
An Inside Look into the Practice of Malware Analysis

Miuyin Yong Wong
†
, Matthew Landen

†
, Manos Antonakakis

†
, Douglas M. Blough

†
,

Elissa M. Redmiles
‡
, Mustaque Ahamad

†

Georgia Institute of Technology
†

United States

Max Planck Institute for Software Systems
‡

Germany

ABSTRACT
Malware analysis aims to understand how malicious software car-

ries out actions necessary for a successful attack and identify the

possible impacts of the attack. While there has been substantial

research focused on malware analysis and it is an important tool

for practitioners in industry, the overall malware analysis process

used by practitioners has not been studied. As a result, an under-

standing of common malware analysis workflows and their goals

is lacking. A better understanding of these workflows could help

identify new research directions that are impactful in practice. In

order to better understand malware analysis processes, we present

the results of a user study with 21 professional malware analysts

with diverse backgrounds who work at 18 different companies. The

study focuses on answering three research questions: (1) What are

the different objectives of malware analysts in practice?, (2) What

comprises a typical professional malware analyst workflow?, and

(3) When analysts decide to conduct dynamic analysis, what factors

do they consider when setting up a dynamic analysis system?

Based on participant responses, we propose a taxonomy of mal-

ware analysts and identify five common analysis workflows. We

also identify challenges that analysts face during the different stages

of their workflow. From the results of the study, we propose two

potential directions for future research, informed by challenges

described by the participants. Finally, we recommend guidelines

for developers of malware analysis tools to consider in order to

improve the usability of such tools.

CCS CONCEPTS
• Security and privacy → Usability in security and privacy.

KEYWORDS
Malware Analysis;Usable Security

ACM Reference Format:
Miuyin Yong Wong

†
, Matthew Landen

†
, Manos Antonakakis

†
, Douglas

M. Blough
†
,, Elissa M. Redmiles

‡
, Mustaque Ahamad

†
. 2021. An Inside

Look into the Practice of Malware Analysis. In Proceedings of the 2021 ACM

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00

https://doi.org/10.1145/3460120.3484759

SIGSAC Conference on Computer and Communications Security (CCS ’21),
November 15–19, 2021, Virtual Event, Republic of Korea. ACM, New York, NY,

USA, 17 pages. https://doi.org/10.1145/3460120.3484759

1 INTRODUCTION
The growing volume and sophistication of cyber attacks relies on

the ability of malicious actors to take control of victim comput-

ers, often by running malicious software on them. Such malicious

software, or malware, can be used to exfiltrate sensitive data (e.g.,

data breaches) or to demand ransom as seen in numerous recent at-

tacks [6, 16]. To combat such attacks, we must understand how they

were conducted. To do so, professional malware analysts typically

analyze malware samples to understand what a certain malware

instance does and how it carries out the actions required for a

successful attack.

There has been considerable research in the area of malware

analysis that aims to understand malware and develop defenses

against it [28, 29, 33, 35–37, 39, 42, 45, 47, 51, 52, 54–56, 61, 66–

68, 73, 78, 82]. Such analysis may range from limited static analysis,

such as collecting hashes or extracting strings, to a detailed analysis

that can help understand the specific tactics used by malware to

achieve its goals [24, 64]. There are two main categories of malware

analysis; dynamic and static. Dynamic analysis consists of execut-

ing a potentially malicious program in a controlled setting and

monitoring its actions. In contrast, static analysis techniques are

performed without actually executing the sample, but rather focus

on analyzing the malicious code. There are also hybrid approaches

that leverage both dynamic and static analysis to analyze malware.

Although a significant body of research is devoted to developing

new malware analysis techniques [24, 25, 31, 36, 42, 50, 52, 67,

69, 79, 80], and these techniques are used widely, there is limited

research on understanding how they are used in practice. Prior

work has examined the workflows of software testers and white

hat hackers [75] as well as the workflows of reverse engineers [76].

Recently, Votipka et al. presented an analysis of the workflow of

reverse engineers by conducting an observational study [76]. The

study found that reverse engineers mostly rely on static analysis

and utilize some dynamic analysis in later stages of their workflow.

As discussed in prior research, malware analysis spans a broad

space of techniques, leveraging a combination of dynamic and static

analysis. Since reverse engineering primarily relies on static analy-

sis, the overall process of malware analysis, including important

steps associated with dynamic analysis, were not explored in detail

in past research studies. To fill this gap, we focus on understanding

the process of malware analysis broadly, including how analysis

Session 11C: Software Development and Analysis CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3053

https://doi.org/10.1145/3460120.3484759
https://doi.org/10.1145/3460120.3484759

goals and different methods of analysis (i.e., static and dynamic) im-

pact this process. To do so, we conduct a semi-structured interview

study with a diverse group of 21 professional malware analysts from

18 different companies, including Mandiant, Cisco, IBM, and a large

financial institution. Although the analysts cannot disclose their

company’s proprietary information, we gain insights from their

personal workflows, which have been shaped by the knowledge

that they have accumulated while working in the security industry.

Our work seeks to answer the following research questions:

RQ1. What are the different objectives of malware analysts in

practice?

RQ2. What comprises a typical professional malware analyst work-

flow?

RQ3. When analysts conduct dynamic analysis, what factors do

they consider when setting up a dynamic analysis system?

Our contributions are divided into three main areas. First, we

propose a taxonomy that classifies malware analysts based on the

indicators of compromise
1
(IOCs) that the analysts extract in or-

der to achieve their objectives. Second, we identify five common

malware analysis workflows. Third, we identify six key decisions

that malware analysis practitioners make when setting up their

dynamic analysis systems: We detail participants’ choices of imple-

mentation, virtual analysis platform, environment setup, network

communication, execution time, and techniques used to overcome

evasive tactics deployed by some malware.

From the workflows, we find that the participant’s main ob-

jective significantly alters the methodology used to analyze the

malware sample. We also observe that as the complexity of a mal-

ware sample increases, the likelihood that analysts will require a

hybrid approach also increases. The majority of the participants

begin with either dynamic analysis or limited static analysis. Later,

some participants switch to more in-depth static analysis; either to

derive additional information to reconfigure their dynamic analysis

systems or to manually reverse engineer the sample. Additionally,

this user study allowed us to observe open challenges faced by

professional malware analysts. We discuss potential opportunities

for translating previous research into practical solutions for practi-

tioners as well as future research directions that could help address

the identified challenges.

This paper is structured as follows. Section 2 describes themethod-

ology of our study and section 3 provides details of the participants.

Next, we present our taxonomy used to categorize participants in

section 4. Section 5 describes the different analysis workflows that

we identified and section 6 discusses the configuration decisions

made by analysts. Lastly, we present challenges faced by the par-

ticipants, offer potential ways to help address them, and provide

usability recommendations in section 7, and conclude in section 9.

2 METHODOLOGY
In order to answer our research questions, we conducted 21 semi-

structured interviews with professional malware analysts. This

section describes the recruitment, interview, and data analysis pro-

cedures, as well as the limitations of our work. This study was

approved by our university’s Institutional Review Board.

1
IOCs are artifacts that indicate potentially malicious activities that analysts seek by

analyzing a malware sample [13].

2.1 Recruitment
Three sources were used to recruit professional malware analysts:

a curated panel of security professionals who made themselves

available for surveys, mailing lists of security organizations, and

personal contacts of the co-authors of this paper. In April 2020,

an email requesting participation was sent to all three sources

containing a description of the study and an explanation of the

steps that the participants would have to take to participate.

Participant Selection. Although we only shared the study with

people in the cybersecurity field, we needed to ensure that we

specifically selected malware analysts for this user study. As such,

potential participants completed a 20 question survey (see Ap-

pendix A) that collected basic demographic information as well

as information regarding participants’ area of expertise, technical

skills, and job tasks. Among those who fit the purpose of the study,

we selected participants who captured a broad range of skill levels,

job titles, and job tasks within malware analysis.

2.2 Interview Protocol
We conducted hour-long, semi-structured interviews with each

participant via online video conference fromMay through June 2020.

All interviews were conducted by the first author for consistency.

The interviewer followed the questions found in Appendix B with

the option to ask follow-up questions and skip previously answered

questions. The interviews were divided into the following sections.

Introduction and Experience. The interview began by asking

the participants to expand on their daily job tasks and experience

described in the screening survey. Their responses allowed us to

personalize questions during the rest of the interview.

Malware Sources. Next, to better understand our participants’

day-to-day work experiences, we asked them questions about the

malware samples they analyze. Specifically, we asked how they

receive their malware samples, what data is included when they

get a sample, and how many samples they receive per day. We also

asked how the participants prioritized the samples they analyze

and how they detect whether a sample is a variant of a previously

known malware.

Analysis Workflow. In this next section, we asked participants

to walk us through the steps they take and tools they use to analyze

a malware sample. With these questions, we wanted to understand

the process that participants use to achieve their analysis objec-

tives. More generally, we wanted to understand the output of their

analysis process. Also, we wanted to identify common challenges

that malware analysts face during their analysis workflow.

Dynamic Analysis System Configuration. Dynamic analysis

is a common process used by a majority of malware analysts. For

this reason, we wanted to understand how the participants config-

ure their dynamic analysis system. We asked participants whether

they prefer bare metal or virtualized environments
2
, commercial or

open-source sandboxes
3
, and their reasoning behind such prefer-

ences. We also asked what operating system (OS) they select when

configuring their sandbox, how they configure their network, and

2
Bare metal refers to physical computer whereas a virtualized environment uses

software to simulate a physical computer.

3
sandboxes are tools that execute and monitor malware samples safely.

Session 11C: Software Development and Analysis CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3054

whether they configure the user space with specific locations, lan-

guages, and/or applications. Our questions aimed to identify any

critical settings that our participants consider when setting up their

dynamic analysis systems to get malware to reveal its malicious

behavior.

After understanding participants’ configuration process, we in-

vestigated the dynamic analysis process they follow. Specifically,

we asked questions regarding the execution of the malware samples.

For example: How long and how many times do they run a sample?

If they run samples multiple times, do they modify anything in the

setup between runs? What data does the execution produce? Lastly,

we wanted to identify the challenging and time-consuming tasks

that the participants face when performing this setup.

Malware Analysis Evolution. Finally, we asked each participant

to describe how their malware analysis approach has evolved over

time.

2.3 Data Collection and Analysis
The interviews were recorded and then manually transcribed by the

interviewer and analyzed using an iterative open coding methodol-

ogy [72]. The interviewer, along with another co-author, developed

a codebook (Appendix D) based on an independent review of four

interviews. Subsequently, the two co-authors independently coded

each interview using this codebook. The coders achieved "excellent"

Krippendorff’s alpha intercoder reliability of 0.823 [57]. Reliability

was used to ensure consistency in the interpretation of conceptual

themes and workflows across the research team.

2.4 Follow-up Survey
The last step of our methodology was a follow-up survey, sent

in September 2020, consisting of three multiple choice questions,

shown in Appendix C. The purpose of this survey was to clar-

ify whether the participants configure specific dynamic analysis

settings. Further clarification was needed because some partici-

pants provided high-level responses in the initial interview. When

presenting results about the dynamic analysis environment setup

process, we only include findings from participants who responded

to the follow-up survey in order to ensure the results are complete.

2.5 Limitations
Our study has limitations common in exploratory, qualitative re-

search. First, participants may not recall all of the steps of their

personal analysis and configuration processes. This limitation is

common with studies involving expert tasks [43]. We aimed to mit-

igate this limitation by asking participants to walk us through their

analysis process, per best practice for qualitative interviews [46].

The second limitation is participants’ inability to respond to cer-

tain questions due to non-disclosure agreements they have with

their companies. To mitigate this issue, we asked participants to

describe their personal analysis process instead of describing the

confidential processes of their companies. Finally, it is possible

that our participant group, as a whole, may not cover all of the

types of analysts in practice. To partially mitigate this limitation,

we recruited participants through several sources to have a diverse

group of participants and increase the likelihood that relevant ideas

would be stated by more than one participant.

ID Educ Yrs Title Type of Industry

P1 Ph.D. 5 Director of Research -

P2 - 14.5

Project Manager - Security So-

lution Architect

Technology

P3 B.S. 4 Security Engineer Technology

P4 B.S. 2 Senior Reverse Engineer Technology

P5 Ph.D. 5 Head of Laboratory Education

P6 M.S. 5 Senior Analyst Cybersecurity

P7 Assoc. 10

Principal Threat Researcher /

Reverse Engineer

Technology

P8 B.S. 3 Senior Security Engineer Technology

P9 B.S. 7

Manager, Digital Forensics and

Incident Response

Technology

P10 M.S. 2 Malware Research Engineer Technology

P11 M.S. 6 Sr. Security Analyst

Postal services,

Logistics,

Transportation,

Finance

P12 M.S. 1 Malware Reverse Engineer Technology

P13 M.S. -

Staff Threat Intelligence Engi-

neer

Technology

P14 B.S. 4

Computer Information Re-

search Scientist Senior

Technology

P15 College 12 Lead Security Researcher Technology

P16 B.S. 5 Threat Researcher Consulting

P17 M.S. 15 Security Researcher Technology

P18 B.S. 8 Sr. Security Researcher Technology

P19 M.S. 7 Vice President Finance

P20 M.S. 10 Malware Researcher Technology

P21 B.S. 3 Software Engineer Senior Technology

Table 1: Participants in the study

3 PARTICIPANTS
We received 46 responses to our screening survey and invited 39 of

them for an interview. 21 out of these 39 participants responded

and participated in an interview. Table 1 shows a breakdown of the

participants’ education, years of experience with malware analysis,

job title, and work industry. Participants have an average of 6 years

of experience, with experience levels ranging from 1 year to 15

years. The majority of the participants have a college degree: 8 have

a bachelor’s degree, 8 a master’s degree, and two hold doctorate

degrees. Although 18 of the participants have a college degree, many

of the participants were not formally taught the skills required for

malware analysis. Instead, many of the participants learned how

to analyze malware while working in a related field. Although

the participants have diverse backgrounds, we observed that the

majority have previous experience in either networks, systems,

reverse engineering or vulnerability discovery before transitioning

into malware analysis. Finally, the participants work for a variety of

companies (18 in total) including IBM, Mandiant, Cisco, TwinWave

Security, and one of the largest financial institutions.

Session 11C: Software Development and Analysis CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3055

Tier ID Indicators Main Objective

1 P3 Hash, IP, DN Blacklist

2

P2 Hash, IP, DN, NHA Extract Malicious Behavior

P5 DN, NHA, T Extract Malicious Behavior

P8 Hash, IP, DN, NHA Extract Malicious Behavior

P10 IP, DN, NHA Extract Malicious Behavior

P11 IP, DN, NHA Extract Malicious Behavior

P15 NHA Extract Malicious Behavior

P16 Hash, IP, DN, NHA Extract Malicious Behavior

P21 IP, DN, NHA, T Extract Malicious Behavior

P1 IP, DN, NHA Label Malware Families

P20 Hash, NHA, T Label Malware Families

P4 IP, DN, NHA, T Generate Report

P6 Hash, IP, DN, NHA Generate Report

3

P7 Hash, IP, DN, NHA, T, TTPs Track TTPs

P9 Hash,IP, DN, NHA, T, TTPs Track TTPs

P12 IP, DN, NHA, T, TTPs Track TTPs

P13 IP, DN, NHA, T, TTPs Track TTPs

P14 Hash, IP, NHA, T, TTPs Track TTPs

P18 IP, DN, NHA, T, TTPs Track TTPs

P19 Hash, NHA, T, TTPs Track TTPs

Table 2: Participants’ indicators and tiers. The IOCs required
by one tier build upon the IOCs required by the preceding
tiers.

4 MALWARE ANALYST TAXONOMY
We address our first research question by analyzing the objectives

of our participants. During our analysis, we observed that the high-

level objectives of the participants correlated with the IOCs that

the participants extract from the malware samples they analyze.

Given this observation, we defined a taxonomy that classifies mal-

ware analysts into three different groups based on their high-level

objectives.

4.1 Malware Analysts’ Objectives
We identified six main objectives that our participants discuss. Ad-

ditionally, we found that participants can have multiple objectives.

Each objective has corresponding IOCs required to achieve them.

The security community has defined six IOCs related to malware

analysis: hashes, IP addresses (IPs), domain names (DNs), network

and host artifacts (NHAs), tools (Ts), and techniques, tactics and

procedures (TTPs) [14]. In this subsection, we define each objective

our participants reported and identify the corresponding IOCs that

are required to achieve the objectives, as shown in Table 2.

Blacklist. Blocking IPs, DNs, and hashes, also known as blacklist-

ing, is the main objective of one of our participants. As P3 explains,

the “goal [of blacklisting] is to find out if the malware is causing

harm to the client and if it is, then block the file on their blacklists

and online through VirusTotal, push blacklists to endpoint devices.”

The IOCs necessary to achieve the blacklisting objective are hashes,

IPs, and DNs.

Extract Malicious Behavior. The most common objective par-

ticipants have is the extraction of potentially malicious behavior

from the malware sample. This objective involves capturing host

and network based activities and determining which might be part

of a malicious attack. As P10 explains, "part of my role on the team

that I’m on is to write behavioral indicators based on the sandbox

runs. So, I routinely review indicators from a report and see what

we could use to identify malware families or techniques that they

use.” The participants achieve this objective by monitoring host and

network activity such as process behavior and network communica-

tion. For example, P6 explains that his analysis is "typically always

host or network based. So does it create a mutex? Does it drop any

files? Does it modify any files? Does it modify the registry? and

what are the characteristics of the file itself? Take the hashes of the

file, what type of file it is and the network side would be: Does it

communicate with something? If so, what domain, URL, IP address,

what type of communication, protocol?"

Label Malware Families. Given that there are multiple versions

of malware samples that employ similar attack techniques, also

known as malware families, the objective of some participants is

to group malware into families to avoid analyzing known mal-

ware samples in depth. P1 spends "a lot of time looking at malware

and clustering malware based on their network communication

similarities. I developed some technologies that use the network

communication (http) to detect malware based on how they are

communicating over that protocol.” Similar to analysts that iden-

tify potentially malicious behavior, these analysts extract NHAs

to group malware. Additionally, P20 analyzes the tools used by

attackers to help exploit their targets. As P20 says, "I then look at

the behavior of many of those families, looking at the windows

API injections and code similarity, mostly working on doing the

aggregations for that.”

Generate Report. Oftentimes malware analysts provide reports

to their customers or threat intelligence teams with information

about the capabilities of a malware attack. P4 provided a brief

description saying, "My job is using static and dynamic analysis

to analyze the samples and write reports that vary in complexity.

Sometimes we do a basic triage of samples and sometimes we do

a full exhaustive analysis of samples to send to clients.” Similar

to the range of information included in the reports these analysts

produce, their work requires extracting different IOCs. This can

include hashes and IPs as well as analyzing the tools to obtain the

capabilities of a sample. When looking at a sample, P12 will "run

some tools that pull out metadata and analyze the PE files into the

headers, identify if it’s a DLL vs. an EXE, is it exporting anything?,

does it have any resource that is potentially used to unpack a file?”

Track Tactics, Techniques and Procedures. Another common

objective among our participants is to track the indicators of com-

promise known as TTPs. MITRE defines a set of tactics that cyber

attacks have used during attack campaigns and a set of techniques

that achieve each tactic [11]. For example, P7 says, “I primarily

focus on C2 [Command and Control] protocols for malware. Data

structures and algorithms are what I gravitated towards when I

first got into malware research. [...] I use those skill sets to group

malware families and do more long-term research on the families

like Trickbot and Emotet. I use those static skills from looking at

their configurations, how they operate, and their C2 protocols to

track them over time and when they change.” The TTPs that the

Session 11C: Software Development and Analysis CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3056

analysts extract are often sent to other teams to achieve other ob-

jectives such as threat intelligence and incident response. As P12

explains, the team that receives the TTPs he extracts models them

and "starts tying the different techniques and building the bigger

picture and they might see that different activities are related or

from the same campaign and threat actor." Another use for tracking

TTPs is to generate proactive defense mechanisms. After repro-

ducing some of the techniques that the malware performs in an

isolated environment, P14 can also "actuate [his] test environment

in such a way where [he] can turn on certain defense mitigations

to see if the malware is still able to perform its intended action."

4.2 Malware Analyst Tiers
After analyzing the participants’ objectives, we observed that partic-

ipants might extract the same set of IOCs when achieving different

objectives. As seen in Table 2, participants who extract malicious be-

havior, label malware families, or generate reports require network

and host artifacts. Similarly, the IOC tactics, techniques and proce-

dures is only extracted by participants whose objective is to track

TTPs. We used these observations to define a tiered taxonomy that

classifies the participants based on the IOCs they extract. Below,

we define each tier by the analysts’ main objective and required

IOCs.

Tier 1 (String-Based IOCs Extraction (SB)). SB analysts ex-
tract easily obtained string-based IOCs such as hashes, domain names,
and IP addresses from malware samples to detect when previously
seen malware samples re-appear in a large-scale analysis pipeline.

Tier 2 (PotentiallyMaliciousActivity Identification (PMA)).

PMA analysts focus on identifying potentially malicious activities
exhibited by malware samples using network and host artifacts and
tools. This analysis process can be leveraged to design methods of mal-
ware detection that are more robust than easily modified IOCs, detect
different malware samples that exhibit similar activity, or identify
the capabilities of malware.

Tier 3 (Tactics, Techniqes, and Procedures Comprehen-

sion (TTP)). TTP analysts perform malware analysis to identify
the strategies and intentions behind threat actors’ attack campaigns,
which is accomplished by understanding the Tactics, Techniques, and
Procedures that are used in different pieces of malware and correlating
these across multiple attacks.

After classifying our participants into these tiers, we have 1

participant in tier 1, 12 participants in tier 2, and 7 participants

in tier 3.
4
An interesting finding is that we only classified one

participant in tier 1. This reinforces recent discussions within the

security community about how malware analysis is trending to-

wards behavior-based detection rather than string-based detection

because behavior-based methods can protect against undiscovered

malware samples and remain effective for longer periods of time [5].

5 MALWARE ANALYST WORKFLOWS
The main results of this study center around a detailed analysis of

participants’ workflows. In this section, we discuss the different

4
We were not able to classify P17. During P17’s interview, he focused on a subsection

of his overall workflow, excluding the details needed to determine his tier.

Below 5 Between 5 and 20 Above 20 Varies
Number of Malware Samples

0

1

2

3

4

5

Nu
m

be
r o

f P
ar

tic
ip

an
ts

Figure 1: Volume of malware samples analyzed per week

stages of a malware analyst’s process and highlight the most com-

mon workflows of the participants. Additionally, we elaborate on

how participants within the same tier have commonalities within

their workflows. The findings of this analysis answer the second

research question (RQ2).

We found that the workflow of a malware analyst consists of

three key steps: (1) obtaining malware samples, (2) prioritizing sam-

ples for analysis, and (3) in-depth malware analysis when indicated.

Next, we describe each of these steps and how they vary between

analysts we interviewed.

5.1 Obtaining Malware Samples
The first step in an analyst’s workflow is to find malware samples to

analyze. These samples can come from a variety of sources includ-

ing clients, open-source repositories, honeypots, security products,

and other internal analysis teams. The tier 1 participant reported

getting their samples from clients. The client pays for a service that

monitors their perimeter and detects malicious behavior, mainly

within the network traffic, emails and their attachments, and files

found on the company’s devices.

When samples require a more in-depth analysis, they will usually

be escalated to a tier 2 analyst. For example, P2 says "Any malware

samples that are too complicated to be solved with basic string anal-

ysis or requires unpacking usually ends up coming to my team."

There are also companies that provide incident response services

where clients hire them to investigate and remediate a cyber intru-

sion. As part of this process, incident responders search the client’s

enterprise for malware and send any samples they find to tier 2

analysts within the incident response company. Additionally, 7 of

the tier 2 participants supplement their samples from clients with

additional malware found in repositories such as VirusTotal [2], Re-

versing Labs [15], Malware Bazaar [10], The Zoo [17], AnyRun [4],

Malshare [9], Hybrid Analysis [7], Malpedia [8], and Twitter [18].

One reason for this practice is that analysts want to have a broad

range of samples to analyze so that they can generate signatures

with a wider coverage.

Session 11C: Software Development and Analysis CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3057

Participants in tier 3 look for new, potentially harmful malware

that requires an in-depth analysis in order to develop preventive

measures to protect against these samples. To be truly preventive,

these analysts are not able to rely on samples sent from clients

because these samples likely come from infections that have already

occurred. To obtain interesting samples, 5 participants in tier 3

scrape websites like Pastebins and disposable emails, and look in

repositories, similar to the ones mentioned in tier 2.

Although the patterns above are fairly consistent among our

participants, we found that the data source is also dependent on

the company the analysts work with. As P2 noted, "I have worked

in some roles where you don’t research very much malware and

others where I can research millions of files in a day. So, what I’ve

come to realize is that process is very much indicative of the in-

dividual company and the process they have developed." Finally,

in Figure 1, we specify the amount of malware samples that the

participants analyze per week. As seen in the figure, the majority of

the participants analyze anywhere between 5 and 20 malware sam-

ples. Just as the data source depends on the company, the amount

of malware samples also varies due to the current threat landscape.

5.2 Prioritization
The volume of malware samples has grown exponentially, making it

challenging for malware analysts to process all of the samples they

see. As a result, analysts must prioritize which samples to analyze.

A common method of prioritization used by our participants is

to assign a lower priority to samples that are variants of known

malware samples. To determine whether a sample is a variant of a

known malware family, analysts use static and dynamic methods to

scan samples for known IOCs. In static analysis, automated systems

generate hashes, and extract strings, including IPs, and domain

names. These string-based IOCs can then be cross-referenced with

blacklists to identify variants. In dynamic analysis, participants run

the samples and search for previously created IOCs that capture

activities observed in previous samples. P12 states that they "use

things like yara rules or create signatures so that [they] can submit it

through [their] sandbox [and] ... figure out what [malware family it

belongs to]." If a sample does not match any indicators, it remains in

the analyst’s queue for further analysis. Lastly, 10 of our participants

assign a higher priority to newer malware samples. As P2 said,

"When I come in on any given day, or anytime to research malware,

I’m really only concerned about the new stuff because malware dies

really quickly. It dies within, oftentimes hours, or at most days."

During this process, some analysts may need to examine the mal-

ware’s code or strings. However, malware samples are frequently

encrypted to prevent this type of analysis. Therefore, an important

task in the malware analysis workflow is reversing this encryption,

commonly referred to as "unpacking." 7 participants utilize dynamic

analysis to unpack samples. For example, P14 says "if the malware

is packed or obfuscated, you’re either gonna spend time reversing

the encryption or obfuscation functions and that’s a pain. I hate

doing that. It’s much easier to run it and let it decrypt itself." 2

participants utilize external, automated unpacking services such

as UnpacMe [19] to get the unpacked sample. As P10 describes

“Another service that I use is called UnpacMe, which is an up and

coming malware unpacking service, and it’s really awesome. A lot

Static Strings

Dynamic
Execution

Blacklist IOC

Figure 2: Tier 1 Participant Workflow; P3

of times, it will get you to the lowest stage executable really quickly

that can be really helpful”. Lastly, 3 participants also utilize a hybrid

approach by debugging the sample mainly with ollydbg [12].

5.3 Main Analysis Process
When an analyst decides to analyze a malware sample in detail,

they follow a specific workflow that allows them to reach their

objective. To identify the analysis processes of our participants,

we studied the overall workflow described in the interviews. Next,

we identified commonalities between the workflows of different

participants. These commonalities allowed us to merge similar

workflows. Finally, we selected the five most common workflows

of the participants, shown in Figures 1-3
5
, where the blue boxes

display the participants’ main objective. The rest of this section

describes these workflows, including the analysis steps and the

thought processes of the participants.

The first workflow is shown in Figure 2. This workflow starts

with either a potentially malicious executable or document. P3

analyzes executables by statically extracting strings. This process

can be accomplished by running the strings command or opening

the sample in a disassembler such as IDA. These strings are then

used to blacklist the sample. P3 said he "will block it in our network

and we will make sure that domain and hash will be blocked in

our local firewall." When analyzing a document, P3 opts to perform

dynamic analysis on the sample and monitor the results, looking

for IOCs such as IPs and domains. These IOCs are put into firewall

blacklists to detect previously seen samples.

The second workflow, shown in Figure 3a, is used by partici-

pants who utilize some static analysis within their workflow, but

emphasize dynamic analysis. During dynamic analysis, participants

monitor the environment to identify what actions the sample takes.

As P15 mentions, “process tree, file access rewrites, registry, injects

creation are the minimum." There are a number of tools that are

able to collect this information. One example is P2, who is "always

going to run ProcMon and process explorer because I want to know

if other processes were created on the fly. I’m always going to run

Wireshark because I want to know if network traffic is going to be

done, snapshot of my box because I want to know what changes

have been made, and when I’m done I run Clonezilla to revert."

This information is used to create behavioral signatures, which P10

explains are "able to match on what the malware does like what

files that it writes or registry keys that it creates, sets or modifies.

5
P5 and P21 did not follow any of the five most common workflows and, as such, are

not listed in the figures.

Session 11C: Software Development and Analysis CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3058

Static Strings Dynamic
Execution Static Analysis

Generate
Behavioral
Signatures

(a) Tier 2A Workflow; P1, P2, P8, P10, P11, P15, P16, P17

Static Strings Static Analysis Dynamic
Execution Generate Report

(b) Tier 2B Workflow; P4, P6, P20

Figure 3: Tier 2 Participant Workflows. The dashed boxes
represent optional steps in the workflow process.

[...] The most promising [tool] is called sigma and they let us write

behavioral indicators and also write signatures on log files." One of

the benefits of behavioral signatures is that they "encompass more

than one [sample] that I load" as P2 discusses.

If analysts following this workflow are not able to get the mal-

ware to reveal its malicious behavior with dynamic analysis, they

will often resort to static analysis. P1 explains his process: "first

you run it in a dynamic environment and you see: Does it output

anything? Does it look like it’s running as you think it should?

[...] To understand it better, run it on bare metal to see if there is

anything in that dynamic environment that it’s detecting. [...] If

you still can’t get anything there, the next step is reverse engineer-

ing. So, doing manual analysis with IDA pro and unpacking and

disassembling to try and understand what’s going on. That is the

tiered approach."

The third workflow, shown in Figure 3b, also utilizes a combina-

tion of static and dynamic analysis, but emphasizes static analysis.

Static analysis is used by these participants to conduct a more in-

depth analysis of the tools used by the attackers. P20 starts with "an

API scout over it; meaning I extract all of the statically referenced

window API functions and basically do a similarity of them because

the spectrum of the API functions that I use is quite static for fami-

lies because it basically relates to the semantics that are encoded

by the programmer." This type of analysis allows participants to

label samples with their malware family and understand the tools,

which improves the detection of different variations of the sample.

In this workflow, static analysis is also used to identify capabili-

ties of the sample and write different reports about it. P4 mentions

that "some people want to know all the capabilities like what can

[the malware] do; Can it log keystrokes? Can it respond to back-

doors? Can it take screenshots?" These insights are compiled to

write reports about the malware, both for internal use by other

teams, such as threat intelligence, and to respond to external re-

quests from customers. As previously mentioned, participants in

this workflow occasionally utilize dynamic analysis. P6 provided

an example of when he would use dynamic analysis, "I had some

samples ... they were packed in a certain way that I couldn’t see. In

that case, I put it in a VM and ran it and saw that it’s definitely that

family. That’s an example of when I would do dynamic."

Dynamic
Execution Static Analysis Track TTPs

(a) 3A workflow; P9, P12, P13

Static Strings Dynamic
Execution Static Analysis Emulating

Malware Track TTPs

(b) 3B workflow; P7, P14, P18, P19

Figure 4: Tier 3 Participant Workflows. The dashed boxes
represent optional steps in the workflow process.

The fourth workflow, shown in Figure 4a, is used to analyze

multiple steps of a malware attack. Attackers can combine mul-

tiple stages into a complete attack. This workflow identifies the

connections between these stages. Participants who use this work-

flow want to identify the TTPs used throughout the attack, which

requires dynamic analysis with behavioral monitoring. For exam-

ple, P13 said, "we’ve got a couple different dynamic analysis tools.

I’ll run through those if it’s an executable [...] makes it easier to

triage and get what I want out of the document." However, if the

malware evades the analysis or does not show it’s complete mali-

cious behavior, static analysis is used to figure out what triggers

are required for the malware to download and execute the second

or third payload. As P12 explains, “a lot of times the second stage

requires the downloader to actually load it and do something to get

it to run. So, if you’re running a sandbox that can collect and can

detect the second stage but it runs it separately, that may not work.

You may just get a file that doesn’t execute. So, you need it to do

one stream where it downloads each stage and is able to put that in

the same VM and memory so that the other components run." The

identified attack techniques are often sent to threat intelligence

teams who model threat actors. P12 says these teams "pull a lot of

the information and figure out the different aspects of what they

do when they model it. They use a graph database to model and

look for trends. [...] As they model, they start tying the different

techniques and building the bigger picture and they might see that

different activities are related or are from the same campaign and

threat actor."

The final workflow in Figure 4b provides another method for

extracting TTPs over a longer period of time by emulating the

malware. As P7 explains, emulating themalware involves “reversing

the C2 protocols and then using that reversed C2 protocol to harvest

information from live C2s, whether that is payloads or targets,

whatever I want to get from the C2s.” This analysis can reveal how

a group’s malware moves through different infrastructure while it

is developed, obfuscated, and eventually deployed during attacks.

This valuable knowledge allows security specialists to understand

the threats they are likely to face in the near future and prepare

appropriate defenses to stop such threats before they can damage

their organization. By adopting this approach, organizations can

reduce the number of cyber attacks that they fall victim to and

improve their security posture.

Session 11C: Software Development and Analysis CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3059

5.4 Factors that Lead to Differences in
Workflows

The detailed findings from this section reinforce our conclusion

in section 4 that the primary factors that affect the workflows are

the main objectives and the extracted IOCs. Additionally, we found

two additional influencing factors. First, we found that the type

of malware sample being analyzed affects the workflow. When

samples are classified as variants, the participants’ workflow is less

extensive than the analysis of novel malware because the analysts

already have an understanding of the malware family. While work-

flow 3a and 3b begin to explore the steps required to conduct a

more in depth analysis, we leave a more detailed investigation for

future work. The second additional influencing factor is the obfus-

cation mechanisms used by the sample. When analyzing malware

with more sophisticated obfuscation, 4 of our participants prefer to

use dynamic analysis to deobfuscate the sample. In contrast, when

analyzing malware samples that utilize known obfuscation tech-

niques, 2 participants prefer to skip dynamic analysis and analyze

the sample statically.

6 DYNAMIC ANALYSIS SYSTEM SETUP
In section 5, we learned that all of the common malware analysis

workflows involve dynamic analysis. Due to this widespread use,

we investigated how different participants configure their dynamic

analysis system. During the interviews, we asked participants to

walk us through their configuration process. From the responses,

we learned that one of the most important factors in performing

quality dynamic analysis is the careful setup and configuration of

the analysis system. Specifically, we identified five main steps that

analysts complete when they set up their dynamic analysis system

and their reasoning behind how they complete each step.

6.1 Virtualization Vs. Bare Metal
When performing dynamic malware analysis, an analyst must de-

cide whether to run samples in a virtual environment or directly

on a bare metal machine. All of the participants use virtual envi-

ronments for dynamic analysis. One of the main reasons for this

is that bare metal analysis requires more physical resources, As

P1 mentioned, "It’s costly to run things on bare metal" (previous

work has also discussed this limitation [54]). Also, 5 participants

emphasized the fact that bare metal analysis does not scale well to

a large number of malware samples. This is especially true for the

participant in tier 1 because he frequently needs to analyze many

samples. However, if malware does not show its expected behavior

in a virtual environment, 4 participants re-analyze the sample on

a bare metal system. As P1 mentioned, the only time he uses bare

metal is for "unique cases; you can’t run everything."

6.2 Open-Source Vs. Commercial Dynamic
Analysis Tools Vs. Custom Virtual
Machines

The three types of virtual dynamic analysis platforms that analysts

use are commercial sandboxes, open-source sandboxes, and per-

sonal analysis environments that are generally built with virtual

machines (VMs). When participants decide to analyze malware in

a virtual environment, they have to decide which platform to use.

From our interviews, we discovered that the more in-depth the

analysis becomes, the less likely it will be done with commercial

tools, primarily because of their lack of configurability.

Specifically, 3 of our more experienced participants noted that

they want the ability to set many different parameters of the envi-

ronment and add additional features. For example, P19 said that if

he "cannot put personal signatures into the sandbox, that can be

a problem." Some of the other features that our participants want

in their sandboxes include the flexibility of running samples with

either a 32 or 64 bit architecture (P19), adding custom sensors to

collect activity from different malware types such as JavaScript or

Visual Basic (P19), and adding custom code when they develop their

own features (P16). Unlike commercial sandboxes, open-source so-

lutions allow analysts to personalize their setup and are free to use.

Although participants appreciate the flexibility of open-source sand-

boxes, one of their main critiques is that they require a significant

amount of effort to set up correctly. Also, 3 participants mentioned

that the setup process requires a deep technical understanding of

how sandboxes function.

In contrast to open-source sandboxes, 4 participants say that

commercial sandboxes are easier to use. Althoughwe emphasize the

importance and challenges of setting up dynamic analysis systems,

some commercial sandboxes provide a preconfigured environment.

As P12 stated, security companies "have done a lot of research to

figure out what products should go in that and how to configure it

to get it to run optimally." The malware analysts at these companies

also provide constant feedback to the sandbox engineering team

to address new evasion techniques and incorporate new detection

signatures. However, the decision about what new features are

added to the sandbox is made by its developers, not the malware

analysts who use it. Therefore, it can be challenging for users to

get additional features added to the sandbox because this may not

be the main driving force of the developers.

Due to the previously mentioned disadvantages of both com-

mercial and open-source sandboxes, 9 participants set up personal

analysis environments. Generally, these environments are com-

posed of VMs with analysis tools installed. As P12 mentioned, "I

like to do my own dynamic analysis. I will run it in my VM and run

different tools that collect information." We were surprised when

P21 said that he had "never done anything with cloud sandboxing

like Cuckoo. I’m not terribly informed on what they do. I’ve just

done things with VM because they are easy to set up."

6.3 Setting Up Environment Targeted by
Malware

One of the key decisions an analyst has to make is how to set up the

execution environment, including selecting the operating system,

time zone, programs installed, and files present, such that malware

samples will try to attack it. Table 3 and Table 4 show the features

that participants change when configuring a general or specific

environment, respectively. To provide the most accurate results, we

only include participants who responded to our follow-up survey to

prevent inaccuracies due to a participant not mentioning a feature

they do configure during their interview.

Session 11C: Software Development and Analysis CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3060

ID OS Microsoft
Office

Web
Browser

Adobe
Acrobat

Libraries Timezone Language Usernames File
Names

Browsing
History

Populate
Files

Other

P9 Windows &

Linux

! ! ! ! ! ! ! ! !

P10 Windows ! ! ! ! ! Shared drives

P16 Windows 7, 8.1,

10 & Android

! ! ! ! ! ! !

P18 Windows 7, 10,

or XP

! ! ! ! ! ! ! ! ! ! Admin vs.

normal user

P20 Windows ! ! ! ! ! ! ! .net, MSVC

runtimes

Table 3: General environment features: For the participants who strive to create a general dynamic analysis environment, a
check (!) signifies that the participant sets the corresponding configuration in their environment.

ID Timezone Language Filenames Browser
History

Populate
Files

P2 !

P4 ! !

P5 ! !

P13 !

P19 ! !

Table 4: Specific environment features: For the participants
who configure specialized environments for running indi-
vidual malware samples, a check (!) signifies that the par-
ticipant configures the corresponding environment feature
for individual samples.

Some malware rely on features in the environment to complete

malicious actions. An example of this is phishing emails with mali-

cious documents attached. The environment must have Microsoft

Office installed to run the commands that are embedded in the file.

Therefore, to see some of the behaviors of the sample, the dynamic

analysis environment must be configured in a certain way. One

method, described by 10 participants, for analyzing such samples is

to configure a general environment that can analyze many samples

without modifying the environment. For example, P13 said that

"scattering a couple files and some basic software [...] is slightly

more than bare minimal," which was also confirmed in the follow-

up survey. This is especially true when samples are being executed

for the first time because the analysts do not know what environ-

ment the sample requires until they do a more in-depth analysis.

After the first execution in a general environment, the analysts will

then decide whether they want to continue testing out different

dynamic analysis configurations or utilize static analysis.

When the participants decide to continue using dynamic analy-

sis, 5 participants configure their environments either to replicate

the target of specific samples or to avoid evasion techniques. Specif-

ically, some samples will evade analysis by checking the values of

environment variables such as the language or time zone and not

performing malicious tasks if it is not running on its targeted sys-

tem. Such evasive malware pose additional challenges that analysts

must decide how to handle. These participants choose to handle

evasive malware by configuring the analysis environment specif-

ically for a sample. For example, P1 stated that he runs malware

samples in a "similar operating system to what [his] customers

were running" in order to emulate, as closely as possible, the mal-

ware’s target environment. This creates an analysis environment

that the malware is more likely to attack, allowing the analyst to

observe more of the sample’s malicious behavior. Table 4 shows

the features that these participants set for individual samples. Each

feature can be tied to a different evasion technique seen in malware

samples. For example, malware samples may target a specific geo-

graphic region. P2 executes samples in "different regions around the

world and he runs that same url or that same payload through each

region looking for different characteristics" because he does not

know "what the attacker is looking for or who they are targeting."

Similarly, malware that exfiltrates data may only take specific files,

so if these files are not present during the analysis, the real behavior

of the sample will not be captured.

A surprising result is that although tier 3 participants look at

specific malware samples, they do not spend as much time or ef-

fort customizing their environment. As P19 described, "I probably

wouldn’t bother. It would be interesting, but at that point [...] I

would just statically analyze and reverse engineer it." However, in

the follow-up survey, P19 clarified that he occasionally sets the

browser history and populates files.

Another approach that 2 participants discussed for setting up dy-

namic analysis systems is to use an automatic script that randomizes

the features of a general, realistic environment that were previously

mentioned. This approach not only reduces the setup time, but can

also help prevent malware from fingerprinting the analysis system.

Due to the randomness of the environment, malware cannot iden-

tify specific characteristics of the analysis environment to search

later to identify that they are being analyzed.

6.4 Configuring Network Communication
The next consideration of a dynamic analysis environment is how

to configure the network connection. 17 participants believe that

capturing the network behavior of malware when it is allowed to

connect to the real Internet provides insights that are beneficial

in conducting their analysis. These participants are aware of the

potential risks of malware samples causing harm to other Internet

users and take the necessary precautions to avoid causing serious

Session 11C: Software Development and Analysis CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3061

harm. The precautions that participants take are similar to what

previous work has taken, such as blocking outbound communica-

tion from specific protocols commonly used for denial-of-service

attacks [20, 24, 32, 41, 64, 65].

In contrast, 2 participants from incident response and threat

intelligence teams are concerned that malware may trace them

back to their company. One possible solution for this problem is to

analyze the malware through VPNs that appear to originate in a lo-

cation other than where the analysts currently are. However, these

participants argue that this technique does not protect against the

attackers tracing the analysts back to their company. For example,

P12 states that "If it’s part of an incident response engagement,

we don’t do that because we don’t want to tip off the threat actor

that we are investigating." An alternative option is network emula-

tion, which allows incident responders to send synthetic network

responses to the malware and analyze some network behavior with-

out anything escaping their analysis environment and alerting the

attackers that their malware is being analyzed. This technique can

also be helpful when a C2 server is down and analysts want to

observe how the malware would communicate with it.

6.5 Dynamic Analysis Execution Time
When performing dynamic analysis, participants must decide how

long to run each malware sample. Through our interviews, we

discovered that 15 participants run samples for a short time period

(less than 5 minutes) because executing a sample requires resources,

which are limited. To run all the samples that tier 1 and tier 2

participants collect, the time allocated to each must be small. Also,

participants like P18 argue that "a low execution time limits the

amount of damage that can [be] done."

However, there are exceptions to this short execution time. 4

participants in tiers 2 and 3 tend to run their samples for multiple

hours. One reason that participants prefer longer execution time is

that changing the flow of time gives malware an artifact that they

can use to evade the analysis system. Therefore, to observe the true

behavior of the malware, these participants state that they do not

alter the time. Finally, in tier 3, 3 participants perform longitudinal

studies of malware, lasting for months. A long-term analysis allows

these participants to understand the motivation and tactics behind

the attack. Finally, 2 participants try to create tools that allow them

to monitor an attacker’s C2 infrastructure and gain first hand access

to malware being distributed by the attacker. This allows them to

be proactive by enhancing defensive security measures to protect

against new techniques and avoid being compromised when these

techniques are eventually deployed. P18 stated that their system

"can tell within minutes if any spam campaign is sent or if they

updated the configuration."

6.6 Overcoming Evasion
The last component of the dynamic analysis workflow we investi-

gated was how analysts handle evasive malware samples. 16 par-

ticipants in tiers 2 and 3 utilize techniques such as debugging and

patching malware to get evasive malware to reveal its malicious

behavior during dynamic analysis. For example, P17 stated that

"the debugger can be used to bypass the evasion checks that are

anti-virtualization." Once the participants identify the evasion tech-

niques with signatures such as Yara, they can use a debugger to

manually skip over them and execute the malicious behavior. This

process has been partially automated by tools such as CAPE Sand-

box [1]. Similarly, 4 participants choose to patch the malware, com-

pletely removing evasive checks.

A different approach for handling evasive malware mentioned

by a few participants is to utilize existing open-source solutions

such as Al-Khaser [3]. Al-Khaser is a tool that runs in a sandbox and

provides a list of evasion techniques that the sandbox is susceptible

to. Our interviews also confirm that practitioners and researchers

manipulate the system time to bypass time-based evasive checks

as extensively studied in past work [38, 39, 63, 81].

7 DISCUSSION
After examining how the participants perform malware analysis

in practice, we identified challenging steps in their workflows. We

believe that these challenges faced by practitioners can be ame-

liorated by the malware analysis research community. First, we

identify previous research that has not yet fully transitioned into

practice. Second, we highlight remaining research questions and

propose future directions that leverage the expert domain knowl-

edge gained in this study to help answer these questions. Third, we

present recommendations for improving the usability of malware

analysis systems.

7.1 Transitioning Research to Practice
In this section, we identify research that has the potential to ease

some of the challenges our participants face in practice. As previ-

ously discussed, one of the most common challenges with dynamic

malware analysis is determining how to get a malware sample to

reveal its malicious behavior. P13 said that one of the biggest chal-

lenges is "probably if it doesn’t run, trying to figure out why it

doesn’t run. It seems that dynamic analysis for the things that run

tend to do a pretty good job, but if it doesn’t run or produce any

output; that rabbit hole you have to go on." While analysts have

ways to handle a variety of evasion techniques, there is no single

solution to get a sample to execute its malicious instructions. One

technique that participants use to avoid being evaded is by creating

an environment that is appealing to the malware. Another strategy

to avoid evasion that has been explored in research is to analyze

the malware in more transparent environments. A considerable

amount of research in this area could be transitioned into prac-

tice [39, 52, 71, 83, 84]. These methods try to defeat fingerprinting

by removing artifacts in the analysis environment that malware can

associate with the analysis system. If these methods could be tran-

sitioned into practice, practitioners could analyze their malware in

these environments and, due to the increased transparency, mal-

ware samples would be less likely to evade analysis. This method

could allow analysts to capture more of the sample’s malicious be-

havior. Although these are promising analysis techniques, their use

in practice may not be straightforward. As P21 said, "I read a bunch

of academic papers, but what I often found was that a lot of them

were in a lab scenario where you control the inputs and outputs.

Extrapolating that into something that I can use is difficult." The

transparency of these methods prevents malware from detecting

Session 11C: Software Development and Analysis CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3062

that it is being run in a controlled environment however, they do

not analyze the malware in its targeted environment. This study

has shown that configuring the analysis environment to mimic its

targeted environment is critical to get some malware samples to

reveal their malicious behavior. In the next section, we propose

future research that has the potential to address these remaining

challenges.

Determining whether a sample is a variant of a previously ana-

lyzed sample is a common task that most malware analysts have to

perform to avoid conducting an in-depth analysis of a known sam-

ple. From the interviews, 14 participants stated that this remains

a challenging process. For example, when asked what strategies

P2 uses to identify malware variants, he replied, "I’m going to say

there are no good tools or resources, at least in the free space, that

help in that arena." Although this remains a challenge in practice, it

is important to note that there has been a considerable amount of

research to address this problem, including methods that leverage

dynamic features [24, 27, 68], static features [42], or a combina-

tion of the two [44]. These features are used to classify or cluster

malware samples into their respective families automatically. By

combining these techniques with the large amount of malware sam-

ples that practitioners have access to, analysts could build clusters

that divide samples into different families. These clusters could then

be used later to determine whether an unknown sample fits into a

known malware family. By adopting these techniques, practition-

ers could reduce the amount of time spent determining whether

samples are variants, and instead focus on analyzing the novel

samples.

Additionally, 8 of the participants stated that the task of deter-

mining whether two malware functions are similar is one of the

more time-consuming tasks they need to perform. As P21 stated,

"Figuring out if two binaries have the same function is a really, re-

ally hard problem that I worked on to get something close to right.

Being able to say that these are reliable results and putting a stamp

[saying that those] two match is difficult." There has been past re-

search that addresses the problem of function similarity [59, 62, 77].

Some of these solutions propose a hybrid method with dynamic

and static analysis, while others use machine learning based ap-

proaches to identify similar functions. The algorithms proposed in

these papers could be implemented as a new analysis feature as a

first step towards addressing malware function similarity.

Another challenging task identified in practice is distinguishing

between malicious and benign behaviors found in dynamic analysis

execution outputs. As P6 said, "To use a sandbox you need to have a

good idea of what is baseline behavior. [...] You can’t just put it in a

sandbox and take all the results. You need to be able to look at it and

say that’s regular windows and adobe behavior. That’s something

that can trick people a lot." One approach to address this problem is

to compare the system calls generated by a malware sample to the

system calls generated by benign applications when executed in

a dynamic analysis system. Christodorescu [35] provides such an

algorithm that practitioners could use to compute the differences

between these system traces, and automatically separate malicious

behavior from normal system behavior.

The last time-consuming process that we identified could bene-

fit from past research is unpacking malware samples. Unpacking

malware samples is a task that 7 participants not only describe

as time-consuming, but 3 participants also state that the effort of

unpacking does not provide them any useful information about

the malware. In fact, they would rather spend their time on more

valuable tasks such as analyzing the functions of a malware sample.

There are many research systems that address various types of un-

packing. Such systems include PolyUnpack [69], Rambo [74], and

BinUnpack [34]. These systems focus on automating the process of

unpacking and have the potential to help analysts in practice.

7.2 Future Research Directions
In addition to the challenges discussed in subsection 7.1, we identi-

fied additional challenges that participants faced, which potentially

pose new research questions. In this section, informed by the exper-

tise of our participants, we define some future research directions

that may help fill existing gaps in these areas.

How to configure a dynamic analysis environment that repli-
cates a malware’s targeted environment. As seen in section 6,

configuring the dynamic analysis environment to match the mal-

ware sample’s targeted environment can be crucial to observe a

sample’s full, malicious behavior. Although previous work done by

Brumley et. al. [30] identifies the triggering events that cause a mal-

ware sample to execute its malicious behavior, it is still unclear how

to automatically configure the runtime environment of a dynamic

analysis system such that it is an appealing target for the sample.

In practice, we found that many participants use static analysis

to determine what features are required in the dynamic analysis

environment to trigger the malicious behavior. One potentially im-

pactful research direction is building an integrated hybrid analysis

system to empower analysts. It could leverage previous research

such as GoldenEye [79], which proposed a method to identify the

targeted victim’s environment. This system first uses taint analysis

combined with manual analysis to identify conditional statements

that are sensitive to the environment. Next, it executes the mal-

ware in multiple environments, one for each possible return value

of the APIs that query the environment. Although this method is

more efficient compared to its predecessor, X-Force [67], it requires

significant memory to run a sample on multiple environments in

parallel.

The exploration of concurrent use of both static and dynamic

analysis in an integrated environment could be promising. First,

static analysis would automatically search the malware for condi-

tional checks of the targeted system. Then, symbolic analysis could

be applied to solve for the environmental conditions of the mal-

ware’s targeted system. After finding the necessary environmental

conditions, this system would suggest and set the corresponding

values in the dynamic analysis environment and re-run the mal-

ware sample. In contrast to GoldenEye [79], this system would only

execute the sample in a single environment, which would reduce

the amount of memory and computational resources required for

the analysis. Additionally, by incorporating feedback from malware

analysts, better predictions of the targeted environment could be

made over time, leading to faster analysis times. If a malware sam-

ple was packed, this tool would have to apply currently available

unpackers [34, 69, 74] to obtain a sample that can be statically

analyzed.

Session 11C: Software Development and Analysis CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3063

How to automatically analyzemultistagemalware. Some par-

ticipants who use workflow 3a, seen in Figure 4a, need to analyze

multi-stage malware attacks. However, participants explain that

getting a sample to execute all of its stages at once can be quite

challenging. Running each stage independently is not effective be-

cause there can be dependencies between the different stages that

must be taken into consideration. Our study participants analyze

these campaigns by using dynamic analysis to run each stage and

static analysis to step through the process of downloading the next

stage and determining how it injects the payloads to ensure that

each stage runs as intended. A promising technique to address this

challenge is concolic execution, which uses a combination of both

symbolic and concrete analysis. Symbolic analysis could automate

the process of determining what inputs and settings each stage

requires to run as intended. Then, the concrete part of the analysis

could use the newly found inputs to properly execute the malware

and retrieve the next stage. The software testing community has

previously proposed a technique that leverages a combination of

dynamic and symbolic execution to execute targeted paths in a

program [23, 31]. Although this research proposes methods that

are similar to what we suggest, applying them to malware analysis

presents new challenges because malware samples frequently evade

analysis. Combining previous work with the strategies that the par-

ticipants use to analyze multistage malware offers a potential way

to automate additional analysis steps of these campaigns.

7.3 Usability Recommendations
From our participants’ explanations of the disadvantages of cur-

rent tools, we identify two important aspects that developers of

malware analysis tools should keep in mind. Lack of customization

of tools is the main disadvantage that participants mentioned in

section 6. According to many analysts, it is important for tools such

as dynamic analysis sandboxes to allow users to customize the set-

tings of the analysis system, such as installed programs as well as

file paths and their content. As mentioned in subsection 6.2, some

analysts find that commercial dynamic analysis tools lack critical

features such as the type of architecture malware can be executed

on (Ex: 32bit vs. 64bit) and support for malware samples that target

different platforms such as JavaScript or Visual Basic. During the

interviews, participants also mentioned that they use a wide range

of tools to collect all of the information they need. As P2 says "I

use VMs, VPN to hide my network, Wireshark, Process Explorer to

monitor processes, ProcMon to monitor what the process is doing

[...] there is also ProcDOT and all sort of other tools to analyze those

dumps after you get them so there are countless tools." Malware

analysts would benefit from a dynamic analysis tool that has a more

comprehensive and flexible monitoring program, which collects all

of the IOCs and presents them to the analyst in a standard format

rather than asking analysts to run different tools to obtain each

type of indicator separately.

8 RELATEDWORK
User Studies. A sizable body of prior work has examined the

workflows of software engineers (e.g., [40, 49]), including engineers

writing security software [21, 22]. However, only a few prior works

have examined how security-specific engineers conduct their work.

Most related to our work, Votipka et al. [76] studied the workflow

of reverse engineers through an observational study of security

professionals. Their work develops a formalized workflow that de-

scribes how a reverse engineer completes the task of understanding

the operation of a piece of software that the professional is unfamil-

iar with. Our study confirms the finding of Votipka et al. that static

analysis is often used when reverse engineering a malware sample.

In contrast to Votipka et al. [76], the participants in our study are

all malware analysts, rather than reverse engineers. Additionally,

we find that the workflows extracted from our participants include

analysis tasks that are not present in the workflow of reverse engi-

neers described in Votipka’s work. Finally, our results contribute

a discussion of the dynamic analysis configuration process that

malware analysts use, a topic that is also not addressed in prior

work.

Another related study by Votipka et al. [75] investigates the

differences between the vulnerability discovery processes of soft-

ware testers and white-hat hackers. Its methodology consists of

semi-structured interviews with participants from both the hacker

and tester communities, and they use their results to recommend

improvements to vulnerability discovery processes of both commu-

nities. Our methodology is similar to the one used for this study,

but we focus on how malware analysis is performed in practice as

opposed to vulnerability discovery.

Malware Analysis. A major challenge of dynamic malware anal-

ysis is the proper configuration of the analysis environments such

that malware samples will reveal as much of their malicious behav-

ior as possible. Kharaz et. al. [50] automatically creates a realistic

environment as part of their ransomware detection tool. To make

an attractive environment for the ransomware, the authors design

scripts that create files with believable content pulled from the

internet, names with real words, and file metadata with reasonable

values.

Another approach to overcome evasion is to design analysis

systems that are transparent to the malware [39, 52, 71, 83, 84].

These methods try to defeat fingerprinting by removing artifacts

in the analysis environment that malware can associate with the

analysis system. Other methods focus on detecting when malware

stalls before performing malicious activities, and force the malware

to execute a path that avoids the code that stalls execution [56].

Some analysis systems execute a single sample in multiple envi-

ronments in an attempt to get a greater percentage of the malware’s

true behavior to execute [26, 54, 63, 67]. A common environment

included in such systems is bare metal. When malware runs out-

side of a virtual machine, fingerprinting methods are less effective

because the artifacts collected are from a physical machine instead

of a virtual environment [53, 54, 84]. Furthermore, multiple envi-

ronment techniques have been used to automatically detect any

type of evasion techniques [26, 52, 58]. In order to help malware

analysts determine if their analysis system is vulnerable to evasion,

Jing compares artifacts from an analysis environment with a stan-

dard environment to determine the artifacts found in the analysis

environment but not in production [48].

As the interviews with the participants show, malware analysts

sometimes turn to static analysis techniques when they want to

reverse engineer a sample or learn more about how to configure

Session 11C: Software Development and Analysis CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3064

their dynamic environment. Researchers have also applied static

analysis to determine the malware targeted environment. Xu [79]

analyzes targeted malware using parallel execution environments

and automatically adjusts the environment settings that the sample

is looking for. First, static analysis is used to identify environment

query APIs and determine the possible return values. Then, the

sample is dynamically analyzed in parallel environments, each with

different environment settings for the possible return values. While

executing, the system sets environment settings such that the sam-

ple executes the most interesting paths. To identify inputs that

will trigger malicious behavior, Brumley [30] proposes a hybrid

approach that matches malware triggers to conditional checks in

the binary and treats the variables involved in such checks as sym-

bolic. Then, the malware is executed such that the instructions that

operate on symbolic variables are symbolically executed and other

instructions are executed concretely. This approach allows analysts

to identify inputs that trigger the malware and then dynamically ex-

ecute the sample with the identified inputs to observe its malicious

behavior.

There are other works that leverage hybrid analysis in ways our

participants did not discuss. Hybrid analysis has been used to find

dormant malicious behaviors [36], discover vulnerabilities [23], and

find software bugs [31]. A different application of hybrid analysis

is hybrid concolic testing [60]. This work uses random testing to

access program paths that reach deep within the program, then

symbolic analysis is applied to explore parts of the program near

that execution path.

Finally, static analysis can be leveraged independently for mal-

ware analysis. Symbolic analysis is one such technique that involves

exploring many paths of a program symbolically and using con-

straint solvers to determine whether different paths are feasible

and what inputs will cause that path to be executed [25, 70]. Since

malware is frequently obfuscated, it can be challenging to apply

these static analysis techniques in malware analysis. Such obsta-

cles have been previously explored, including symbolic analysis of

obfuscated code [80] and extraction of the semantics of obfuscated

code [29]. Also, when analyzing complicated symbolic constraints

in malware, one method solves a subset of the constraints through

decomposing them and recombining the produced inputs [31].

9 CONCLUSION
In this user study, we interviewed 21malware analysts to get a better

understanding of how malware analysis is done in practice. These

interviews shed light on the diversity of malware analysis, which

is reflected in the broad range of workflows that our participants

follow as well as the amount of effort they put into configuring

their dynamic analysis systems. Our analysis highlights six different

components of dynamic analysis systems that practitioners focus

on when setting up dynamic analysis systems and how their setup

process differs depending on their tier. Based on the user study,

we identified challenging tasks that the participants face during

their analysis process. We first discuss promising existing academic

research that could be transitioned to practice and then propose

future research directions that could help address the remaining

challenges.

REFERENCES
[1] Capev2. https://github.com/kevoreilly/CAPEv2.

[2] Virustotal. https://virustotal.com.

[3] al-khaser. URL https://github.com/LordNoteworthy/al-khaser.

[4] Any-run - interactive online malware sandbox. https://any.run.

[5] How antivirus softwares are evolving with behaviour-based malware detection al-

gorithms. https://analyticsindiamag.com/how-antivirus-softwares-are-evolving-

with-behaviour-based-malware-detection-algorithms.

[6] Equifax says cyberattack may have affected 143 million in the u.s. https://nytimes.

com/2017/09/07/business/equifax-cyberattack.html.

[7] Free automated malware analysis service. https://hybrid-analysis.com.

[8] Malpedia, . https://malpedia.caad.fkie.fraunhofer.de/.

[9] Malshare, . https://malshare.com.

[10] Malware bazaar, . https://bazaar.abuse.ch.

[11] Mitre att&ck. https://attack.mitre.org/matrices/enterprise/.

[12] ollydbg. http://www.ollydbg.de/.

[13] Openioc: Back to the basics. https://www.fireeye.com/blog/threat-research/2013/

10/openioc-basics.html.

[14] Pyramid of pain. https://detect-respond.blogspot.com/2013/03/the-pyramid-of-

pain.html.

[15] Reversing labs. https://reversinglabs.com.

[16] Target missed warnings in epic hack of credit card data. https://bloom.bg/

2KjElxM.

[17] thezoo - a live malware repository. https://github.com/ytisf/theZoo.

[18] Twitter. https://twitter.com.

[19] Unpacme. https://unpac.me.

[20] M. Abu Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A multifaceted approach to

understanding the botnet phenomenon. In Proceedings of the 17th ACM SIGCOMM,

pages 41–52, Stanford, CA, Aug. 2006.

[21] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky. You get

where you’re looking for: The impact of information sources on code security.

In 2016 IEEE Symposium on Security and Privacy (SP), pages 289–305. IEEE, 2016.
[22] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky. How internet

resources might be helping you develop faster but less securely. IEEE Security &
Privacy, 15(2):50–60, 2017.

[23] D. Babić, L. Martignoni, S. McCamant, and D. Song. Statically-directed dynamic

automated test generation. In Proceedings of the 2011 International Symposium on
Software Testing and Analysis, pages 12–22, 2011.

[24] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and J. Nazario.

Automated classification and analysis of internet malware. In Proceedings of
the 9th International Symposium on Research in Attacks, Intrusions and Defenses
(RAID), pages 178–197, 2007.

[25] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi. A survey of

symbolic execution techniques. ACM Computing Surveys (CSUR), 51(3):1–39,
2018.

[26] D. Balzarotti, M. Cova, C. Karlberger, E. Kirda, C. Kruegel, and G. Vigna. Efficient

detection of split personalities in malware. In Proceedings of the 17th Annual
Network and Distributed System Security Symposium (NDSS), San Diego, CA,

Feb.–Mar. 2010.

[27] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda. Scalable,

behavior-based malware clustering. In Proceedings of the 16th Annual Network
and Distributed System Security Symposium (NDSS), San Diego, CA, Feb. 2009.

[28] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi. Exposure: Finding malicious

domains using passive dns analysis. In Proceedings of the 18th Annual Network
and Distributed System Security Symposium (NDSS), San Diego, CA, Feb. 2011.

[29] T. Blazytko, M. Contag, C. Aschermann, and T. Holz. Syntia: Synthesizing

the semantics of obfuscated code. In Proceedings of the 25th USENIX Security
Symposium (Security), pages 643–659, Vancouver, BC, Canada, Aug. 2017.

[30] D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, and H. Yin. Automatically

identifying trigger-based behavior in malware. In Botnet Detection, pages 65–88.
Springer, 2008.

[31] J. Caballero, P. Poosankam, S. McCamant, D. Babi ć, and D. Song. Input generation

via decomposition and re-stitching: Finding bugs in malware. In Proceedings
of the 17th ACM conference on Computer and communications security, pages
413–425, 2010.

[32] J. Caballero, C. Grier, C. Kreibich, and V. Paxson. Measuring pay-per-install: the

commoditization of malware distribution. In Proceedings of the 20th USENIX
Security Symposium (Security), San Francisco, CA, Aug. 2011.

[33] R. Canzanese, S. Mancoridis, and M. Kam. Run-time classification of malicious

processes using system call analysis. In 2015 10th International Conference on
Malicious and Unwanted Software (MALWARE), pages 21–28. IEEE, 2015.

[34] B. Cheng, J. Ming, J. Fu, G. Peng, T. Chen, X. Zhang, and J.-Y. Marion. Towards

paving the way for large-scale windows malware analysis: Generic binary un-

packing with orders-of-magnitude performance boost. In Proceedings of the 24rd
ACM Conference on Computer and Communications Security (CCS), pages 395–411,
Toronto, Canada, Oct. 2018.

Session 11C: Software Development and Analysis CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3065

https://github.com/kevoreilly/CAPEv2
https://virustotal.com
https://github.com/LordNoteworthy/al-khaser
https://any.run
https://analyticsindiamag.com/how-antivirus-softwares-are-evolving-with-behaviour-based-malware-detection-algorithms
https://analyticsindiamag.com/how-antivirus-softwares-are-evolving-with-behaviour-based-malware-detection-algorithms
https://nytimes.com/2017/09/07/business/equifax-cyberattack.html
https://nytimes.com/2017/09/07/business/equifax-cyberattack.html
https://hybrid-analysis.com
https://malpedia.caad.fkie.fraunhofer.de/
https://malshare.com
https://bazaar.abuse.ch
https://attack.mitre.org/matrices/enterprise/
http://www.ollydbg.de/
https://www.fireeye.com/blog/threat-research/2013/10/openioc-basics.html
https://www.fireeye.com/blog/threat-research/2013/10/openioc-basics.html
https://detect-respond.blogspot.com/2013/03/the-pyramid-of-pain.html
https://detect-respond.blogspot.com/2013/03/the-pyramid-of-pain.html
https://reversinglabs.com
 https://bloom.bg/2KjElxM
 https://bloom.bg/2KjElxM
https://github.com/ytisf/theZoo
https://twitter.com
https://unpac.me

[35] M. Christodorescu, S. Jha, and C. Kruegel. Mining specifications of malicious

behavior. In Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The foundations of
software engineering, pages 5–14, 2007.

[36] P. M. Comparetti, G. Salvaneschi, E. Kirda, C. Kolbitsch, C. Kruegel, and S. Zanero.

Identifying dormant functionality in malware programs. In Proceedings of the
31th IEEE Symposium on Security and Privacy (Oakland), pages 61–76, Oakland,
CA, May 2010.

[37] W. Cui, M. Peinado, Z. Xu, and E. Chan. Tracking rootkit footprints with a

practical memory analysis system. In Proceedings of the 21st USENIX Security
Symposium (Security), pages 601–615, Bellevue, WA, Aug. 2012.

[38] Z. Deng, X. Zhang, and D. Xu. Spider: Stealthy binary program instrumentation

and debugging via hardware virtualization. In Proceedings of the Annual Computer
Security Applications Conference (ACSAC), pages 289–298, 2013.

[39] A. Dinaburg, P. Royal, M. Sharif, andW. Lee. Ether: malware analysis via hardware

virtualization extensions. In Proceedings of the 15th ACM Conference on Computer
and Communications Security (CCS), pages 51–62, Alexandria, VA, Oct. 2008.

[40] D. Ford and C. Parnin. Exploring causes of frustration for software developers.

In 2015 IEEE/ACM 8th International Workshop on Cooperative and Human Aspects
of Software Engineering, pages 115–116, 2015. doi: 10.1109/CHASE.2015.19.

[41] M. Graziano, C. Leita, and D. Balzarotti. Towards network containment in

malware analysis systems. In Proceedings of the 28th Annual Computer Security
Applications Conference, pages 339–348, 2012.

[42] M. Hassen, M. M. Carvalho, and P. K. Chan. Malware classification using static

analysis based features. In 2017 IEEE Symposium Series on Computational Intelli-
gence (SSCI), pages 1–7. IEEE, 2017.

[43] E. Hollnagel. Handbook of cognitive task design. CRC Press, 2003.

[44] M. Ijaz, M. H. Durad, and M. Ismail. Static and dynamic malware analysis using

machine learning. In 2019 16th International bhurban conference on applied sciences
and technology (IBCAST), pages 687–691. IEEE, 2019.

[45] G. Jacob, R. Hund, C. Kruegel, and T. Holz. Jackstraws: Picking command and

control connections from bot traffic. In Proceedings of the 20th USENIX Security
Symposium (Security), San Francisco, CA, Aug. 2011.

[46] S. A. Jacob and S. P. Furgerson. Writing interview protocols and conducting

interviews: tips for students new to the field of qualitative research. Qualitative
Report, 17:6, 2012.

[47] N. Jagpal, E. Dingle, J.-P. Gravel, P. Mavrommatis, N. Provos, M. A. Rajab, and

K. Thomas. Trends and lessons from three years fighting malicious extensions.

In Proceedings of the 24th USENIX Security Symposium (Security), pages 579–593,
Washington, DC, Aug. 2015.

[48] Y. Jing, Z. Zhao, G.-J. Ahn, and H. Hu. Morpheus: automatically generating

heuristics to detect android emulators. In Proceedings of the Annual Computer
Security Applications Conference (ACSAC), pages 216–225, 2014.

[49] B. Johnson, R. Pandita, J. Smith, D. Ford, S. Elder, E. Murphy-Hill, S. Heckman,

and C. Sadowski. A cross-tool communication study on program analysis tool

notifications. In Proceedings of the 2016 24th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, FSE 2016, page 73–84, New York,

NY, USA, 2016. Association for Computing Machinery. ISBN 9781450342186. doi:

10.1145/2950290.2950304. URL https://doi.org/10.1145/2950290.2950304.

[50] A. Kharaz, S. Arshad, C. Mulliner, W. Robertson, and E. Kirda. {UNVEIL}: A
large-scale, automated approach to detecting ransomware. In Proceedings of the
24th USENIX Security Symposium (Security), pages 757–772, Washington, DC,

Aug. 2015.

[51] D. Kim, A.Majlesi-Kupaei, J. Roy, K. Anand, K. ElWazeer, D. Buettner, and R. Barua.

Dynodet: Detecting dynamic obfuscation in malware. In Proceedings of the 14th
Conference on Detection of Intrusions and Malware and Vulnerability Assessment
(DIMVA), pages 97–118, 2017.

[52] D. Kirat and G. Vigna. Malgene: Automatic extraction of malware analysis evasion

signature. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pages 769–780, 2014.

[53] D. Kirat, G. Vigna, and C. Kruegel. Barebox: efficient malware analysis on bare-

metal. In Proceedings of the Annual Computer Security Applications Conference
(ACSAC), pages 403–412, 2011.

[54] D. Kirat, G. Vigna, and C. Kruegel. Barecloud: bare-metal analysis-based eva-

sive malware detection. In Proceedings of the 23rd USENIX Security Symposium
(Security), San Diego, CA, Aug. 2014.

[55] C. Kolbitsch, T. Holz, C. Kruegel, and E. Kirda. Inspector gadget: Automated

extraction of proprietary gadgets from malware binaries. In Proceedings of the
31th IEEE Symposium on Security and Privacy (Oakland), pages 29–44, Oakland,
CA, May 2010.

[56] C. Kolbitsch, E. Kirda, and C. Kruegel. The power of procrastination: detection

and mitigation of execution-stalling malicious code. In Proceedings of the 18th
ACM Conference on Computer and Communications Security (CCS), pages 285–296,
Chicago, Illinois, Oct. 2011.

[57] J. R. Landis and G. G. Koch. An application of hierarchical kappa-type statistics in

the assessment of majority agreement among multiple observers. Biometrics, 33
(2):363–374, 1977. ISSN 0006341X, 15410420. URL http://jstor.org/stable/2529786.

[58] M. Lindorfer, C. Kolbitsch, and P.M. Comparetti. Detecting environment-sensitive

malware. In International Workshop on Recent Advances in Intrusion Detection,
pages 338–357. Springer, 2011.

[59] B. Liu, W. Huo, C. Zhang, W. Li, F. Li, A. Piao, and W. Zou. 𝛼diff: cross-version

binary code similarity detection with dnn. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, pages 667–678, 2018.

[60] R. Majumdar and K. Sen. Hybrid concolic testing. In 29th International Conference
on Software Engineering (ICSE’07), pages 416–426. IEEE, 2007.

[61] L. Martignoni, E. Stinson, M. Fredrikson, S. Jha, and J. C. Mitchell. A layered

architecture for detecting malicious behaviors. In International Workshop on
Recent Advances in Intrusion Detection, pages 78–97. Springer, 2008.

[62] J. Ming, D. Xu, Y. Jiang, and D. Wu. Binsim: Trace-based semantic binary diffing

via system call sliced segment equivalence checking. In Proceedings of the 25th
USENIX Security Symposium (Security), pages 253–270, Vancouver, BC, Canada,
Aug. 2017.

[63] A. Moser, C. Kruegel, and E. Kirda. Exploring multiple execution paths for

malware analysis. In Proceedings of the 28th IEEE Symposium on Security and
Privacy (Oakland), pages 231–245, Oakland, CA, May 2007.

[64] Y. Nadji, M. Antonakakis, R. Perdisci, and W. Lee. Understanding the prevalence

and use of alternative plans in malware with network games. In Proceedings of
the Annual Computer Security Applications Conference (ACSAC), 2011.

[65] M. Neugschwandtner, P. M. Comparetti, and C. Platzer. Detecting malware’s

failover c&c strategies with squeeze. In Proceedings of the Annual Computer
Security Applications Conference (ACSAC), 2011.

[66] S. Palahan, D. Babić, S. Chaudhuri, and D. Kifer. Extraction of statistically

significant malware behaviors. In Proceedings of the Annual Computer Security
Applications Conference (ACSAC), pages 69–78, 2013.

[67] F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and Z. Su. X-force: Force-executing

binary programs for security applications. In Proceedings of the 23rd USENIX
Security Symposium (Security), pages 829–844, San Diego, CA, Aug. 2014.

[68] K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov. Learning and classification

of malware behavior. In Proceedings of the 5th Conference on Detection of Intrusions
and Malware and Vulnerability Assessment (DIMVA), pages 108–125, 2008.

[69] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee. Polyunpack: Automating

the hidden-code extraction of unpack-executing malware. In Proceedings of the
22nd Annual Computer Security Applications Conference (ACSAC), pages 289–300,
2006.

[70] E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ever wanted to know about

dynamic taint analysis and forward symbolic execution (but might have been

afraid to ask). In 2010 IEEE symposium on Security and privacy, pages 317–331,
Oakland, CA, May 2010.

[71] C. Spensky, H. Hu, and K. Leach. Lo-phi: Low-observable physical host instru-

mentation for malware analysis. In Proceedings of the 23rd Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA, Feb. 2016.

[72] P. Srivastava and N. Hopwood. A practical iterative framework for qualitative

data analysis. International journal of qualitative methods, 8(1):76–84, 2009.
[73] F. Tegeler, X. Fu, G. Vigna, and C. Kruegel. Botfinder: Finding bots in network

traffic without deep packet inspection. In Proceedings of the 8th international
conference on Emerging networking experiments and technologies, pages 349–360,
2012.

[74] X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P. G. Bringas. Rambo: Run-time

packer analysis with multiple branch observation. In Proceedings of the 13th
Conference on Detection of Intrusions and Malware and Vulnerability Assessment
(DIMVA), pages 186–206, 2017.

[75] D. Votipka, R. Stevens, E. Redmiles, J. Hu, and M. Mazurek. Hackers vs. testers:

A comparison of software vulnerability discovery processes. In Proceedings of
the 39th IEEE Symposium on Security and Privacy (Oakland), pages 374–391, San
Jose, CA, May 2018.

[76] D. Votipka, S. Rabin, K. Micinski, J. S. Foster, and M. L. Mazurek. An observa-

tional investigation of reverse engineers’ processes. In 29th {USENIX} Security
Symposium ({USENIX} Security 20), pages 1875–1892, 2020.

[77] S. Wang and D. Wu. In-memory fuzzing for binary code similarity analysis. In

2017 32nd IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 319–330. IEEE, 2017.

[78] M. Xu and T. Kim. Platpal: Detectingmalicious documents with platform diversity.

In Proceedings of the 25th USENIX Security Symposium (Security), pages 271–287,
Vancouver, BC, Canada, Aug. 2017.

[79] Z. Xu, J. Zhang, G. Gu, and Z. Lin. Goldeneye: Efficiently and effectively unveiling

malware’s targeted environment. In International Workshop on Recent Advances
in Intrusion Detection, pages 22–45, 2014.

[80] B. Yadegari and S. Debray. Symbolic execution of obfuscated code. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security,
pages 732–744, Denver, Colorado, Oct. 2015.

[81] L.-K. Yan, M. Jayachandra, M. Zhang, and H. Yin. V2e: combining hardware

virtualization and softwareemulation for transparent and extensible malware

analysis. In Proceedings of the 8th ACM SIGPLAN/SIGOPS conference on Virtual
Execution Environments, pages 227–238, 2012.

Session 11C: Software Development and Analysis CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3066

https://doi.org/10.1145/2950290.2950304
http://jstor.org/stable/2529786

[82] T.-F. Yen and M. K. Reiter. Traffic aggregation for malware detection. In Proceed-
ings of the 5th Conference on Detection of Intrusions and Malware and Vulnerability
Assessment (DIMVA), pages 207–227, 2008.

[83] F. Zhang, K. Leach, K. Sun, and A. Stavrou. Spectre: A dependable introspection

framework via system management mode. In Proceedings of the International
Conference on Dependable Systems and Networks (DSN), pages 1–12, 2013.

[84] F. Zhang, K. Leach, A. Stavrou, H. Wang, and K. Sun. Using hardware features

for increased debugging transparency. In Proceedings of the 36th IEEE Symposium
on Security and Privacy (Oakland), pages 55–69, San Jose, CA, May 2015.

ACKNOWLEDGMENTS
We thank Alex Bardas and the reviewers for their helpful feedback,

Daniel Votipka for recruitment assistance and our participants for

providing valuable insights.

The second author’s work is supported by the National Science

Foundation Graduate Research Fellowship under Grant No. DGE-

2039655. Any opinion, findings, and conclusions or recommenda-

tions expressed in this material are those of the authors(s) and do

not necessarily reflect the views of the National Science Founda-

tion.

APPENDIX
A Survey Questionnaire
Background and Experience.

• Which of the following definitions best describes you? (Please

select all that apply) Malware engineer: I work on configur-

ing the malware sandbox analyzers and/or develop programs

to process the inputs and outputs of these analyzers. Ex: pri-

oritizing, clustering, parsing, preventing evasion techniques,

capturing system calls. Malware analyst: I analyze malware

samples to understand their functionality, potential impact

and origin.

• [If malware engineer] How many years have you worked as

a malware engineer?

• [If malware analyst] How many years have you worked as a

malware analyst?

• Please select your most highly qualified skills or specialty

areas (please check all that apply): Operating Systems, Net-

works, Compilers, Computer Architecture, Programming,

Cryptography, Virtualization, Scalability, Data Analysis, Sand-

boxing, Reverse Engineering, Assembly code, Signature cre-

ation

Job Description.
• What is your current or most recent job title?

• What is the end goal of your threat/malware analysis work

given by your employer ? (please check all that apply) Attri-

bution, Forensics, Recovery remediation, Detection, Classi-

fication, Signature creation, Indication of Compromise, Re-

search, N/A, Other

• Please tell me the primary activities you perform day-to-day

as part of your job.

• How often do you use the following malware analysis tech-

niques? Dynamic Analysis, Static Analysis, Other

• Is your job somehow associated with malware sandboxing?

If so, how ? (Please check all that apply) Collecting malware

specimens for the sandbox, Prioritizing the malware speci-

mens that get sent to the sandbox, Configuring the malware

sandbox, Categorizing, clustering the malware specimens

from sandbox output (usually with ML feature selection),

Manually analyzing the output of malware sandbox, Provid-

ing feedback to update the sandbox

Demographics.

• Please specify the gender with which you mostly identify.

Woman, Man, Non-binary, Prefer not to answer

• Please specify your age range. 18-29, 30-39, 40-49, 50-59,

60-69, >70, Prefer not to answer

• Please specify your ethnicity. American Indian or Alaska

Native, Asian, Black or African American, Hispanic or Latino,

White, Prefer not to answer.

• Please specify your highest degree level of education. High

school credit, no diploma, High school graduate, diploma or

equivalent, College credit, no diploma, Trade/Technical/Vocational

Training, Associate degree, Bachelor’s degree, Master’s de-

gree, Doctorate degree, Prefer not to answer

• If you did get a degree please specify your major.

• If you are currently employed, please specify the business

sector in which you are currently working for. Technology,

Government, Healthcare, Retail, Construction, Education,

Finance, Arts, Other.

B Interview Questions
Background and Experience.

• Could you tell me a little bit about what you do in your

profession?

• How long would you say you’ve been doing this?

• What got you into this profession? Have you always been

doing this?

Malware Sources.

• Great, so these next set of questions will be mainly about

the malware specimens that you receive. Can you walk me

through the steps you have to take to get the malware sam-

ples and how you decide which ones to analyze? Imagine

that you have just started your day at work and are trying

to figure out where to begin.

• How do you receive malware specimens that need to be

analyzed?

• Roughly how many malware specimens do you get per day?

• What types of malware specimens do you usually encounter

(spyware, virus, trojan, keylogger, rootkit, botnets, ransomware,

worms, malvertising. . .)?

• Do you analyze all of these malware specimens or only a sub-

set of them? How do you decide which malware to analyze?

How do you prioritize which malware to analyze first?

• What data about the malware do you generally have avail-

able before starting your analysis? How do you prioritize

the various data types you look at? Why do you prioritize

them this way? What data do you consider to be the most

important or helpful in doing your analysis?

• Do you determine whether a malware is a variation of a

previously seen malware? If yes, how do you do it?

Session 11C: Software Development and Analysis CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3067

• What percentage of the malware would you say are variants

of malware you have previously seen and what percentage

are previously unseen?

Dynamic Analysis System Configuration.

• Can you walk me through the steps you take to set up your

sandbox environment? Imagine that you were teaching me

to set up a sandbox.

• How do you set up your sandbox environment?

• Do you use a commercial, open-source or custom sandbox?

Is there a reason why you made that decision?

• Is your hardware bare-metal, virtualized or emulated? Why

did you choose that hardware?

• What type of operating system(s) do you use? Why did you

choose that/those operating system(s)?

• How do you decide on an OS configuration? For example,

do you configure features such as location, time zone, users,

groups and services?

• What type of applications do you set up in the user space?

• How do you configure the outgoing network of a sandbox?

• How long do you run your malware specimen for? How did

you get this set time?

• Are there any crucial environmental features that you have

found necessary to get malware to reveal its malicious be-

havior?

• Do you execute malware samples multiple times? Why? If

so, do you execute them in a different environment? What

features are different in the different environments that you

use?

• Can you tell me about how you do malware reports?

• What parts of the sandbox configuration takes up the most

time?

• What parts of the sandbox configuration process do you find

more challenging?

Analysis Workflow.

• Are there any specific tools that you utilize to do malware

analysis? How did you learn to use these tools? How do you

decide which tool and in which order to utilize during your

analysis of a specific malware sample/family?

• Can you walk me through the steps you take to manually

analyze a malware sample? Imagine that you were teaching

me.

• What is the first thing you look for?

• Are there specific indicators that you look for?

• How did you learn/develop this process? +

• Do you have an SOP (Standard Operating Procedure) or

documented procedure on how you approach analyzing a

malware specimen?

• What goal are you trying to achieve by the end of your

analysis?

• How do you know when you have concluded the analysis

process?

• What parts of the process do you find more challenging?

• Where do you generally seek for help when you run into

these challenges?

• Is there information you wished you had available that isn’t

in the report generated by the malware sandbox analyzer?

• Do you perform the same analysis steps when looking at

an unknown malware versus a variant of a previously seen

malware? If the answer is no, please describe the differences

between the two.

Evolution.
• Considering your past experiences in malware analysis, has

the analysis process changed over time? If so, what parts

have changed? What do you think has been the biggest

factor that contributed to these changes? (Ex: business model,

personal goals, malware type. . .)

• Is there any other topic that I haven’t touched on which you

would like to elaborate on?

C Follow-up Survey
• Do you or your team install the following settings in your dy-

namic analysis environment? Microsoft office, Web browser,

Adobe acrobat, Software libraries – Do you or your team add

any specific software libraries in the analysis environment?

• Do you or your team configure or modify the following

settings in your dynamic analysis environment? Location,

Time, Languages, Username, File names, Browsing history,

Populate files

• Which of the following settings do you configure per indi-

vidual sample? Location, Time, Languages, Username, File

names, Browsing history, Populate files

D Codebook
The codes used to analyze the participant interviews are presented

in Table 5.

Session 11C: Software Development and Analysis CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3068

High-Level Codes Subcodes

Runtime: Refers to the amount of time the participants run the malware

sample in the dynamic analysis system.

Minutes, Hours, Weeks, Short

Number of runs: Refers to the amount of times the participant runs a

malware sample in the dynamic analysis system.

Numbers

Number of malware samples: Refers to the number of malware samples

that a participant.

Per day, Per week , Per month

Data source: Refers to the source of malware samples that participants

analyze.

Clients, Repository, Virus total, Paste-

bin, Twitter, Blog posts, Open source,

Crawl

Fresh malware samples: Refers to the amount of time since a malware

sample was released.

New, Today, Novel, First

Prioritization of malware samples: Refers to the process that participants

use to determine the order in which they analyze their malware samples.

Priority, Customer, Harmful, FIFO, Risk,

Novel, Complexity, New, Damage

Malware variants: Refers to the process that participants use to determine

whether an unknown sample is a variant of a known malware.

Variant, Family, Cluster, Campaign

Simulated network: Refers to whether the participant simulates the network

when performing dynamic analysis.

Network, Simulation

Use of open source or commercial sandboxes: Refers to whether

participants use open source and/or commercial dynamic analysis tools.

Open Source, Commercial, Joe Sand-

box, Any.run, Cape Sandbox, Virtual-

box, Fireeye

Preference of open vs commercial sandbox: Refers to the participants

preference between open source dynamic analysis tools and commercial

dynamic analysis tools.

Open Source, Commercial, Joe Sand-

box, Any.run, Cape Sandbox, Virtual-

box, Fireeye

Use of bare metal: Refers to the participants use of bare metal for dynamic

analysis.

Laptop, VM, Sandbox, Cloud, Server

Operating system: Refers to whether the participants discussed what

operating system that they use for dynamic malware analysis.

OS, Windows, Linux, Unix

Applications installed in dynamic analysis systems: Refers to the

applications that participants install in the dynamic analysis system.

Web browser, Microsoft, Java, Adobe,

Libraries

Environment Settings: Refers to the configuration of the environment

within the dynamic analysis system.

Libraries, Timezone, Language, User-

names, User privilege

Mimic real user: Refers to whether participants configured their dynamic

analysis environments to appear as if the system was used by a real user.

Browser history, Files, Documents, Di-

rectories, Usage, Names

Monitoring of the dynamic analysis execution: Refers to the process used
to monitor the execution of the malware sample in a dynamic analysis system.

Procmon, Hooking, Syscalls, Registry,

Files created, Network activity, Pcap,

Logs

Evasion: Refers to whether participants discussed strategies they use to

analyze evasive malware samples.

Evasion, Encryption, Packing, Obfus-

cation, Detection, Sleep, Debug, Break-

point, Skip, Patch

Static analysis process and tools: Refers to the participants static analysis

process and tools used.

Static, Analysis, Tool, Ghidra, IDA, Re-

verse Engineer, Unpack, Decrypt, Disas-

sembler, Decode, Decrypt, Script, Injec-

tion, Code, Binary, Function, Registry

Keys, Logs

Generate signatures: Refers to how the participants generate signatures. Signature, IDS, Network behavior, Sys-

tem Behavior, Tool, IP, Domain, Hash,

Tactics, Techniques, Procedure, Capabil-

ities

Table 5: Codebook

Session 11C: Software Development and Analysis CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3069

	Abstract
	1 Introduction
	2 Methodology
	2.1 Recruitment
	2.2 Interview Protocol
	2.3 Data Collection and Analysis
	2.4 Follow-up Survey
	2.5 Limitations

	3 Participants
	4 Malware Analyst Taxonomy
	4.1 Malware Analysts' Objectives
	4.2 Malware Analyst Tiers

	5 Malware Analyst Workflows
	5.1 Obtaining Malware Samples
	5.2 Prioritization
	5.3 Main Analysis Process
	5.4 Factors that Lead to Differences in Workflows

	6 Dynamic Analysis System Setup
	6.1 Virtualization Vs. Bare Metal
	6.2 Open-Source Vs. Commercial Dynamic Analysis Tools Vs. Custom Virtual Machines
	6.3 Setting Up Environment Targeted by Malware
	6.4 Configuring Network Communication
	6.5 Dynamic Analysis Execution Time
	6.6 Overcoming Evasion

	7 Discussion
	7.1 Transitioning Research to Practice
	7.2 Future Research Directions
	7.3 Usability Recommendations

	8 Related Work
	9 Conclusion
	References
	A Survey Questionnaire
	B Interview Questions
	C Follow-up Survey
	D Codebook

