
Cooperative Task-Oriented Group Formation
for Vehicular Networks

Huiye Liu
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia, USA

huiyeliu@gatech.edu

Douglas M. Blough
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia, USA

doug.blough@ece.gatech.edu

Abstract—As vehicles are embedded with an increasing num-
ber of sensors and more powerful processors, computation-
intensive on-board applications are being deployed. Emerging
cooperative processing capabilities among vehicles will increase
computing capability even further. In this paper, we present
a novel framework for task-oriented group formation, where
groups of vehicles are tailored for a specific cooperative com-
putation task to be performed. We use the framework to
develop a vehicular group formation algorithm that improves
the quality of the computation result while achieving a specified
probability of successful task completion. A prototype of the
group formation algorithm for a generic distributed learning
application example is implemented and extensively evaluated.
Results show that our approach is able to significantly increase
the percentage of successfully completed tasks compared to two
baseline approaches.

Index Terms—cooperative computation, vehicular networks

I. INTRODUCTION

With advancements in information and communication tech-
nologies in modern vehicles, the amount of data they generate
and the computation capability they possess are both growing
rapidly. For example, autonomous vehicles (AVs) can generate
between 1.4 and 19 terabytes (TB) of data per hour [1].
Such a large amount of data brings not only opportunities
but also challenges in various distributed computation tasks
requiring cooperation [2], e.g. reinforcement learning based
cooperative driving [3], distributed consensus based false
information filtering [4], collaborative active learning [5],
etc., since if conducted appropriately, the performance of
the applications should increase with the number of partic-
ipants [6]. For instance, a single vehicle may not be able
to capture accurate and full perception data from its own
sensors due to imprecision and limited view. Aggregating the
diverse views from multiple vehicles can improve the results
of many computational tasks by creating larger and richer
data sets. Moreover, though on-board computing devices are
becoming increasingly powerful [7], computing locally with
a very large data set often requires enormous computation
and memory resources, which hinders these applications on
resource-constrained edge devices such as vehicles [1]. As a
result, most proposed solutions have assumed that data is sent
to a powerful central server for computation [8].

Nonetheless, the application requirements discussed above
pose challenges for the conventional cloud computing

paradigm. It is difficult to guarantee the stringent qual-
ity/experience requirements due to a large on-board mem-
ory requirement, high latency, and limited backhaul band-
width [9]. To tackle these challenges, recent research has
considered mobile edge computing (MEC) [10]–[12], vehic-
ular fog computing (VFC) [13]–[15] and vehicular cloud
computing (VCC) [16], where computation tasks are offloaded
to surrounding vehicles with surplus resources, to address
certain aspects of the problem.

There are three critical challenges that are not well ad-
dressed in this prior work. 1) Whether tasks being assigned
to vehicles can be successfully completed is ignored and,
instead, focused on internal dependencies between tasks and
which tasks should be assigned to which vehicles. Tasks that
are not successfully completed serve no useful purpose but
waste valuable computational resources. 2) Cooperative task
execution was not considered, i.e. they only considered the
offloading of a task from one vehicle to another. As discussed
earlier, cooperative task execution is required to not only
deal with the very large storage and computational resources
required to process the large amount of data generated by
modern vehicles, but also to break the barrier of limited local
views/perceptions by aggregating information from multiple
vehicles. 3) Prior works ignored the trade-off between success-
ful task completion and quality of the cooperative computation
results. In general, the result quality of such tasks increases
with the size of the cooperating group, however, the larger
the group becomes, the less stable is the group’s connection,
which results in a lower probability of task completion.

In this paper, we propose a task-oriented group formation
method addressing the above challenges. To our knowledge,
this is the first work addressing computation task oriented
group formation in vehicular networks. Contributions include:
• A framework addresses task-oriented group formation,

based on the probability of successful task completion. We
show that task completion probability is primarily dependent
on two random variables – the stay time of the vehicular task
group and its task completion time. We use this framework
and a notion of result quality to formulate the problem of
selecting the best task group for a particular computation.

• We present a two-stage algorithm that performs task-
oriented group formation for cooperative computations. The

algorithm maximizes the size of groups in order to produce
the best cooperative result while targeting a specified prob-
ability of task completion.

• We report on a prototype implementation of our group
formation algorithm, which is based on distributed learning
applications for autonomous vehicles. The prototype runs
in a realistic environment built on top of Veins and SUMO.
Evaluation results show that our algorithm achieves high
task completion rates and good group sizes across a wide
range of traffic scenarios.

II. RELATED WORK DISCUSSION

Immersive vehicular applications such as advanced driver
assistants, safety improvement, and autonomous driving have
heavy computational requirements [13] and cannot be of-
floaded to remote clouds due to delay and bandwidth con-
straints [17]. The computational requirements of many poten-
tially useful applications of this type also exceed the capacity
of individual vehicles [18]. Thus, computational task offload-
ing at the edge is essential for intelligent networked vehicles to
reach their full potential. The literature in mobile edge comput-
ing (MEC) [10]–[12], vehicular fog computing (VFC) [13]–
[15], [19], and vehicular cloud computing (VCC) [16], [17]
has widely studied the problem of task offloading including
aspects such as task scheduling [20], resource allocation [21],
and computation complexity [22]. However, this prior work
focuses primarily on one-to-one task offloading and also
relies on infrastructure support in the form of edge servers
and/or roadside units. Herein, we focus on one-to-many task
assignment without infrastructure support.

Clustering algorithms provide one possible approach to
forming vehicular groups for one-to-many task offloading.
Clustering work in dynamic networks began with studies on
MANETs [23], [24]. Various clustering design goals, e.g. load
balancing, cost of clustering, speed of cluster formation, and
real-time requirement [23] were achieved through single or
combined metrics of connectivity, mobility, power, mainte-
nance cost, etc. [24]. As discussed in [25], MANETs and
VANETs are different in many ways, especially in mobility
patterns, network topology, and communication link lifetime.
With a goal of maximizing stability, clustering studies in
VANET have considered mobility more thoroughly [26], [27].
However, these works do not factor in the characteristics of
the tasks to be processed when determining a good group of
vehicles to cluster, which is the focus of our work. Moreover,
as we demonstrate later, our work can be layered on top
of existing clustering algorithms to select subgroups from a
cluster that are well suited to execute a specific computation.

In addressing task offloading for many cooperative compu-
tation applications in vehicles, where the quality of the results
increases with the number of participating vehicles [28], [29],
there is an interesting interplay between result quality and suc-
cessful task completion. This is because larger groups improve
result quality but also reduce the group stay time, which makes
it less likely that the cooperative computation will complete
while the task group remains together. Therefore, neglecting

the important relationship between group stay time and task
completion time could result in low task completion rate. Our
work explores this important relationship, which none of the
prior works have considered. Though other works such as [13]
did model the completion time of tasks, they did not consider
the relationship between group stay time and task completion
time. Instead, like many other works, [13] relies on RSUs and
base stations to relay intermediate data and computation results
when direct vehicle-to-vehicle communication is interrupted
prior to task completion.

If the main goal of a cooperative execution environment on
vehicles is to successfully complete as many tasks as possible,
it is important to account for task characteristics when assign-
ing the tasks to vehicles. Our contribution is a task-oriented
group formation scheme to maximize task completion rate
in highly dynamic vehicular networking environments. To do
this, we demonstrate that accounting for both group stability
(stay time) and task completion time is essential. To the best of
our knowledge, this is the first work addressing task oriented
group formation in vehicular networks that accounts for both
of these characteristics when assigning tasks to vehicles.

III. SYSTEM MODEL OVERVIEW

Our system model is based on a bidirectional multi-lane
road scenario. We assume basic communication among vehi-
cles is supported, where each vehicle discovers their neighbor-
ing vehicles through periodic beacon messages. As is common
in vehicular networks’ research, e.g. [22], [30], we assume
the beacon messages exchanged among vehicles contain the
vehicles’ basic information, including location, velocity, and
moving direction, so that each vehicle can estimate speed dif-
ference, relative distance, and traffic condition/density around
it as introduced in [31]. We assume that all vehicles use
the same physical mode for transmitting or receiving data,
and the precise time is known and traceable. In addition to
periodic beacon messages, event/application driven messages
are also supported. Finally, we assume there are no malicious
vehicles, in that all vehicles follow the protocol. However,
abnormal behavior such as packet loss or abnormally long
packet delay can still occur. Note that we use node and vehicle
interchangeably in the rest of this paper.

IV. PROBLEM FORMULATION

The problem that we consider herein is how to construct a
task group that is well suited to carrying out a specific task.
We call the vehicles that have computation task requests Task
Vehicles (TVs), whereas the vehicles that can provide their data
and surplus computational resources to the TVs are referred
to as Service Vehicles (SVs). Note that a single vehicle can
serve as a TV at one time and as a SV at a different time but
cannot serve in both roles simultaneously. Given a group G
that is a candidate to perform a cooperative task, there are two
important quantities, which are both random variables: 1) stay
time, denoted by T stayG , and 2) task completion time, denoted
by T taskG . T stayG is the length of time that all members of G
remain in communication range of each other, and T taskG is

Fig. 1: Distribution of Stay Time and Task Completion Time.
Gaussian distribution used as an illustration – framework does
not assume any specific distribution.

the length of time that the vehicles of G need to complete the
assigned task (assuming that the vehicles stay together for at
least that amount of time).

As shown in Figure 1(a)-(c), how likely it is that the task
will be completed successfully by a given group depends on
the means of the T stayG and T taskG distributions (as well as
their shapes). If the mean stay time is much greater than the
mean task completion time, e.g. Fig. 1(a), the task is very
likely to be successfully completed. As the two distributions
get closer together, e.g. Fig. 1(b), the probability of successful
completion begins to decrease. Obviously, if the mean stay
time becomes less than the mean task completion time, then
it is very unlikely that the task will be successfully completed,
e.g. Fig. 1(c). We consider a group viable if:

P (T stayG − T taskG ≥ 0) ≥ 1− ε , (1)

where ε → 0. While formally calculating this probability
requires knowledge of the joint distribution of the two random
variables, in practice any dependence between them is quite
weak and they can be treated as independent random variables.

The size of a group is an important factor in the stay time
and task completion time distributions and it can also impact
the quality of the computational result. Larger groups tend
to have a larger task completion time variance and higher
communication cost, which for cooperative (non-parallel)
computations, can also increase the expected task completion
time. However, larger groups also tend to break apart more
quickly. From these trends, we see that increasing the size of
the group tends to drive the distributions from the Fig. 1(a)
case (very small groups) to the Fig. 1(c) case (very large
groups). Finally, we note that for many applications, e.g. the
distributed learning example discussed in Section VI, larger
task groups will produce higher quality results.1

Summarizing the above discussion, we tend to prefer larger
task groups in order to improve the quality of the computa-
tional result. However, larger groups tend to be less likely to
complete the task before they break apart. Thus, the goal of our
task group formation algorithm, presented in the next section,
is: form as large a group as possible while ensuring that
the group is very likely to successfully complete the task,
where “very likely to successfully complete the task” means
that the group satisfies Inequality (1).

In practice, it is not possible to know the exact probability
distributions of the stay time and task completion time of a

1For distributed learning, increasing the number of nodes creates a larger
overall dataset and higher computational capability.

group. Therefore, in our group formation algorithm presented
in the next section, we introduce the notion of a safety margin,
which is a safe separation between the estimated stay time and
estimated task completion time for a group (see Figure 1).
With an appropriate choice of safety margin, this can be
considered as an approximation of the formal group viability
condition specified by Inequality (1).

V. TASK-ORIENTED GROUP FORMATION ALGORITHM

From the high-level perspective, we solve the problem
formulated in the last section by a two-stage task-oriented
group formation algorithm (ToG). As for the first stage,
neighboring vehicles are clustered together based on relative
mobility, connectivity and estimated stay time. The goal is to
obtain stable clusters, in which the cluster members can not
only stay together longer but also share good connectivity. In
this work, we refer to this first stage as the parent clustering
stage, where vehicles are clustered together and one parent
cluster head (PCH) is selected for each parent cluster. The
PCH is responsible for collecting and recording parent cluster
members’ (PCMs) statuses, position changes, and available
resources. When a PCM is assigned a computation task, it
becomes a TV and sends a task group formation request to its
PCH. This triggers the second-stage – task group formation,
where the PCH will select the best suited vehicles to form a
task group based on certain criteria.

There are two main benefits of the proposed two-stage ap-
proach: a) parent clustering filters out the neighboring vehicles
who have close geo-location but are less likely to stay together,
thereby providing good candidates for task group formation; b)
allowing a PCH to coordinate different task requests and select
the qualified task group members for each of the requests
increases efficiency and throughput. The details of the two-
stage approach are presented next.

1) Parent Clustering: It is evident that a stable parent
cluster scheme provides a strong basis for efficient task group
formation, as the cluster members would stay together longer.
Thus, for our parent clustering framework, we adopt the high-
level clustering approach from [32], which achieves good clus-
ter stability while maintaining relatively low communication
overhead. Specifically, two main techniques are borrowed:
1) capability metrics, which are used to select the cluster
head, and 2) substitute heads pre-selection before membership
changes, so that both nodes that stay in the original cluster and
nodes that are very likely to leave in a short period of time can
smoothly settle down with limited effort, which increases the
stability of clusters. The capability metrics of [32] that are used
to select the cluster head are mainly focused on crossroads;
therefore, we add another capability metric, which we refer to
as relative distance metric (RDM), which is targeted at broader
road types such as highways.

Next, we first define the capability metrics from [32],
namely relative velocity metric (RVM) and power loss metric
(PLM) and then we define our RDM metric. For vehicle vi,

RVM(i) =
1

N

N∑
j=1

log

(
vmax

vmax −∆vi,j

)
(2)

and

PLM(i) =
1

N

N∑
j=1

log

(
P t

P ri,j

)
(3)

where, vmax is an upper bound on velocity, N denotes
the number of direct neighbors of vi, ∆vi,j is the velocity
difference between vehicles vi and vj , P t is the unified
transmission power of all nodes and P ri,j denotes the received
power of vi from vj . A smaller value of RVM indicates that
the vehicle’s velocity is similar to that of its direct neighbors.
A smaller value of PLM means that the vehicle is more likely
to have shorter communication distance and better channel
quality with its direct neighbors.

Vehicles on a highway can have much higher speeds than
in crossroads, and the distances between vehicles can be much
longer, making the relative distance an important metric. While
PLM is also related to distance, it is affected by other factors
such as obstacles. Therefore, we add the relative distance
metric, defined as:

RDM(i) =
1

N

N∑
j=1

log

(
R

R−∆di,j

)
(4)

where R is the communication range and ∆di,j represents
the relative distance between node vi and vj . A smaller value
of RDM indicates that a node is closer to the middle of its
neighbors.

The combined capability metric we use is:

M(i) = RVM(i) + PLM(i) +RDM(i) (5)

and the node with the smallest M(i) among the cluster head
candidates is selected as cluster head.

As parent cluster stability is the key to forming good task
computation groups, we incorporate the neighbor sampling
(NS) scheme from [33] to enhance the stability of parent
clusters.2 Additionally, we use a safe leaving distance σ to
ensure that a PCH can plan in advance when a node is about
to leave. A vehicle whose distance from its PCH is increasing
must notify the PCH when it is within a distance σ of moving
out of the PCH’s transmission range. This safe leaving distance
guarantees that the PCH can receive a notification about a
leave before the connection is lost. Although we added a few
other minor enhancements, the parent clustering procedure and
maintenance strategy follow the general approach in [32].

2) Task Group Formation: Our task group formation
scheme makes use of estimated stay time and estimated task
completion time to choose groups that are well suited for
the particular task to be executed. Good stay time and task
completion time prediction schemes are the keys to efficient
task group formation. We define T stayi,j as the estimated stay
time between parent cluster member vi and vj such that:

T stayi,j =
|∆vi,j |(min{R,Di,head, Dj,head})−∆vi,j∆Di,j

(∆vi,j)2

(6)

2Only vehicles within one hop vicinity moving in the same direction as
well as a speed difference less than a threshold are considered as neighbor
candidates. Refer to Algorithm 1 from [33] for details.

where R denotes the communication range of a vehicle,
Di,head (Dj,head) denotes the distance between vi (vj) and the
parent cluster head, and ∆Di,j and ∆vi,j represent the relative
distance and velocity between vehicles vi and vj , respectively.
In a task group, each vehicle is required to exchange data
and computation results with each of the participants in a
distributed fashion. Accordingly, a group G can be considered
non-functional once the first pair of vehicles loses communi-
cation and we therefore estimate the stay time as:

T̂ stayG = min
i,j∈G

(T stayi,j) . (7)

Different from stay time prediction, task completion time esti-
mation is application specific. Instead of discussing the specific
estimation scheme in this section, a distributed learning based
application example is provided in Section VI-A. We will
use the general notation T̂ taskG to represent estimated task
completion time for a group G in this section. As different
vehicles may be equipped with different computing capability,
we use κ to represent the task computation rate of a vehicle.
The larger the κ is, the faster a vehicle can compute its task.
Let H denote the difference between estimated group stay time
and task completion time. We only consider task groups with
H larger than the safety margin Tth, i.e.

H = T̂ stayG − T̂ taskG > Tth (8)

Setting Tth > 0 accounts for the fact that T̂ stayG and T̂ taskG

are only estimates and we want to ensure that the task can be
completed with high probability in its assigned group.

Vehicles in a parent cluster can be in one of three states:
available, TV, or SV. PCHs can neither submit any computa-
tion request like a TV nor participate in any task computation
as a SV. When a PCM has a request for computation assis-
tance, it enters state TV and sends a request to its PCH. As
discussed in Section III, a vehicle cannot act as a TV and a SV
at the same time. Thus, once a vehicle changes its state from
available to TV, it cannot service other tasks’ computations
until its current request is fulfilled or dropped. A vehicle that
is currently serving a request cannot submit a computation
request until it is done with its current request, i.e. a vehicle
cannot change state directly from SV to TV. Rather, when
the vehicle is done servicing a request, it changes its state to
available and, only then, can it submit a computation request.

Algorithm 1 provides the details of the proposed task group
formation algorithm. Each PCH maintains a member informa-
tion table (MI) to keep track of PCMs’ mobility and status
information, periodically updated by intra-cluster messages.
Upon receiving a task request, a PCH will check if there
are available PCMs that can service tasks and attempts to
form a task group. Initially, PCH starts from the assumption
that all available PCMs within communication range R to the
requester (TV) and R − σ to the PCH are able to service
the task, thus adding them to an empty group list G. Then,
estimated stay time T̂ stayG and estimated task completion time
T̂ taskG are computed based on the information in MI. If H ,
as defined in Eq. 8, is larger than the safety margin Tth, the

Algorithm 1: Task Group Formation
1 PCM info table: MI, available PCM vi ∈ MI, task vehicle: vt;
2 while PCH receives a task request ∧ available PCMs do
3 initialize an empty group list G = [];
4 for all available vi do
5 if Di,t < R and Di,head < R− σ then add vi to G;

6 if |G| < C then
7 send task drop notification to vt;
8 go back to the start of WHILE loop;
9 else calculate H;

10 while H < Tth do
11 G = G− argmax

vj∈G
H , recalculate H;

12 if |G| ≥ C then
13 PCH send group assignment notification;
14 else
15 send task drop notification to vt;

PCH will send out a notification to TV and the selected SVs
in G, notifying them of the formation of the group. However,
if H ≤ Tth, then the PCH removes the node with the largest
MG (metric calculated based on Eq. 5 with respect to G) or
slowest task computation time, whichever can increase T̂ stayG

or decrease T̂ taskG the most. Lines 13-14 are repeated until a
G with H ≥ Tth and size larger than the minimum allowed
group size C is obtained. If no valid group can be found, the
task is dropped and a notification is sent to the requester.

VI. APPLICATION EXAMPLE AND EVALUATIONS

A. Application Example

As mentioned in the previous section, task completion
time prediction is application specific. We consider a general
distributed computation task [2] that requires multiple vehicles
to cooperate by contributing combined resources of sensor
data/local information, computing power, local decisions, etc,
where examples are safety related applications [4] and on-
board intelligence [2], [5]. In this section, we describe and
evaluate an example on-board intelligence application - dis-
tributed learning across a vehicular group.

We assume a generalized distributed learning model, similar
to the Federated Learning (FL) framework introduced in [34],
but we do not address privacy concerns as FL does. In
our application example, every car manufacturer has a own
centralized server (CS) that can communicate to its manu-
factured vehicles through a Vehicle to Infrastructure (V2I)
protocol. At each round of training, a CS selects a vehicle to
initiate the process by sending it a task assignment. Following
our proposed ToG algorithm, the selected vehicle will then
submit the task request to its PCH and wait for a task group
assignment. When the task is successfully completed, the task
vehicle will send a task completion notification to its PCH and
send model updates to its CS.

The task computation procedure for a given distributed
learning task can be decomposed into four major stages:
1) Data Sharing: for each task, a task group member shares

its local data to other members, which are selected based
on the task requirement with a fixed required length.
2) Task Computation: each task group member collects other
members’ shared data, which totals to |G| pieces of data
(including its own piece). Once |G| pieces of data are obtained,
each member calculates and make predictions for the collected
data set. 3) Results Sharing: Once computation is done, each
task group member multicasts its results with fixed required
length to other group members. 4) Local Training: Upon
receiving computation results from other group members, a
vehicle updates its local model by adding the unlabeled data
points to its training set if the majority of the task group agree
on the label3. After this process is completed, the TV syncs
its update with the CS.

Let LData denote the fixed length of data needed to be
exchanged by one task group member for a given task. Simi-
larly, LResult denotes the fixed length of result needed to be
send out by one task group member after computing the task.
As different models of vehicles may have different computing
capability, we use operations per second κ to represent the
computation rate of a given vehicle, and OData to represent
total operations needed for given length of data LData. As the
fourth stage – Local Training can be completed by a vehicle
itself, it does not require stable connections among task group
members. Hence, the task completion time as:

T̂ taskG =
|G| × LData

rGmin
+
|G| ×OData

κGmin
+
|G| × LResult

rGmin
(9)

where |G| represents the size of group G, rGmin represents the
minimum transmission rate among vehicles in G, and κGmin
represents the minimum computation rate of the vehicles in
G. By using the minimum transmission rate to estimate the
data and result transmission times, we obtain an upper bound,
which can be considered to compensate for additional time
needed because of packet delays and losses.

By applying the above task completion time estimation
scheme, we are able to follow Algorithm 1 to form groups
tailored for distributed learning. An extensive simulation study
based on this type of application and making use of real world
maps is provided in the following subsections.

B. Simulation Set-Up

We implemented a prototype of ToG using C++ and
Python, which can simulate not only different real maps but
also different traffic scenarios by updating a small set of
system parameters. It is built on top of Veins [36] which
provides a comprehensive suite of models of IEEE 802.11p,
DSRC/WAVE and obstacle shadowing. We add additional
layers to simulate the communication between remote servers
and TVs. TraCI from SUMO [37] is used to control the
mobility of vehicles. About 4000 lines of code are written
for the prototype. Real highway, branches and intersections

3Averaging local models may balance their contributions to produce an
accurate joint model, though this is not guaranteed. Instead, we use tri-
training [35], a classic method that reduces prediction bias on unlabeled data
by using the agreement of multiple independently trained models.

(a) Highway

(b) Vehicle Number = 3400

(c) Vehicle Number = 600

Fig. 2: (a) 3.5 mile highway section. (b), (c) are captured traffic
images on the same 120m highway section. Each small yellow
triangle represents a vehicle.

are obtained from OpenStreetMap (OSM) [38]) with manual
corrections referenced from Google Satellite.

Vehicles can communicate with the centralized servers and
nearby vehicles through V2I and V2V, respectively. Figure 2(a)
depicts a major highway section in Atlanta. Its main road is
∼3.5 miles long with 6 traffic lights controlling the connec-
tions to the branches, and 5 lanes in each major road of each
direction. We simulate the example application as described
in Section VI-A, where available vehicles are selected as TVs
and receive a computation task assignment at random times.
Upon receiving a task assignment, a vehicle submits a task
request to its PCH asking for a task group formation.

The actual T̂TaskG of a task consists of the actual communi-
cation cost and the actual task computation time. Communi-
cation cost can be well simulated in the current environment,
but the task computation time is quite application specific
and it can be affected by various factors, e.g., concurrent
background processes, RAM size, etc. Therefore, to better
evaluate the effectiveness of our proposed approach, we use
two normal distributions K ∼ N(µκ, σ

2
κ) and T ∼ N(µτ , σ

2
τ)

with adjustable mean and variance to cover a wide range of
possible task computation times. As different vehicles may be
equipped with different rated chips, at the initial stage, each
vehicle entering the simulated area is assigned a computation
capability rate κ (FLOPs), which follows the K ∼ N(µκ, σ

2
κ)

distribution. However, even if every vehicle has the same
hardware, the actual task computation time is determined
by various factors, and cannot be predicted precisely based
on the rated computation capability. Thus, we use another
normal distribution T ∼ N(µτ , σ

2
τ) to model these variations

in computation time. Therefore, the actual task computation
time is the sum of the rated computation time chosen from
the K distribution and the computation time variation chosen
from the T distribution. To simulate different stay times, we
included 6 categories of vehicles and varied the network flow
as well as vehicle density by controlling the area throughput.
For example, both Figure 2(b) and Figure 2(c) depict the
same 120m segment in the simulated highway with different
average numbers of vehicles, where the stay-time would be
very different.

C. Evaluation of ToG Algorithm

For each assigned task, we defined three possible end
states: completed, failed, and dropped. A task was counted
as completed if the TV received computation results from
all group members; alternatively, a task was considered as
failed if the TV did not receive computation results from
all group members before the assigned group broke apart;
finally, if a PCH tried to form a task group but could not
find any suitable combination (Eq. 8), the task was counted
as dropped. Note that there were situations that a PCH or TV
exited the simulated area while executing their task. As this
was caused by the limited simulation area instead of failure of
the algorithm, we ignored these cases in the evaluation results.
The following metrics are used in our evaluation:
• Task Execution Rate (TER): The percentage of completed

tasks over the number of completed, failed and dropped
tasks. The higher the TER is, the higher the ratio of
completed tasks versus task group formation attempts can
be obtained, which is one of the ultimate goals of ToC.

• Average Group Size (AGS): The average group size of com-
pleted tasks. Since larger groups typically produce higher
quality results for the cooperative tasks we are interested in,
one of our goals is to maximize group size. Since task group
size of failed tasks and dropped tasks give no indication on
the quality of the formed groups, only completed tasks were
counted in this metric.

Unless otherwise noted, the following parameters were used as
default setting in all experiments: number of vehicles = 1800,
µκ = 1.3 TFLOPs4, σκ = 0.1 TFLOPs, µτ = 0.3 min,
στ = 0.2 min, OData = 135T operations, and beacon message
frequency = 10Hz. The communication range among vehicles
was set to 300m based on NHTSA’s proposed rule [39]. Nat-
ural packet loss and delay were simulated such that messages
were randomly dropped at receiving vehicles with a drop rate
of 10% and packets were randomly delayed within the range
of 50ms - 500ms. The minimum size of a task group is 2.

1) Choosing safety margin: We first evaluated how the
safety margin Tth affects ToG’s performance, to determine a
suitable way to configure Tth. Recall that H is the difference
between estimated group stay time and task completion time.
Intuitively, a safety margin tolerates the gap between H and
the actual difference of these quantities. Thus, one possibility
is to make Tth a certain percentage of T̂TaskG (Scenario A).
However, a good Tth should also create a good separation
between the distributions of task completion time and vehicle
stay time. Then, the variance of task completion time should
play an important role in choosing a proper safety margin.
Thus, a second possibility is to make Tth proportional to στ ,
the major variance factor in the actual TTaskG (Scenario B).

Based on this, we did a comparison experiment where
we varied Tth as both a percentage of the predicted task

4We set the mean computation rate as 1.3 TFLOPs based on the recently
released Nvidia Drive AGX chip [7] designed for Level 2 as well as Level 3
autonomous vehicles. This is just for an example demonstration, the proposed
algorithm does not rely on any specific hardware.

TABLE I: Task Execution Rate (TER), Task Completion Rate (TCR), and Average Group Size (AGS) for Different Ways of
Choosing Safety Margin Tth. In each cell of the table, TER, TCR, AGS are presented.

(a) Scenario A: Tth as a Percentage of Predicted Task Completion Time TTaskG

5% 10% 15% 20% 25% 30% 35%

στ = 0.2 83.8,84.6,7.2 89.4,89.8,6.7 91.3,92.1,6.6 92.0,93.2,5.9 89.7,94.1,5.0 88.8,94.9,4.5 87.2,95.0,3.8
στ = 0.4 78.5,79.2,7.0 85.9,86.6,6.8 86.3,87.0,6.5 88.7,89.4,5.8 89.4,90.8,4.9 86.2,91.4,4.5 83.5,92.1,4.0
στ = 0.6 71.6,71.9,6.8 74.2,76.5,6.7 77.6,80.3,6.4 81.4,82.1,5.9 84.0,84.9,4.8 85.3,88.7,4.4 79.8,89.1,3.9
στ = 0.8 58.0,58.1,6.7 60.8,61.3,6.5 63.6,64.9,6.1 66.6,69.3,5.7 70.4,74.8,4.6 78.7,85.6,4.3 85.1,88.0,4.1

(b) Scenario B: Tth as a Linear Function of Computation Time Variance στ

0.75στ 1.0στ 1.25στ 1.5στ 1.75στ 2.0στ 2.25στ

στ = 0.2 85.6,85.9,7.0 90.8,91.5,6.6 92.0,92.8,6.5 92.3,93.1,6.4 92.5,93.5,6.2 92.6,94.0,5.9 90.8,94.6,5.6
στ = 0.4 86.0,86.4,6.9 91.6,91.8,6.5 91.9,92.7,6.4 92.1,92.9,6.2 92.4,93.3,5.9 92.2,93.8,5.7 90.2,94.3,5.3
στ = 0.6 86.7,87.0,6.2 90.3,90.5,6.1 90.9,92.4,6.1 90.4,92.8,5.7 90.1,93.4,5.6 89.8,93.9,5.3 88.5,94.1,5.1
στ = 0.8 87.2,88.6,4.1 88.5,89.0,4.8 86.3,89.2,5.4 82.4,89.6,5.6 76.8,89.9,4.8 70.2,90.0,4.5 62.7,90.0,4.1

completion time with 5% increments from 5% to 35%, and
as multiples of στ with 0.25 factor increments from 0.75στ
to 2.25στ . We ran simulations with the default setting for
both scenarios, and varied the στ from 0.2 to 0.8 with 0.2
increments for simulating different task computation time
distributions. Thirty simulation runs were done for each pa-
rameter combination, where 200 computation tasks in total
were distributed and tracked in each run. Every simulation run
ends when all distributed computation tasks end in one of the
three states (completed, failed, dropped) or the corresponding
TV exits the map. Since TER may be heavily affected by large
number of dropped tasks if there are no suitable members to
form the group, we introduce a new metric to help choose
Tth: Task Completion Rate (TCR). TCR is the percentage
of completed tasks over the number of completed and failed
tasks, where dropped tasks are not counted.

The results are reported in Table I. Table I(a) shows the
Scenario A result for each combination of Tth and στ in the
format of (TER, TCR, AGS). Not surprisingly, for the same
type of task computation time distribution (same στ), TCR
increases and AGS decreases as Tth grows. This is because a
longer Tth increases the deviation that can be tolerated from
the predicted H value. Thus, intuitively, the larger the Tth, the
higher the TCR should be obtained. Note that different from
TCR, TER drops as Tth becomes too high, because as Tth
grows, PCHs may not be able to find enough suitable PCMs
to form groups, thereby causing the drop in TER. Also, as στ
increases, the overall performance drops. This is due to the
fact that, the distribution variance of the task computation time
is not considered in this way of choosing Tth. The predicted
T̂TaskG is solely based on estimated communication cost among
task group members and rated task computation time (see
Eq. 9). Therefore, for larger στ , higher Tth performs better,
while for smaller στ , lower Tth leads to better performance.

Table I(b) shows the result of Scenario B, in the same format
as in Table I(a). As opposed to Scenario A, we see that making
the safety margin proportional to στ makes the results fairly

consistent as στ is varied. For any given Tth value, both TER
and TCR are fairly stable for στ in the range [0.2, 0.6]. It
is only when στ becomes 0.8 and the safety margin is large,
that we see a significant drop-off in TER, which is the ultimate
metric of interest. We note that, when στ = 0.8, the variance
becomes unreasonably large for this simulation scenario and
the poor performance is largely due to failed tasks arising from
group members exiting the map before task completion.

This comparison shows that, if the value of στ is known, Tth
in the range of [1.0στ , 2.0στ] give consistently good results on
the ultimate metric, task execution rate, while also achieving
good group sizes. Obviously, knowing στ means that the task
completion time distributions must be characterized for the
tasks being executed. We briefly discuss ways in which this
could be done in Conclusion. The Scenario A results show
that, without knowledge of στ , a larger safety margin might
be needed to tolerate the possible range of στ values and both
TER and average group size will be somewhat lower than for
Scenario B but good performance is still achieved.

Based on this discussion, in the remainder of the simula-
tions, we assume στ is known and we set Tth = 1.25στ and
στ = 2 as a representative scenario for further evaluations.

2) Impact of the number of vehicles: We also evaluated
ToG’s performance versus the number of vehicles, as this
parameter has a large impact on the vehicle stay time distri-
bution. For the number of vehicles ranging from 600 to 3400
in increments of 400, we repeated the simulation 30 times
for each case. The results are reported in Figure 3. From the
figure, we can see that as the number of vehicles increases,
TER becomes closer to TCR and AGS increases from 2.6
to 14.9. Though when the number of vehicles is very small
and vehicles move very freely, ToG is still able to achieve a
TER above 87%, which shows the strong potential of ToG’s
estimation of stay time, making it robust to various traffic
scenarios that produce widely different stay time distributions.

3) Impact of communication delay: As the communica-
tion environment plays an important role in affecting group

Fig. 3: ToG Performance vs. Number of Vehicles

Fig. 4: Performance of 3 Approaches vs. Number of Vehicles

stability, we also evaluated performance over a wide range of
packet delays5, which was varied from [50,250) ms to [50,
1050) ms with 200 ms increments on the maximum delay.
Thirty simulation runs were conducted for each case and the
results are reported in Table II. From the table, we can see that
as the packet delay range expands, TER, TCT and AGS show
only small decreases until the packet delay reaches 1050 ms.
Even in the range of [50,1050) ms, our proposed method is
still able to achieve 87.3% TER with 5.4 AGS, which is still
good performance. Thanks to the safety margin design and
loosely bounded task completion time estimation, ToG shows
good tolerance to communication delays while maintaining
high TER, TCR and AGS.
D. Comparison of ToG Algorithm with Other Approaches

To better illustrate the benefits of the ToG Algorithm and
how each stage affects the final performance, we compared its
performance against two baseline approaches – 1) PC1Base:
an approach that adopts the same first-stage parent clustering
scheme as our proposed ToG scheme but uses a baseline
second-stage task group formation methodology, which selects
task group members that are within communication range
of the TV and from which the PCH has received at least
one beacon message update in the most recent 5 cycles, and
2) PC2ToG: an approach that uses a well cited clustering
scheme [40] in the first stage and adopts the same task group
formation method as the ToG Algorithm in the second stage.
By choosing these alternative approaches, we hope to, in
part, determine the relative impacts of the first stage (parent
clustering) and second stage (task group formation) of our
ToG approach. Figure 4 depicts the performance of the three
algorithms versus different numbers of vehicles (from 600 to
3400 with increments of 400).

5Very long packet delay emulates the impact of packet loss.

TABLE II: ToG Performance vs. Packet Delay

Delay (ms) [50,250) [50,450) [50,650) [50,850) [50,1050)

TER 92.5 92.1 91.4 90.2 87.3
TCR 92.8 92.6 92.0 90.9 88.5
AGS 6.7 6.6 6.3 6.1 5.4

We first compare the performance of ToG to that of
PC1Base. It is observed that the TER of PC1Base drops
quickly (from 84.4% to 56.8%) as the number of vehicles
increases. Though PC1Base and ToG adopt the same parent
clustering scheme, in the task group formation stage, ToG con-
siders the distribution relationship between T̂StayG and T̂TaskG ,
and selects PCMs with a better T̂StayG , T̂TaskG distribution
separation (through Tth) to form a task group, while PC1Base
only considers distance and signal metrics and ignores the
factors of different vehicles’ computing capabilities as well as
stay times of different groups. With PC1Base, as the num-
ber of vehicles increases, more PCMs within communication
range and with good connection are not able to finish task
computation before separation, causing the large decrease in
TER. Nevertheless, as is expected, the AGS achieved by ToG
is slightly smaller than that achieved by PC1Base, because
ToG has more constraints in selecting task group members as
a trade-off for better TER. Overall, this comparison shows
the clear benefits of our task-oriented group formation in
successfully completing a much higher percentage of tasks
while achieving close to the same average group size as an
approach that does not factor in the task requirements when
choosing a computation group.

Next, we compare the performances of PC1Base and
PC2ToG. Similar to PC1Base, PC2ToG’s TER decreases as the
number of vehicles increases, but not by as much (only from
85.2% to 79.3%). Recall that PC2ToG adopts the same task
group formation scheme as ToG, but uses a different parent
clustering scheme. This shows that, while both ToG’s clus-
tering scheme and its task group formation scheme improve
the task execution rate, the task group formation scheme is the
more important factor and using it with other parent clustering
schemes still provides substantial benefits.

In the end, if we put an eye on performance among all
three algorithms, we observe that only ToG’s TER increases
as the number of vehicles increases. This is because our parent
clustering scheme both clusters vehicles that tend to stay
longer together, which provides good candidates for second
stage task group formation, and is robust across different
vehicle densities. Then, in the second stage, only PCMs with
higher potential of completing tasks together before losing
connection are selected as task group members. Besides, it
always tries to find the largest possible group to achieve better
model training results. Therefore, we see that AGS grows as
the number of vehicles increases. Moreover, although PC2ToG
results in lower TER than ToG, it has better TER performance
than PC1Base, and this shows that our second-stage task-
oriented group formation algorithm can be combined with
different parent clustering schemes to improve the success rate

of tasks completing.

VII. CONCLUSION AND FUTURE WORK

Though we have demonstrated that our ToG approach has
great potential in achieving high TER while maximizing AGS,
it requires some prior knowledge of application-specific task
completion time distributions. The estimation and statistical
modeling of task completion time is an interesting area. Due
to time and space limits, we were not able to address that
aspect in this paper. However, in future work, we will consider
the following high-level ideas to approach this problem: 1)
identify the important variables of a task affecting the task
completion time, such as rated computation speed, operations
required for the task, communication cost, etc.; 2) collect data
through simulations under different traffic settings, and build a
baseline statistical model for a specific algorithm (techniques
such as survival analysis [41] may be applied); and 3) starting
with the baseline model, apply online learning techniques [9]
to tune the model during deployment.

REFERENCES

[1] S. Dmitriev, “Autonomous cars will generate more than
300 tb of data per year,” Jul 2020. [Online]. Available:
https://www.tuxera.com/blog/autonomous-cars-300-tb-of-data-per-year/

[2] A. Alhilal, T. Braud, and P. Hui, “Distributed vehicular computing at
the dawn of 5g: A survey,” arXiv preprint arXiv:2001.07077, 2020.

[3] G. Wang, J. Hu, Z. Li, and L. Li, “Cooperative lane changing via deep
reinforcement learning,” arXiv preprint arXiv:1906.08662, 2019.

[4] H. Liu, C.-W. Lin, E. Kang, S. Shiraishi, and D. M. Blough, “A
byzantine-tolerant distributed consensus algorithm for connected vehi-
cles using proof-of-eligibility,” in Proceedings of the 22nd International
ACM Conference on Modeling, Analysis and Simulation of Wireless and
Mobile Systems, 2019.

[5] H. Liu and D. Blough, “MultiVTrain: collaborative Multi-View active
learning for segmentation in connected vehicles,” in 2021 IEEE 18th
International Conference on Mobile Ad Hoc and Smart Systems (MASS)
(IEEE MASS 2021), 2021.

[6] S. Grigorescu, B. Trasnea et al., “A survey of deep learning techniques
for autonomous driving,” Journal of Field Robotics, 2020.

[7] NVIDIA Corporation. (2020) NVIDIA drive AGX developer kit.
[Online]. Available: https://developer.nvidia.com/drive/drive-agx

[8] H. Ye, L. Liang, G. Y. Li, J. Kim, L. Lu, and M. Wu, “Machine learning
for vehicular networks: Recent advances and application examples,”
IEEE Vehicular Technology Magazine, 2018.

[9] Y. Sun, X. Guo, S. Zhou, Z. Jiang, X. Liu, and Z. Niu, “Learning-based
task offloading for vehicular cloud computing systems,” in 2018 IEEE
International Conference on Communications (ICC). IEEE, 2018.

[10] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: A survey,” IEEE Internet of Things Journal, 2017.

[11] P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” IEEE Communications Surveys &
Tutorials, 2017.

[12] C. Yang, Y. Liu et al., “Efficient mobility-aware task offloading for
vehicular edge computing networks,” IEEE Access, 2019.

[13] Z. Zhou, H. Liao et al., “Reliable task offloading for vehicular fog
computing under information asymmetry and information uncertainty,”
IEEE Transactions on Vehicular Technology, 2019.

[14] G. Zhang, F. Shen, Y. Yang, H. Qian, and W. Yao, “Fair task offloading
among fog nodes in fog computing networks,” in 2018 IEEE Interna-
tional Conference on Communications (ICC). IEEE, 2018.

[15] C. Zhu, G. Pastor, Y. Xiao, Y. Li, and A. Ylae-Jaeaeski, “Fog following
me: Latency and quality balanced task allocation in vehicular fog
computing,” in 2018 15th Annual IEEE International Conference on
Sensing, Communication, and Networking (SECON). IEEE, 2018.

[16] M. LiWang, Z. Gao et al., “Multi-task offloading over vehicular clouds
under graph-based representation,” in ICC 2020-2020 IEEE Interna-
tional Conference on Communications (ICC). IEEE, 2020.

[17] F. Sun, F. Hou, N. Cheng, M. Wang, H. Zhou, L. Gui, and X. Shen,
“Cooperative task scheduling for computation offloading in vehicular
cloud,” IEEE Transactions on Vehicular Technology, 2018.

[18] S. Olariu, “A survey of vehicular cloud research: Trends, applications
and challenges,” IEEE Transactions on Intelligent Transportation Sys-
tems, 2019.

[19] W. Zhang, Z. Zhang, and H.-C. Chao, “Cooperative fog computing
for dealing with big data in the internet of vehicles: Architecture and
hierarchical resource management,” IEEE Communications Magazine,
2017.

[20] J. Feng, Z. Liu, C. Wu, and Y. Ji, “AVE: Autonomous vehicular edge
computing framework with aco-based scheduling,” IEEE Transactions
on Vehicular Technology, 2017.

[21] G. Qiao, S. Leng, K. Zhang, and Y. He, “Collaborative task offloading
in vehicular edge multi-access networks,” IEEE Communications, 2018.

[22] Y. Sun, X. Guo, J. Song, S. Zhou, Z. Jiang, X. Liu, and Z. Niu, “Adaptive
learning-based task offloading for vehicular edge computing systems,”
IEEE Transactions on Vehicular Technology, 2019.

[23] J. Y. Yu and P. H. J. Chong, “A survey of clustering schemes for mobile
ad hoc networks,” IEEE Communications Surveys & Tutorials, 2005.

[24] R. Agarwal and D. Motwani, “Survey of clustering algorithms for
MANET,” arXiv preprint arXiv:0912.2303, 2009.

[25] M. Sood and S. Kanwar, “Clustering in MANET and VANET: A survey,”
in 2014 International Conference on Circuits, Systems, Communication
and Information Technology Applications. IEEE, 2014.

[26] C. Shea, B. Hassanabadi, and S. Valaee, “Mobility-based clustering in
vanets using affinity propagation,” in GLOBECOM 2009-2009 IEEE
Global Telecommunications Conference. IEEE, 2009.

[27] C. Cooper, D. Franklin, M. Ros, F. Safaei, and M. Abolhasan, “A
comparative survey of VANET clustering techniques,” IEEE Commu-
nications Surveys & Tutorials, 2016.

[28] C. Allig and G. Wanielik, “Alignment of perception information for
cooperative perception,” in 2019 IEEE Intelligent Vehicles Symposium
(IV). IEEE, 2019.

[29] A. A. Abdellatif, C. F. Chiasserini, and F. Malandrino, “Active learning-
based classification in automated connected vehicles,” arXiv preprint
arXiv:2002.07593, 2020.

[30] M. Ren, L. Khoukhi, H. Labiod, J. Zhang, and V. Veque, “A new
mobility-based clustering algorithm for vehicular ad hoc networks
(VANETs),” in NOMS 2016-2016 IEEE/IFIP Network Operations and
Management Symposium. IEEE, 2016.

[31] A. Daeinabi, A. G. P. Rahbar, and A. Khademzadeh, “VWCA: An
efficient clustering algorithm in vehicular ad hoc networks,” Journal
of Network and Computer Applications, 2011.

[32] Y. Huo, Y. Liu, L. Ma, X. Cheng, and T. Jing, “An enhanced low
overhead and stable clustering scheme for crossroads in VANETs,”
EURASIP Journal on Wireless Communications and Networking, 2016.

[33] M. Ren, J. Zhang, and etl al., “A unified framework of clustering ap-
proach in vehicular ad hoc networks,” IEEE Transactions on intelligent
transportation systems, 2017.

[34] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konecny, S. Mazzocchi, H. B. McMahan et al.,
“Towards federated learning at scale: System design,” arXiv preprint
arXiv:1902.01046, 2019.

[35] Z.-H. Zhou and M. Li, “Tri-training: Exploiting unlabeled data using
three classifiers,” IEEE Transactions on Knowledge and Data Engineer-
ing, 2005.

[36] C. Sommer, R. German, and F. Dressler, “Bidirectionally coupled
network and road traffic simulation for improved IVC analysis,” IEEE
Transactions on Mobile Computing (TMC), 2011.

[37] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent
development and applications of SUMO-simulation of urban mobility,”
International Journal on Advances in Systems and Measurements, 2012.

[38] OpenStreetMap contributors, “Planet dump retrieved from
https://planet.osm.org ,” https://www.openstreetmap.org , 2017.

[39] NHTSA, “Federal motor vehicle safety standards; v2v communications,”
2017. [Online]. Available: https://www.federalregister.gov/d/2016-31059

[40] M. Ren, L. Khoukhi, H. Labiod, J. Zhang, and V. Veque, “A mobility-
based scheme for dynamic clustering in vehicular ad-hoc networks
(VANETs),” Vehicular Communications, 2017.

[41] J. Wang, S. Faridani, and P. Ipeirotis, “Estimating the completion time
of crowdsourced tasks using survival analysis models,” Crowdsourcing
for Search and Data Mining (CSDM 2011), 2011.

