
Detection of Conflicts and Inconsistencies in Taxonomy-based Authorization Policies

Apurva Mohan
Honeywell ACS Labs

Honeywell International Inc.
Golden Valley, MN, USA

Apurva.Mohan@Honeywell.com

Douglas M. Blough
School of ECE

Georgia Institute of Technology
Atlanta, GA, USA

doug.blough@ece.gatech.edu

Tahsin Kurc, Andrew Post, Joel Saltz
Center for Comprehensive Informatics

Emory University
Atlanta, GA, USA

{tkurc,arpost,jhsaltz}@emory.edu

Abstract—The values of data elements stored in biomedical
databases often draw from biomedical ontologies. Authoriza-
tion rules can be defined on these ontologies to control access
to sensitive and private data elements in such databases.
Authorization rules may be specified by different authorities
at different times for various purposes. Since such policy rules
can conflict with each other, access to sensitive information
may inadvertently be allowed. Another problem in biomedical
data protection is inference attacks, in which a user who
has legitimate access to some data elements is able to infer
information related to other data elements. We propose and
evaluate two strategies; one for detecting policy inconsistencies
to avoid potential inference attacks and the other for detecting
policy conflicts.

Keywords-Authorization policy, Biomedical ontology, Infer-
ence attacks, Policy conflicts.

I. INTRODUCTION

Securing biomedical information presents challenges to
information systems. An increasing number of biomedical
databases make use of ontologies and semantic information;
data that reside in such databases are mapped to domain
ontologies. For instance, studies supported by the Atlanta
Clinical and Translational Science Institute, which are the
main motivating applications for our work, employ a va-
riety of controlled terminologies including SNOMED-CT
(Systematized Nomenclature of Medicine - Clinical Terms)
concepts, LOINC (Logical Observation Identifiers Names
and Codes) terms, and ICD9 (International Classification of
Diseases) codes for the values of data elements. Queries
against semantic databases can return results based on
not only the values of individual data elements, but also
explicit and inferred relationships, such as class-subclass
relationships, specified in ontologies. Moreover, biomedical
databases can be accessed by a wide range of users and, in
the case of large scale collaborative studies, across multiple
institutions. This requirement dictates that multiple data
access control policies be implemented and managed. Thus,
the security infrastructure for large databases of biomedical
data must (1) ensure that existing policies do not conflict
with each other, and new policies or changes to policies
do not create conflicts that may allow unauthorized data

This research was completed while the first author was at Georgia Tech.

access, and (2) take into account semantic information in
biomedical databases, support policies defined on concepts
from ontologies, and be able to detect conflicts in such
policies.

In this work, we present strategies for conflict detec-
tion when access control policies are defined on tax-
onomies, which represent hierarchical relationships (i.e.,
class-subclass relationships) between concepts. Access con-
trol rules can be defined for any of the concepts in the
taxonomy. That is, a rule specifies whether a request on data
elements, whose values are mapped to the corresponding
concept, should be granted or denied. Access control rules
for a concept can differ from its children and they can be in
conflict. Detecting and resolving these conflicts is non-trivial
because it involves identification of applicable rules and
detecting conflicts among them dynamically during execu-
tion of data access requests. We propose a dynamic conflict
detection and resolution strategy and we have developed an
efficient algorithm to carry out this strategy. Our work is also
concerned with attacks where a principal who has legitimate
access to some node is able to infer data related to another
node. Our approach to prevent this type of inadvertent
data disclosure is by ensuring policy consistency, meaning
that the framework ensures that a node which can lead to
inference about other nodes is protected by the same level of
authorization policies as the other nodes. We have developed
an algorithm to check policy consistency to detect potential
information inference vulnerabilities. The execution times of
these two algorithms are evaluated empirically.

Prior work most closely related to our research is the
work by Jajodia, et al. [1], which proposes some strate-
gies for conflict resolution and authorization propagation.
However, their work does not consider inference relations
nor dynamic analysis of conflicts. Inference attacks are
common against statistical databases [2], where the results of
repeated statistical queries are used to infer specific database
elements. Some approaches used to protect privacy against
these attacks are: k-anonymity [3], l-diversity [4], and t-
closeness [5]. Here, we consider inference attacks where
some specific elements of the database (not statistical re-
sults) can be used to infer other database values. Researchers
have proposed various methods to reduce an attacker’s



Figure 1. An example tree with data element hierarchy.

access to data that is highly correlated to sensitive protected
data, e.g. [6]. These methods are not designed against
attackers who have legitimate access to some information
that is highly correlated to the non-accessible protected
information. Several works have considered how to represent
inference relations between different data items [7], but are
not focused on detection. Thuraisingham et al. developed
methods for detecting inference relations during database
design and presenting them to the system administrator [8].
In contrast to [8], our approach addresses the problem
using consistent policies and is not concerned with database
design. Several projects have developed support for detecting
inferences related to duplicated data protected using incon-
sistent policies [9], [10]. These approaches consider only
data elements that are exact copies of each other.

II. PROBLEM DESCRIPTION

A taxonomy can be represented as a tree, in which
different levels in the tree correspond to class-subclass
hierarchies. For example, if ‘flu’ is a class (or concept),
then the specific types of ‘flu’ will be its sub-classes and
will be represented as child nodes in the hierarchy. Our
approach views a biomedical ontology as a resource tree, as
is illustrated in Figure 1. Each node in the tree corresponds
to an ontology concept and represents a resource to be
protected. Access control policies defined on a given node
(concept) specify whether access requests to data elements,
whose values are mapped to the corresponding concept, are
to be granted or denied and under what conditions. In the
figure, some tree nodes, such as n1, n2, n8, n9, and n19,
have an access control rule displayed next to them. The
effect of a rule is denoted by the letter ‘P’ or ‘D’ representing
a response of ‘Permit’ or ‘Deny’ – that is, the request is
either Permitted or Denied. The elements on the left denote
the subject, environmental, and action attributes represented
by ‘s’, ‘e’ and ‘a’.

Authorization flows are always from any node towards its
children, as shown in Figure 1. An access policy defined
on a node should be enforced for its children as well. For
instance, assume ’flu’ has two subclasses; ’common flu’
and ’swine flu’. If a ’Deny’ policy is defined on ’flu’ –

any request to retrieve data mapped to ’flu’ is denied –, all
requests to its subclasses should also be denied.

Different authorization rules can be specified on different
levels of ontologies. Each node either has its own autho-
rization rules or inherits them from its parent. Conflicts
and inconsistencies may be introduced because different
granularity of data are protected by different policy rules.
In case a node’s access control rules conflict with its parent,
conflict resolution should be performed. It is required that
policies on all ontological classifications (nodes on the re-
source tree) in a database are synchronized. This is required
to ensure consistency in authorization decisions on multiple
paths leading to the same resource. If this is not done, then a
user may be permitted to access a resource if he selects one
access path, while he may be denied access through another
path.

In addition to conflicts, inconsistencies may arise when
there is an inference relationship between classifications on
ontologies. In databases inference attacks are used to infer
sensitive information which a subject does not have access
to by using sensitive or non-sensitive information that he has
access to. Inference relations between different nodes exist
when one or more nodes can be inferred from some related
node. We treat this condition as a policy inconsistency and
refer to such a condition as inference inconsistency. In the
current research, we assume that inference relations between
concepts in an ontology are pre-determined and provided to
our conflict and inconsistency detection algorithms as input.

To illustrate inference inconsistency, let us consider a
patient who is diagnosed as HIV positive. The patient’s
documents are stored in a database where the data elements
are mapped to a medical ontology. Since the patient’s condi-
tion is highly sensitive, access to his diagnosis information
should only be provided to individuals with appropriate
authorization such as the patient’s doctor. Assume that a
node L1 in the ontology maps to the HIV status data
elements. This node must be protected by a policy rule that
denies access by any user but the patient’s doctor, Dr. Brown:

1) {(Dr. Brown), (Node L1), (Read,Write)} = Permit
2) {(*), (Node L1), (*)} = Deny

The second rule uses the wildcard * which represents all
the users other than the ones in the adjoining rule (Rule
1). The second rule denies any other user access to node
L1. However, it is possible to infer a patient’s HIV status
from his/her laboratory tests. Consider nodes L3, L4 and
L5 which correspond to different types of blood tests. The
patient’s document in these categories may have highly
sensitive information which may lead to an inference about
the patient’s diagnosis. The following policy rules allow any
researcher and volunteer nurse to access these nodes:

1) {(Any researcher), (Node L3,Node L4,Node L5),
(Read,Write)} = Permit

2) {(Any volunteer nurse), (Node L3,Node L4,Node L5),



(Read)} = Permit
In this case, these rules create an inference inconsistency,
because while the authorization system limits access to
node L1, the rules allow access to nodes L3, L4, and
L5, thus enabling an unauthorized person to deduce the
patient’s disease status. The authorization system should
implement mechanisms to detect such inconsistencies to
properly protect information.

III. CONFLICT AND INCONSISTENCY DETECTION
METHODS

Our work handles two problems - i) Authorization policy
conflicts among different hierarchical levels in a resource
tree; and ii) detection of inconsistencies in authorization
policies specified for inference related nodes. We address
the former by resolving the conflicts and inform these
inconsistencies to the system administrator. In the latter
case, inference inconsistencies can be by mistake or by
design (e.g., as a result of a data collection and analysis
workflow). As such our approach does not resolve them
but provides a mechanism to detect and inform a system
administrator of the inconsistencies. The inconsistencies can
be classified into strong and weak inconsistencies, where
a strong inconsistency occurs when a conflicting set of an
explicit ‘Deny’ rule1 and an explicit ‘Permit’ rule is defined,
whereas a weak inconsistency occurs when a conflicting set
of a ‘NotApplicable’ rule2 and an explicit ‘Permit’ rule is
defined. They are reported accordingly so that the database
administrator can handle them according to their priority.

Policy analysis can be done in a static or dynamic manner.
In the static analysis mode, all authorization rules for a
particular node will be compared with authorization rules for
nodes above and below it to determine if there are conflicts.
In the dynamic analysis mode, on the other hand, policy
checks are performed in real time when an access request is
received by the system. When an access request for a node
is received, the authorization system detects and resolves
conflicts with the parents and children of the requested
node and determines the data subset which the requesting
user can access. Dynamic analysis is faster, because it
analyzes only the rules that are applicable to the current
request. Dynamic analysis does consider all nodes above
and below in the hierarchy compared to the current node,
but it only considers the specific combinations of subject
and environmental attributes present in the current access
request, which reduces the number of rules to consider.

We have employed the dynamic analysis mode, because
conflict resolution and inconsistency detection can be done
quickly (as is also shown in the experimental evaluation in
Section IV). Our approach allows users to access only those

1An explicit ‘Deny’ rule should be used to restrict access to sensitive
resources to everybody except the allowed subjects.

2In a default deny system, a not applicable rule constitutes an implicit
deny.

data sets which they need in order to complete their tasks,
while enforcing access control. In Figure 1, for example, if
a user needs data sets n18 and n19, then the user will get
access to n12, which contains only these data sets.

A. Conflict Handling Algorithm
We now describe the dynamic conflict analysis and han-

dling algorithm and illustrate how it works with an example.
The conflict handling algorithm is presented in greater detail
in an accompanying technical report [11].

The user requests all data associated with a node n. We
create several arrays to help with data processing. Array1
contains the nodes at a level for which we have to evaluate
policy rules; Array2 contains nodes from Array1 which
allow data access for the user; ReportArray contains the
children of node n which have a conflict with the policy
specified for node n; and FinalArray contains the leaf nodes
which are the children of node n children and are accessible
by the user. The algorithm performs the following steps:

1) An access request for node n is received with specified
subject, environment, and action attributes.

2) The request is evaluated for each parent of node n.
If the response is ‘Deny’ for any one of the parent
nodes, the final response is set to ‘Deny’ . That is, the
access request is denied.3

3) Node n is stored in Array2.
4) The request is evaluated for all the children of all

nodes in Array2. The child nodes which have access
decision different from node n are stored in the
ReportArray.

5) The child nodes, which have a response of ‘Permit’
associated with them and are leaf nodes, are stored in
the FinalArray.4

6) In the previous step, non-leaf child nodes with access
decision ‘Permit’ are stored in an intermediate array
and the ones with ‘Deny’ are neglected. Others are
stored in Array2 which contains nodes whose children
will be evaluated in the next iteration.5

7) We repeat steps 4 to 6 above until Array2 is empty.
8) The ReportArray is sent to the system administrator.

The data elements based on the concepts (nodes) in the
FinalArray are returned as the response to the user.6

3An explicit ‘Deny’ rule is set on a node to prevent holders of those
attributes from accessing any data on or below that node.

4If the decision on a node is ‘Permit’ or ‘NotApplicable’, then the more
specific rule on the child node overrides. Since the actual data is only held
on the lead nodes, we need to find all the lead nodes which are children
of node n and see if the current requester is permitted or denied access to
data on that lead node.

5This is in congruence with the two steps above. If there is an explicit
‘Deny’ on a node, the requester is prohibited from accessing data form any
of the children of that node. On the other hand, if the decision is either
‘permit’ or ‘NotApplicable’, we continue to search for rules on child nodes
which would override them.

6The ReportArray contains the nodes which have conflicting permissions
than node n. The FinalArray contains leaf nodes whose data can be accessed
by the requester.



B. Inference Inconsistency Detection Algorithm

The inference inconsistencies detection algorithm is pre-
sented in greater detail in an accompanying technical re-
port [11]. The algorithm performs the following steps:

1) Access request for the node n is received with speci-
fied subject, environment, and action attributes.

2) The algorithm retrieves the list of all the nodes
ninferencenodelist which can be inferred from the
requested node n.

3) The access policy for node n is evaluated.
4) Access policy for each node in ninferencenodelist is

evaluated and the ones which have access policy
responses different from that of node n are reported
to the system administrator.

Inference inconsistencies in the system can be a result of
a mistake or can be included by design (e.g., as a result
of a data collection and analysis workflow). Differentiating
between these two is a reasoning problem and as such our
approach does not resolve them but provides a mechanism
to detect them and inform a system administrator of the
inconsistencies. We assume that the system administrator
will distinguish between the two and manually resolve them.

IV. EXPERIMENTAL EVALUATION

We have implemented the algorithms described in the
previous section in Java programming language and used the
XACML policy language and Sun’s open source XACML
engine [12] for specifying authorization policies. We have
implemented some enhancements for performance improve-
ment and to support the conflict detection and resolutions
algorithms, in the policy component of the open source
XACML engine. The experimental evaluation is targeted at
examining the execution time of the conflict and inconsis-
tency detection algorithms. We executed the experiments on
a Linux server running Ubuntu 4.4.1. The hardware platform
has 8 GB of RAM and Intel quad core Xeon(R) CPU 5150,
2.66GHz processor with 4096KB cache on each processor.
We created synthetic policies for evaluation of performance
of the algorithms in a controlled way.

A. Execution Time to Detect and Resolve Conflicts

This set of experiments investigates how long it takes to
execute checks for policy conflicts in a hierarchical ontology.
The NIH sponsored i2b2 project is a popular system which
provides an ontology of clinical terms [13]. We have created
a sample ontology from the ontology provided by i2b2 with
a total of 10,200 nodes (concepts). In our test setup, the
root node represents the entire ontology and has three levels
below it, where level 1 nodes are the direct children of the
root node, and level 3 nodes are the leaf nodes.

We have measured system performance at three points,
scaling down the number of nodes from 10,000 to 6,000 to
2,000. For each level of the tree, a node is selected at random
and an access request is generated to access the resource

represented by that node. Permission to access data elements
is evaluated according to the conflict detection algorithm.
The performance results for this test case are presented in
Figures 2 and 3.

Figure 2. Evaluation time to detect conflicts with permit rules.

Figure 3. Evaluation time to detect conflicts with deny rules.

For these experiments, we created policies by randomly
selecting 10% of the total nodes and setting a rule with
‘Permit’ decision for a specified combination of subject, en-
vironment and action attributes. We repeated this procedure
by setting 10% of the rules with ‘Deny’ rules.

Figure 2 shows the elapsed time to find all the authorized
nodes for an access request for 10,000, 6,000, and 2,000
nodes for each level in the resource tree hierarchy with about
10% of the total nodes containing ’permit’ authorization
rules7. According to the conflict detection algorithm, if a
parent node of the requested node has an explicit deny rule
on it, then the child nodes are not searched and the request
is denied. We show the total elapsed time as the sum of time
for searching deny rules on parent nodes and time to search
child nodes, which is the total elapsed time. We observe
that if the access query is sufficiently narrowed down such

7If this authorization rule is matched, then the final effect is ‘Permit’



that the resource is at level 2 or 3, then the time required
for conflict detection and resolution is under one second.
Figure 3 shows the elapsed time with the same parameters
as Figure 2, but in this case the 10% authorization rules have
the effect ’deny’8.

A key observation from the results is that the total conflict
handling time for a node is directly proportional to the
number of nodes in its subtrees.

B. Execution Time to Perform Consistency Check

In these experiments, we evaluate the execution time of
consistency checks on policies involving nodes with infer-
ence relations for the same ontology used in the previous
section. If a requester requests access to node A, which
has inference relationships with nodes B, C, and D s.t.
(B,C,D) → A, then we have to make sure that node A,
B, C, and D have the same level of protection. This check
is required so that a user, who can access node A with a
lower level authorization policies would not inadvertently
learn about nodes B, C and D, which are protected by more
stringent policies.

For evaluation, we generate a set of nodes that have an
inference relationship with other nodes. As in the previous
example, nodes B, C or D can be inferred by node A, i.e.,
(B,C,D) → A. Other nodes E, F , G lead a user to infer
node A, i.e. A → (E,F,G). When an access request for
node A is received by the system, it checks whether the
access control rules for node A are consistent with nodes
B, C, and D. On the other hand, if an access request is
received from nodes E, F , or G then it checks whether
their access control rules are consistent with node A.

Typically the number of data classifications that can be
inferred from another classification is relatively low, so we
choose the number of related classifications accordingly. We
consider that each randomly selected node can lead to an
inference of 3, 5, 10, or 20 nodes and evaluate the time
required to check the policy consistency for these nodes
for each number of inferences by evaluating the algorithm
presented in III-B. In Figure 4, we see that up to 10
inferenced nodes, the time to check policy consistency is
under one second.

V. CONCLUSIONS

Security is a critical component in making biomedical
data available for research purposes. Because of complexity
of semantic databases and the variation of user access
privileges, conflicts and inconsistencies may arise in a group
of access control policies defined on ontology concepts for a
database. Our work has investigated two algorithms designed
to support (1) detection and handling of conflicting policies
defined at different levels of a hierarchical ontology and
(2) detecting and reporting policy inconsistencies among

8If this authorization rule is matched, then the final effect is ‘Deny’

Figure 4. Policy consistency checking time.

policies defined on inference related concepts in an ontology.
These algorithms provide a tool for database administrators
to better protect sensitive and private data. Our empirical
evaluation of the execution times of these algorithms indi-
cates that the algorithms are fast and likely to incur little
overhead to the overall execution of the security infrastruc-
ture and database system. Our current work assumes the
inference relationships among concepts in an ontology are
provided explicitly. We plan to investigate methods to detect
inference relationships in future work.
Acknowledgment. This research is supported in part by
the PHS Grant UL1RR025008 from the CTSA program,
by the National Science Foundation under Grant CNS-CT-
0716252, by R24HL085343 from the NHLBI, by Grant
R01LM009239 from the NLM, and by SAIC/NCI Contract
No. HHSN261200800001E from the National Cancer Insti-
tute, NCI Contract No. N01-CO-12400, 85983CBS43, and
94995NBS23.

REFERENCES
[1] S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian,

“Flexible support for multiple access control policies,” ACM TDS,
June 2001.

[2] W. D. Jonge, “Compromising statistical databases responding to
queries about means,” in ACM TDS, 1983.

[3] L. Sweeney, “k-anonymity: A model for protecting privacy,” Int.
Journal on UFKS, 2002.

[4] A. Machanavajjhala, J. Gehrke, and D. Kifer, “l-diversity: Privacy
beyond k-anonymity,” ACM TKDD, March 2007.

[5] N. Li and T. Li, “t-closeness: Privacy beyond k-anonymity and l-
diversity,” in IEEE Data Engg., 2007.

[6] L. Chang and I. Moskowitz, “A bayesian network schema for lessen-
ing database inference,” in CIMCA01, 2001.

[7] R. Yip and K. Levitt, “Data level inference detection in database
systems,” in IEEE CSFW, 1998.

[8] B. Thuraisingham, “The use of conceptual structures for handling the
inference problem,” Database Sec., 1992.

[9] A. Stoica and C. Farkas, “Ontology guided xml security engine,”
Journal of IIS, 2004.

[10] L. Yang, X. Junmo, and L. Jing, “Protecting xml databases against
ontology-based inference attack,” in CIS, 2007.

[11] A. Mohan, D. Blough, T. Kurc, A. Post, and J. Saltz, “Detection
of conflicts and inconsistencies in taxonomy-based authorization
policies.” CERCS Tech Report GIT-CERCS-11-05, GaTech, 2011.

[12] “Sun XACML Policy Engine,” sunxacml.sourceforge.net.
[13] S. Murphy, G. Weber, M. Mendis, H. Chueh, S. Churchill, J. Glaser,

and I. Kohane, “Serving the enterprise and beyond with informatics
for integrating biology and the bedside (i2b2),” AMIA Journal, 2010.


