



While a brute-force calculation is feasible with the limited
storage location options of S3, this method scales exponentially
with the number of regions. The optimal replica location
problem is similar to the p-median problem [12], which is
commonly applied to facility location to decide the best
placement of facilities that minimizes transportation costs. By
factoring in user demand, storage transfer and duration costs,
inter-region latencies, and region preferences, a modified form
of Lagrangian relaxation can be used to determine optimal
replica placement for much larger numbers of regions than
are available in S3. A test implementation of this technique,
written in MATLAB, completed within a few seconds with
thousands of regions.

4) Utility Function: In some cases, clients might not know
the best number of replicas to create a priori. They may
want their global user base to see fast downloads, but without
putting a replica in every possible region, since they will incur
increased storage costs as the number of replicas increases.
Or conversely, if minimizing storage cost is a high priority,
a client may want to use the fewest number of replicas they
can while achieving relatively low average latency. Using these
two attributes as the basis, we created a simple utility function
approach to compute the optimal number of replicas.

The utility function defines the value that the user receives
from a given latency, averaged over all client requests, and
storage cost (for simplicity, just the number of replicas).
Shorter latencies and smaller storage costs have higher value
and longer latencies and higher storage costs have lower
value. Since it is unrealistic to assume the user manually
specifies the utility of every possible latency, storage cost pair,
we developed a parameterized utility function that calculates
utility using weights that the user chooses for latency and
storage cost, wl and ws, where wl + ws = 1. Using these
weights, we scale utility from a value of 1, when both latency
and storage cost are their absolute minimums to a value
of 0, when both latency and storage cost are their absolute
maximum. Clearly, it is very unlikely that the system would
be able to simultaneously minimize latency and storage cost, so
achieving a utility of 1 is, in general, not possible. Finding the
optimal utility is a matter of evaluating utilities for the feasible
solution points in the system and choosing the highest value.
By setting the weights properly, the user can specify whether
they prioritize latency or storage cost in determining utility.
The utility function we use to achieve this behavior is:

U (l, s) = 1−
[

wl (l −min L)
max L−min L

+
ws (s−min S)
max S −min S

]
wl: weight of latency attribute

ws: weight of storage cost attribute

min L, max L: the absolute minimum and maximum
latencies possible in the system for a given user
demand distribution

min S, max S: the absolute minimum and maximum
storage costs in the system

To find the set of valid l, s pairs, we leverage the optimal
replica placement algorithm from Section IV-B3 to determine
the optimal replica locations for each possible number of
replicas. Then, using a table of known inter-region latencies,

we can determine the average latency, l, for the given user
demand distribution when the optimal replica placement is
used for s replicas.

5) Access Control: Storing the user’s metadata locally
would increase performance in retrieving metadata, but would
also restrict users from accessing their objects through multiple
distinct clients and make it difficult to share objects among
multiple users. The metadata and access control service exists
mainly to manage all this metadata, facilitating object access
from arbitrary clients through a Web application. The security
of these transactions is ensured for both client/metadata-service
interactions and client/storage-service interactions. For the
client/metadata-service interactions, there are 3 basic compo-
nents of metadata:

user a distinct account name and password hash al-
lowing a user to submit requests to the GeoShare
system

object the exact backing cloud storage locations of the
object’s replicas and key fragments, the GeoShare
bucket name, and encoding information

bucket which GeoShare users have permission to read,
write, and/or modify the bucket

Each time a user creates a new bucket, our service generates
a corresponding bucket metadata entry, giving this user read,
write, and modify access permissions. Because S3 bucket
names are global, we made GeoShare bucket names global,
greatly simplifying the bucket lookup and validation process.
When a user shares a GeoShare bucket, which is only possible
if she has modify access permission, she simply names a user
and lists what permissions he is being granted and the relevant
bucket metadata entry is updated. Care should be used when
giving modify access permissions, because a shared user could
then revoke the original user’s permissions. Upon a GeoShare
user upload, download, or update request, the metadata and
access control service always checks if the user has permission
to perform the action.

Managing access control is simple enough within our
metadata service, but access must also be carefully controlled
within the backing cloud storage service itself in case the
necessary metadata is already known. Most of these services
have extremely flexible object-level access control, but to
generalize our GeoShare system, we only assume that there is a
directory-level, or related-level, control. The same permissions
described earlier for the metadata and access control service
are applied to every object uploaded to the backing cloud store.
Therefore, even if an attacker knew the locations of an object
replica and enough key fragments, they would also need the
backing cloud account information of a user with permission
to retrieve them.

C. Client

One of the most important goals for our client interface is
ease of access. The client should be able to access or modify
stored sensitive objects from any standard computer without
installing additional software or plugins. It is a given that
every computer has at least one Web browser installed, and
the most common Web browsers (Google Chrome, Mozilla
Firefox, Microsoft Internet Explorer, etc) support JavaScript.
As a result, we chose to implement the client part of the

5



Fig. 2. Client web interface for uploading an object.

GeoShare service as a set of Web pages with all required
functions written in JavaScript.

For any request, the client fills out and submits a simple
Web form with parameters, such as their GeoShare account
information, object name, and placement constraints. Our
JavaScript code generates and sends the appropriate request
to the metadata and access control service as a standard
XMLHttpRequest. In the case of an upload, the object key is si-
multaneously encoded into fragments using the CryptoJS [13]
and secrets.js [14] JavaScript libraries. For a typical upload or
download, the metadata and access control service returns the
placements of the new or existing key fragments and object
replicas. An example of the Web form for an upload operation
is shown in Figure 2.

All communication with the backing cloud storage service,
Amazon S3, is done using the AWS JavaScript SDK [15].
If an object is being updated with new parameters (e.g. a
new encoding scheme or placement preferences), the new key
fragment or object replica placements may be different than the
existing placements. In this case, the client code first deletes
any obsolete fragments and replicas from the appropriate S3
regions before uploading the new fragments and replicas to
the new locations. In the case of a download, data pieces are
individually downloaded from the appropriate S3 regions and
then used to reconstruct the original object at the client.

As mentioned in Section IV-B5, the S3 access control is
a significant part of how we maintain the secure separation
of the metadata and access control service and the cloud
storage service. A client’s provided S3 credentials are used
to configure and authenticate these communications to use the
client account, and are at no point available to the metadata
and access control service. When a client creates a bucket,

the client software creates a default bucket policy such that
only that user may access or modify it, and any objects it
contains[16]. If a client wishes to share their bucket with
another user, the client modifies the S3 bucket’s policy to
allow the other user the appropriate access to the bucket.2
By default, only the original creator of the bucket will have
permission to share it with other users, but it is a simple policy
change to allow others this control, though a complete transfer
of ownership is more complex and we have not included that
capability in our current implementation.

V. FULL SYSTEM TEST AND EVALUATION

In this section, we report on various tests that we performed
to evaluate the GeoShare system. For some of these, we did
complete experiments using the AWS platform. For others,
we extracted baseline data from a set of AWS experiments
and used these data to extrapolate results. The baseline data
we collected was a set of inter-region latencies determined as
follows. We deployed clients all over the world using an EC2
client that we could place in any region world-wide. These
clients created and uploaded 100 32 KB objects to each of
the 8 S3 regions, and then downloaded all of the objects they
had previously uploaded. From these tests, we computed the
average download latency for each client region, server region
pair. These 64 average latencies formed the baseline data set
used in some experiments.

A. Evaluation of Replica Placement

While data is typically replicated within a region in a
commercial cloud storage system, there is no attempt to
improve global access to the data nor to tolerate scenarios
where an entire region’s datacenters go off-line simultaneously.
The replica placement algorithm presented in Section IV-B3
is designed to provide the optimal replica locations given
a pre-set number of replicas and request distribution. We
compared the optimal placement to two simple algorithms:
placing replicas in random regions (random), and placing a
replica in the home region while distributing the rest randomly
to the remaining regions (home+random).

We used the inter-region latency data described previously
to extrapolate the overall average latencies for a variety of
user demand distributions and placement strategies using 3
replicas. First, the placements of the 3 replicas were generated
using our optimal placement algorithm, random placement,
and home+random placement. Then, using these placements,
the latency seen by a client in each region was determined
based on the latency to the closest region containing a replica.
Finally, the overall average latencies were calculated by
weighting the selected inter-region latencies according to the
user demand from each region. Figure 3 shows these average
latencies, seen by users with 3 replicas and the following user
demand distributions, from left to right:

• 75% from use1, 25% from other regions

• 50% use1, 25% apne1, 25% other

• 40% use1, 20% apne1 20% euw1, 20% other

• 30% use1, 70% other

6



Fig. 3. Average downloading latencies with optimal, home+random, and
random replica placement strategies.

It is clear that our optimal placement algorithm pro-
duces latencies that are significantly lower than random or
home+random placements. The home+random strategy is an
improvement over a purely random placement, but because
neither takes into account inter-region latencies when placing
the remaining replicas, the optimal placement will always
be better in cases with more than one replica. The optimal
placement algorithm also takes advantage of additional user
demand distribution knowledge, but even in the cases of 75%
use1 and 30% use1, where optimal and home+random are
making use of the same distribution, optimal still outperforms
home+random.

B. Evaluation of Utility Function

The utility function described in Section IV-B4 can help
a GeoShare client decide how many replicas they should use
based on their storage and latency preferences. The number of
recommended replicas should ideally increase as the client’s
desire for faster overall downloads increases, and decrease
as the desire for a smaller storage footprint increases. For
these experiments, 32 KB objects were encoded using AES-
SSS(3, 5, r),3 r ∈ {1, . . . , 8}. For each value of r, 8 different
user demand distributions were considered, resulting in 64 ex-
periments. A single experiment, with a particular user demand
distribution and value of r, consisted of the following:

1) one client was placed in each of the 8 regions where
they created and uploaded 100 objects according
to the random key fragment placement and optimal
replica placement algorithms,

2) clients in each region downloaded the shares for each
of the 800 total keys and one replica of each of the
800 objects, accessing the closest replica for each
object, and

3) the average latency for each client download region
was calculated.

2Should a user want to have per object policies, she can simply create a
unique bucket for each object she owns.

33-out-of-5 Shamir’s secret sharing (SSS) for encryption keys and r replicas
of the encrypted object (including the original copy).

TABLE I. UTILITY FOR VARIOUS PRIORITIES (25% APSE1)

(Latency, Storage) Priority
(0.25,0.75) (0.4,0.6) (0.5,0.5) (0.6,0.4) (0.75,0.25)

1 0.85846918 0.77355069 0.71693837 0.66032604 0.57540755
2 0.81740433 0.79356121 0.77766580 0.76177038 0.73792727
3 0.74955165 0.77071121 0.78481759 0.79892396 0.82008352
4 0.65437212 0.70413825 0.73731567 0.77049309 0.82025922
5 0.54294727 0.61157278 0.65732311 0.70307345 0.77169896
6 0.44028480 0.53302711 0.59485532 0.65668352 0.74942583
7 0.33813854 0.45530738 0.53341993 0.61153249 0.72870133
8 0.23641422 0.37826275 0.47282843 0.56739412 0.70924265

For each value of r and a particular user demand distribution,
the total average latency was computed by weighting the
experimental latencies according to the demands from each
region. These average latencies and numbers of replicas were
then input to the utility function specified in Section IV-B4.

Table I illustrates the overall utility produced for a rep-
resentative case, in which 25% of the demand comes from
apse1 and the rest is evenly distributed across the remaining
regions, with several different weightings of storage cost and
latency. The shaded values represent the optimal utility for
each different weighting. We can see from the table that as
more weight is placed on latency, and thus less on storage
cost, the number of replicas increases. When storage cost is
the clear priority, e.g. with a storage weight of 0.75, one replica
is optimal. When storage cost and latency have equal weights,
3 replicas become optimal. The optimal replica count is further
increased to 4 as the latency weight is increased to 0.75. Note
that, in this case, when weighting latency 3 times as high as
storage cost, only half of the 8 regions will have replicas stored
in them. This is an indication that excellent global performance
can be achieved in S3 with relatively low replication cost.

C. Evaluation of Object Distribution

One thing that we were interested to see is what kind of
distribution of object replicas across regions was produced
by the combination of our proposed methods. The user first
applies our utility function to find the best number of repli-
cas for their latency and storage preferences, then places
each replica as specified by our deterministic object replica
placement algorithm described in Section IV-B3. Assuming
the GeoShare service is used by a variety of clients that are
uniformly spread across all 8 regions, and that 50% of demand
for each object comes from its home region, we were able
to calculate the overall proportion of replicas in each region.
We used the previously described inter-region latency data and
corresponding numbers of replicas as inputs into our utility
function for 5 different combinations of latency and storage
weights, and the 8 different user demand distributions. The
number of replicas with the largest utility for each user demand
distribution was selected, and the optimal placement of these
replicas was calculated using our optimal placement algorithm.

When we consider all the replicas produced by these 5
different weights, and 8 user demand distributions having the
“home” in each region, we get the replica distributions seen
in Table II. When storage costs are minimized (ws = 0.75), a
single replica is used, and placed in the ”home” region, result-
ing in a uniform object distribution. As storage cost becomes
less of a priority, some user demand distributions indicate

7



TABLE II. OBJECT DISTRIBUTION ACROSS REGIONS WITH BEST
UTILITY AND OPTIMAL PLACEMENT

Weights “Home” Location
(lat,stor) apne1 apse1 apse2 euw1 sae1 use1 usw1 usw2

(0.25, 0.75) 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13
(0.4, 0.6) 0.23 0.08 0.08 0.08 0.08 0.23 0.08 0.15
(0.5, 0.5) 0.27 0.07 0.13 0.07 0.07 0.20 0.07 0.13
(0.6, 0.4) 0.29 0.06 0.12 0.06 0.06 0.24 0.06 0.12

(0.75, 0.25) 0.19 0.12 0.12 0.12 0.12 0.15 0.04 0.15

TABLE III. KEY FRAGMENT DISTRIBUTION FOR EACH CLIENT

Client Location
apne1 apse1 apse2 euw1 sae1 use1 usw1 usw2

apne1 119 112 85 55 49 86 71 76
23.8% 22.4% 17.0% 11.0% 9.8% 17.2% 14.2% 15.2%

apse1 80 115 67 53 33 37 60 53
16.0% 23.0% 13.4% 10.6% 6.6% 7.4% 12.0% 10.6%

apse2 73 65 127 58 52 59 76 62
14.6% 13.0% 25.4% 11.6% 10.4% 11.8% 15.2% 12.4%

euw1 51 36 37 131 66 72 62 72
10.2% 7.2% 7.4% 26.2% 13.2% 14.4% 12.4% 14.4%

sae1 30 38 39 44 157 58 47 47
6.0% 7.6% 7.8% 8.8% 31.4% 11.6% 9.4% 9.4%

use1 50 35 63 66 54 102 40 44
10.0% 7.0% 12.6% 13.2% 10.8% 20.4% 8.0% 8.8%

usw1 57 45 47 34 34 41 78 73
11.4% 9.0% 9.4% 6.8% 6.8% 8.2% 15.6% 14.6%

usw2 40 54 35 59 55 45 66 73
8.0% 10.8% 7.0% 11.8% 11.0% 9.0% 13.2% 14.6%

maximum utility at 2 or 3 replicas. In these cases, a replica
is always stored in the “home” region, and the additional
replicas are often stored in the regions apne1 and use1, which
generally provide the best overall latencies to other regions.
These two regions therefore accumulate a higher percentage
of replicas than other regions. Once lower latency becomes
a much stronger preference, more replicas are recommended,
and are naturally spread much more uniformly throughout all
regions. It should be noted that in nearly all cases, usw1 is the
least-used region. This is because usw1’s latencies to other
regions are always slightly longer than those of usw2. With a
limited number of replicas, it would not make sense to place
a replica in usw1 in this case, since usw2 is always a better
location.

D. Evaluation of Fragment Distribution

We also consider how key fragments are geographically
distributed in our approach. While keys are only 40 bytes,
and therefore have much less of a storage impact than full
objects, the traffic generated by the simultaneous fragment
requests is worth considering. Unlike our evaluation of the
object replica distribution, key fragment placement is non-
deterministic. We deployed one client in each of the 8 regions
and had them simultaneously create and upload 100 objects
using the AES-SSS(3, 5, 3) encoding scheme, biasing the key
fragment placement towards the regions with lowest latencies
for the uploading client. Table III shows the resulting distri-
bution of key fragments for a client in each of the 8 regions.
To study the impact of grouping regions, we grouped the 3
U.S. regions when calculating key fragment placements. This
imposed the constraint that no more than 2 key fragments may
be placed across all U.S. regions combined.

TABLE IV. TOTAL FRAGMENT DISTRIBUTION ACROSS REGIONS

apne1 apse1 apse2 euw1 sae1 use1 usw1 usw2

653 498 572 527 460 454 409 427
16.3% 12.5% 14.3% 13.2% 11.5% 11.4% 10.2% 10.7%

We see from the table that the distribution of key fragments
for a particular client can be fairly uneven across regions. For
example, a client in EuropeWest stores about 26% of its key
fragments in its own region and only about 7% in USWest1.
Clients in other regions show similar variations. We also see
the effect of grouping regions in this data. Even though the
U.S. regions are the 3 regions with lowest latencies for clients
in the U.S., the 3rd, 4th, and 5th fragments for a particular
key must be stored outside the U.S. and so the other regions
all have slightly higher likelihood of receiving fragments from
U.S. clients than would be predicted based solely on latencies.
For clients in non-U.S. regions, from 51 to 56 percent of key
fragments are stored in the 3 fastest regions combined. For
clients in the U.S., only 37–38% of key fragments are stored in
the U.S. regions and the remaining 62–63% are stored outside
of the U.S. Note that the percentage of key fragments stored
inside the U.S. cannot exceed 40%, because that would imply
that some keys have more than two shares in the U.S., which
is not allowed by the grouping method and the (3, 5) secret
sharing scheme that is employed.

When we consider all of the key fragments produced by
the 8 clients, the geographic distribution becomes much closer
to a discrete uniform distribution. The overall geographic
distribution of key fragments is shown in Table IV. In this
table, we see that each region ends up with between 10.2% and
16.3% of all key fragments in the system. In a perfect discrete
uniform distribution, each region would store exactly 12.5%
of the fragments. While the actual distribution is not perfectly
uniform, it is much closer to uniform than the distributions
for individual clients. Other interesting items of note from
Table IV include that AsiaPacificNortheast stores the largest
percentage of fragments due to its relatively low latency to all
other regions, and that the U.S. regions are the 3 most lightly
loaded regions due to the fact that they are grouped and cannot
store more than two fragments total for any one object.

Overall, we conclude that our key fragment placement
algorithm, when applied on clients that are well spread across
the world, does a good job of storing fragments in regions with
low latency, while at the same time balancing load across all
of the regions.

E. Evaluation of Region Outage Tolerance

In addition to reducing latencies for geographically-
distributed clients, replicating objects across regions has the
added benefit that outage of an entire region can be tolerated.
In these experiments, we chose to simulate outage of the
USWest2 region because it was the most used replica location
over all tested user distributions and number of replicas.
Similar to the Section V-A evaluation, inter-region latency
data was used to calculate the average latencies both with
and without the USWest2 region replicas. Figure 4 shows the
average latencies with the same demand distributions as the
earlier evaluation when 3 replicas are used before and after

8



Fig. 4. Average Downloading Latencies with and without USWest2 Region
for 3 Replicas

Fig. 5. Average Downloading Latencies with and without USWest2 Region
for 5 Replicas

the outage of USWest2. Figure 5 shows the average latencies
with the same distributions, but when 5 replicas are used.

We can see from the figures that, while there is a moderate
latency impact, good performance is still achieved even with
the complete outage of a region. In comparing the two figures,
the latencies when using 5 replicas are always better than with
3 replicas, regardless of region functionality. The impact may
become more severe when using fewer replicas, as each replica
plays a more important role, but there is also the possibility of
a replica not being placed in the downed region at all. This can
be seen in the 40% use1, 20% apne1, 20% euw1 distribution
with 3 replicas, where the average latency is unaffected by the
loss of USWest2 because no replica was placed there.

VI. CONCLUSIONS

We have presented GeoShare, a cloud storage service that
allows users to spread information across administrateive and
geographic boundaries to prevent powerful organizations from
deciphering their data stored in the cloud. A prototype service
has been built on top of Amazon Web Services making use

of 8 distinct geographic regions provided by Amazon S3
cloud storage service. Extensive evaluations demonstrated the
usefulness of our approach. In particular, we demonstrated
that users’ geographic constraints can be fully satisfied while
optimizing latency and storage cost.

ACKNOWLEDGEMENTS

This research was supported in part by the National Science
Foundation under Grant IIP–1230740.

REFERENCES

[1] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[2] H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon, “RACS: A case
for cloud storage diversity,” in Proceedings of the 1st ACM Symposium
on Cloud Computing, 2010, pp. 229–240.

[3] K. Bowers, A. Juels, and A. Oprea, “HAIL: A high-availability and
integrity layer for cloud storage,” in Proceedings of the 16th ACM
Conference on Computer and Communications Security, 2009, pp. 187–
198.

[4] H. Chen and P. Lee, “Enabling data integrity protection in regenerating-
coding-based cloud storage,” in Proceedings of the 31st IEEE Sympo-
sium on Reliable Distributed Systems, 2012, pp. 51–60.

[5]
[6] C. Wang, Q. Wang, K. Ren, N. Cao, and W. Lou, “Toward secure and

dependable storage services in cloud computing,” IEEE Transactions
on Services Computing, vol. 5, no. 2, pp. 220–232, 2012.

[7] Y. Tang, P. Lee, J. Lui, and R. Perlman, “Secure overlay cloud
storage with access control and assured deletion,” IEEE Transactions on
Dependable and Secure Computing, vol. 9, no. 6, pp. 903–916, 2012.

[8] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa, “DepSky:
Dependable and secure storage in a cloud-of-clouds,” ACM Transactions
on Storage, vol. 9, no. 4, pp. 12:1–12:33, 2013.

[9] S. Han, H. Shen, T. Kim, A. Krishnamurthy, T. Anderson, and
D. Wetherall, “MetaSync: File synchronization across multiple un-
trusted storage services,” in Proceedings of the USENIX Annual Tech-
nical Conference, 2015, pp. 83–95.

[10] Y. Singh, F. Kandah, and W. Zhang, “A secured cost-effective multi-
cloud storage in cloud computing,” in Proceedings of Infocom Work-
shops, 2011, pp. 619–624.

[11] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. Madhyastha,
“Spanstore: Cost-effective geo-replicated storage spanning multiple
cloud services,” in Proceedings of the 24th ACM Symposium on
Operating Systems Principles, 2013, pp. 292–308.

[12] A. Santos, “Solving large p-median problems using a Lagrangean
heuristic,” ISIMA, Tech. Rep., 2009.

[13] “CryptoJS,” https://code.google.com/p/crypto-js/, Accessed: September
15, 2014.

[14] “Secret sharing for JavaScript,” https://github.com/amper5and/secrets.js/,
Accessed: September 15, 2014’.

[15] “AWS SDK for JavaScript in the Browser,” http://aws.amazon.com/sdk-
for-browser/, Accessed: September 15, 2014.

[16] “Managing Access Permissions to Your Amazon S3 Resources,”
http://docs.aws.amazon.com/AmazonS3/latest/dev/intro-managing-
access-s3-resources.html, Accessed: November 17, 2014.

9


