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ABSTRACT

In this paper, we analyze the node spatial distribution of
a mobile wireless ad hoc networks. Characterizing this dis-
tribution is of fundamental importance in the analysis of
many relevant properties of mobile ad hoc networks, such
as connectivity, average route length, and network capacity.
In particular, we have investigated under what conditions
the node spatial distribution resulting after a large number
of mobility steps resembles the uniform distribution. This
is motivated by the fact that the existing theoretical results
concerning mobile ad hoc networks are based on this as-
sumption. In order to test this hypothesis, we performed
extensive simulations using two well-known mobility mod-
els: the random waypoint model, which resembles inten-
tional movement, and a Brownian-like model, which resem-
bles non-intentional movement. Our analysis has shown that
in the Brownian-like motion the uniformity assumption does
hold, and that the intensity of the concentration of nodes in
the center of the deployment region that occurs in the ran-
dom waypoint model heavily depends on the choice of some
mobility parameters. For extreme values of these parame-
ters, the uniformity assumption is impaired.
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1. INTRODUCTION

Wireless ad hoc networks have received increasing inter-
est in the scientific community in recent years. However,
due to their complex and unstructured nature, very few an-
alytical results describing their fundamental properties have
been derived. Among them, the most notable concern the
connectivity and coverage problems for stationary networks,
which have been analyzed in [10, 20]. A common assumption
in these studies is that nodes are distributed in a given area
according to a probability distribution; the value of the node
transmitting range ensuring a connected network (or cover-
age of the deployment area) with high probability is then
derived. Another important theoretical result for stationary
ad hoc networks is presented in [11], where it is shown that
the capacity of the network does not scale with its size.

If deriving analytical results for stationary networks is dif-
ficult, even more challenging is deriving theoretical results
regarding mobile ad hoc networks. This has been done, for
example, in [9], where it is shown that, contrary to the sta-
tionary case, the capacity of mobile ad hoc networks can
actually scale with the size. Less general analytical results
for mobile networks have been derived in [1, 17], where two
variations of the DSR routing protocol are evaluated in a
theoretical framework.

As in the case of stationary networks, these results rely on
some assumptions on the node spatial distribution, which
are designed to simplify the analysis. In particular, in [1,
9] it is assumed that: 1. (uniformity assumption) in any
snapshot of the mobile network the nodes are distributed
uniformly and independently at random in the deployment
area; 2. (independence assumption) different snapshots are
independent. With these hypotheses, a mobile network com-
posed by n nodes performing N mobility steps can be mod-
eled as N independent experiments, where each experiment
consists in distributing the n nodes uniformly in the deploy-
ment region.

Although these assumptions are not unrealistic, their like-
lihood heavily depends on the initial node distribution and
on the mobility pattern considered. It follows that the choice
of the mobility model and/or of the initial node distribution
could have a dramatic impact on the accuracy of these ana-
lytical results. Hence, the influence of the mobility pattern
and/or of the initial distribution on the node spatial dis-
tribution after a large number of mobility steps should be
precisely evaluated.

Probabilistic mobility modeling has been extensively stud-



ied in the related field of cellular networks. For a survey of
probabilistic modeling of cellular networks see [3]. However,
these results are not applicable to ad hoc networks. In fact,
most of them concern specific properties of cellular networks
(e.g., cell residence time, number of handoffs during a call,
and so on). Furthermore, the emphasis is usually on mod-
eling the properties of a single mobile user, rather than on
the global mobile user’s distribution. Finally, the mobility
patterns considered resemble the typical motions that oc-
cur in cellular systems, i.e. human and vehicular motion.
Hence, an accurate study of the probabilistic properties of a
mobile ad hoc network is, to the best of our knowledge, still
lacking.

Preliminary steps in this direction have been recently done
in [3, 4], where it has been observed that in the well known
random waypoint model nodes tend to concentrate in the
center of the deployment region, causing the so called bor-
der effect. However, the intensity of this border effect has
not been carefully evaluated, and in particular its depen-
dence on the choice of the mobility parameters has not been
investigated.

In this paper, we perform a further step in understanding
the node spatial distribution generated by mobile ad hoc
networks. In particular, we study under what conditions is
the uniformity assumption used to derive the analytical re-
sults of [1, 9] valid. The mobility patterns considered, which
are described in detail in Section 3, account for two different
kinds of motion: intentional, which is modeled using the ran-
dom waypoint model, and non-intentional, which is modeled
by a Brownian-like motion. In the case of the random way-
point model, we investigate the conditions (i.e., the choices
of the mobility parameters) under which the spatial distri-
bution (which is not uniform) can be well approximated by
the uniform distribution.

In order to test the uniformity of the nodes’ spatial dis-
tribution, we have designed a collection of statistical tests
tailored to wireless ad hoc networks. Each of these tests
measures a feature of the node distribution that is of inter-
est in the design of wireless ad hoc networks. Details on the
uniformity test used in this paper can be found in Section
2.

In addition to its intrinsic importance as a fundamental
property of mobile ad hoc networks, the study of the node
spatial distribution is significant in a number of ways. For
example, the distribution of route lengths is of critical im-
portance in determining the performance of mobile routing
algorithms [1, 12, 17]. Longer routes have a higher proba-
bility of becoming invalid due to node mobility than shorter
ones. When routes become invalid, these algorithms incur
overhead in discovering new ones. Observe that the route
length distribution can be determined directly from the node
spatial distribution when all nodes have the same transmit-
ting range.

Another area in which node spatial distribution is highly
relevant is in the evaluation of network capacity, where route
length and node spatial distribution are important factors
[9, 11]. For example, a node concentration in the center
of the deployment region, as we see with the random way-
point model, reduces average route lengths, which tends to
increase capacity. However, this concentration also exacer-
bates interference, which has the opposite effect of decreas-
ing capacity. A detailed modeling and evaluation of capac-
ity is beyond the scope of this paper, but quantifying the

node spatial distribution should make more accurate capac-
ity evaluation possible in the future.

2. AN UNIFORMITY TEST FOR AD HOC
NETWORKS

Statistical tests are commonly used to verify the con-
formity of a large set of observations to a given distribu-
tion. A typical test is as follows. Suppose H is the sta-
tistical hypothesis that we want to test, i.e. that a sam-
ple consisting of a large number of independent observa-
tions X = {z1,...,z;} is taken from the continuous distri-
bution F(z). Let p be a statistic calculated on the sam-
ple, and assume that, in the hypothesis that observations
are distributed according to F(z), the limit distribution of
i, i.e. the probability distribution of p when [ — oo, is
known. Let CDF, be the cumulative distribution func-
tion of this distribution, i.e. CDF,(z) = P(u < z), and
let i be the value of the statistic calculated on X. The
test is as follows: if €y < g < (3 the hypothesis H is
adopted, otherwise it is rejected. If [ is sufficiently large,
the error of the first kind, i.e. the probability of rejecting
H when this hypothesis is true, is well approximated by
P({n < Ci} {n > Co}) = 1 + CDF,(Cy) — CDF,(Co).
By appropriately choosing constants C1 and Cs, we get the
desired test accuracy.

Observe that the test described above provides only uni-
directional information. In fact, if the sample is rejected,
then we know that it is very unlikely that the hypothesis
H actually holds. However, if the test passes, we can only
conclude that the sample does not violate H and this, in
general, is not sufficient to conclude that H actually holds.

To clarify this point, consider the following example. Sup-
pose that observations are a set of points taken from the
closed interval [0, 1], and assume that the hypothesis H is
that the points are uniformly and independently distributed
in that interval. Let p be the statistic that measures the
distance between the extreme points in the sample, and let
E[p] be its expectation under the hypothesis H. Consider
now a sample X in which a point is located at coordinate
0, another is located at coordinate E[u], and the remaining
I — 2 points are distributed uniformly and independently in
(0, E[u]). Clearly, the sample passes the test, but hypothe-
sis H is violated. In order to circumvent this problem, more
than one statistic can be considered: if the sample passes all
the tests it is accepted, otherwise it is rejected. Returning to
the example above, if we also calculate the sum of the values
of the points, the sample X will be probably rejected.

The discussion above indicates that the test accuracy can
be significantly improved by considering different statistics
on the same sample, which must be adequately chosen given
the nature of the observations and the hypothesized distri-
bution.

In this paper, an observation consists of the positions of
the nodes of a mobile ad hoc network at an arbitrary in-
stant of time ¢. We assume that the network is composed
by n nodes, which move in a square region of unit area.
Hence, the observation taken at time ¢, also called snap-
shot at time ¢, can be formally defined as the set X (t) =
{z1(¢t),...,zn(t)}, where z;(t) are the coordinates of the
point in [0, 1]2 that represent the position of node 7 at time
t.

The statistical hypothesis H that we want to test is that



the points in X(t) are independently and uniformly dis-
tributed in the deployment region [0,1]?. To this purpose,
we will consider the following statistics on X(¢):

1. the length of the longest nearest neighbor edge, defined
as

LNNy = max min{d(zi(t),z;(t))},

i=1,...,n j#i
where d(z;(t),z;(t)) denotes the Euclidean distance
between points z;(t) and z;(t);

2. the length of the longest edge of the Euclidean mini-
mum spanning tree (MST) built on the points in X'(¢);

3. the total edge length of the MST on X(t);
4. the total edge length of the Voronoi diagram on X(t);

5. the total edge length of the Delaunay triangulation on
X(t);

6. the number of empty cells.

A formal definition of Voronoi diagram and Delaunay trian-
gulation can be found in [8]. The empty cell statistic is ob-
tained by partitioning the deployment region into n square
cells of side ﬁ that are arranged in a grid fashion, and by
counting the number of vacant cells.

The statistics above have been chosen since their limit
distributions are known, and since they are relevant param-
eters in wireless ad hoc networks. In fact, the length of
the longest nearest neighbor edge is a lower bound to the
critical transmitting range', while the length of the longest
edge in the MST is exactly the critical transmitting range
[6, 18]. The critical transmitting range in ad hoc networks
has been studied in [10, 20]. The total edge length of the
MST is closely related to the cost of the optimal transmit-
ting range assignment [13], while the Voronoi diagram and
Delaunay triangulation, or derivation of these graphs, are
used to construct spanners for power-efficient routing [7],
and in the evaluation of sensor networks coverage and ex-
posure [15, 16]. Finally, a subdivision of the deployment
region into square cells is used, for instance, to implement
cooperative strategies aimed at extending network lifetime
[22].

The limit distributions of these statistics, under the as-
sumption that nodes are distributed uniformly and inde-
pendently at random in [0, 1]%, have been widely studied. In
particular, it has been shown that:

— the longest nearest neighbor edge and the longest edge
of the MST have the same limit distribution, which is
double exponential. Denoting with NNL and LMST
the random variables corresponding to these statistics,

we have [6, 18]:
lim P(NNL < (/2F108m,
n— 00 ™
— lim P(LMST < /23198™) _ (op(—e)
n— 00 ™

!The critical transmitting range is the minimum value r of
the transmitting range that ensures that the communication
graph obtained by connecting nodes at distance at most r
is strongly connected.

— denoting by TM ST the total edge length of the MST,
we have [2, 21]:
. TMST
lim =c,

n— o0 n

where ¢ is a constant, with 0.600822 < ¢ < 0.707.
The value of ¢ has been experimentally evaluated as
~ 0.656. Although a formal proof does not exist,
there are many evidences that the limit distribution

of TM ST is the normal distribution [21].

— the limit distribution of the total edge length of the
Voronoi diagram and of the Delaunay triangulation is
the normal distribution [19].

— the limit distribution of the number of empty cells is
the normal distribution of parameters

(2, /20=CL) [14,

In the following sections, we will use these statistics to
test our hypothesis H.

3. THEMOBILITY MODELS

Two mobility models will be used in the following to test
the statistical hypothesis described in the previous section.

The first model is the random waypoint model [12], which
is commonly used to evaluate the performance of routing
protocols in ad hoc networks. In this model, every node
chooses uniformly at random a destination in [0,1]?, and
moves toward it with a velocity chosen uniformly at random
in the interval [Umin, Umaz|. When it reaches the destination,
it remains stationary for a predefined pause time tpquse, and
then it starts moving again according to the same rule. We
have also included a further parameter in the model, namely
the probability ps:qe: that a node remains stationary during
the entire simulation time. Hence, only (1 — pstqt) - n nodes
(on the average) will move. Introducing psta: in the model
accounts for those situations in which some nodes are not
able to move. For example, this could be the case when
sensors are spread from a moving vehicle, and some of them
remain entangled, say, in a bush or tree. This can also model
a situation where two types of nodes are used, one type that
is stationary and another type that is mobile.

It has been observed in [3] that nodes moving according to
the random waypoint model tend to concentrate in the cen-
ter of the deployment region. This phenomenon, called the
border effect, is due to the fact that when the starting and
ending point of the node’s movement are chosen uniformly
at random in a bounded region, it is very likely that the tra-
jectory that connects them crosses the center of the region.
Depending on the intensity of the border effect, the node
spatial distribution generated by a mobile network could be
rejected by at least one of the statistical tests for uniformity
described above. As we will see in Section 5, the intensity
of the border effect is closely related to some parameters of
the random waypoint model and, for extreme values of these
parameters, causes the failure of the uniformity test for at
least one statistic.

The second mobility model considered in this paper re-
sembles the Brownian two-dimensional motion. Mobility is
modeled using parameters pstat, Pmove and m. Parameter
Pstat 18 defined as in the random waypoint model. Param-
eter pmove is the probability that a node moves at a given



step. This parameter accounts for heterogeneous mobility
patterns, in which nodes may move at different times. In-
tuitively, the smaller is the value of pymove, the more hetero-
geneous is the mobility pattern. However, values of pmoye
close to 0 result in an almost stationary network. If a node
is moving at step i, its position in step ¢ 4+ 1 is chosen uni-
formly at random in the square of side 2m centered at the
current node location. Parameter m models, to a certain
extent, the velocity of the nodes: the larger m is, the more
likely it is that a node moves far away from its position in
the previous step.

Observe that, contrary to the case of the random way-
point model, in the Brownian-like motion it is possible that
a moving node close to the border chooses as its next posi-
tion a point which is outside the boundary of the deployment
region. To circumvent this problem, we need a so called bor-
der rule [3], which defines what to do with these nodes. In
this situation, the node can be: 1. bounced back according
to some rule; 2. positioned at the point of intersection of
the boundary with the line connecting the current and the
desired next position; §. wrapped around to the other side
of the region, which is considered as a torus; 4. “deleted”,
and a new node is initialized according to the initial dis-
tribution; 5. forced to choose another position, until the
chosen position is inside the boundaries of the deployment
region.

Depending on the choice of the border rule, non-uniformity
can be produced in the Brownian-like model also. For ex-
ample, the second rule described above places nodes exactly
on the boundary of the region with higher probability than
at other points. This is the reverse of the border effect dis-
cussed so far, in which nodes are more likely to be near the
center of the region. In fact, the only two rules that do not
appear to favor one part of the region over another are the
torus rule and the one in which a node is eliminated when
it would cross the boundary and a new node is created in
its place. The latter rule does not have any basis in the real
world, so we do not consider it here. The torus rule would
seem to apply to the real world only in some very specific
applications and so we do not consider it either. There does
not appear to be a large difference between the other mod-
els and so we arbitrarily chose the last rule to implement in
our simulator. As we will see in Section 5, the intensity of
the border effect in the Brownian-like model when using this
border rule is very weak, and does not prevent the result-
ing node spatial distribution from passing all the uniformity
tests.

4. THE SIMULATION MODEL

To test the uniformity of the node spatial distribution of
mobile ad hoc networks we have developed an ad hoc simu-
lator. The simulator takes as input the number n of nodes
to distribute, the number #sim of simulations to run, the
number fsteps of mobility steps to perform for each simula-
tion, and the mobility model to use, along with its parame-
ters. Nodes are distributed uniformly and independently at
random in [0, 1]%; then, they start moving according to the
specified mobility model. After fsteps of mobility, the statis-
tics used for the uniformity test are calculated. In order to
calculate the empty cell statistic, the deployment region is
divided into n square cells of side ﬁ, and the number of
vacant cells is counted. For the sake of simplicity, in our
experiments we have always used perfect-square values for

n, namely 49, 100 and 900.

The simulator returns the average value and the standard
deviation over the fsim runs for each of the six statistics
considered. These values are used to test the “uniformity” of
the node spatial distribution as described in Section 2. The
simulator also returns six output files containing all the fsim
values of each statistic. These files are used for the single test
evaluation described in Section 5.1. Finally, the simulator
returns the occupancy file needed for the occupancy-based
analysis described in Section 5.3.

5. SIMULATION RESULTS

5.1 Evaluatingthetest accuracy

Before testing the uniformity of mobile networks, we have
performed preliminary simulations on stationary networks
(which are obtained by setting fisteps to 0).

The purpose of these simulations was to determine the
parameters (expected value and standard deviation) of the
limit distribution for the total edge length of the MST,
Voronoi diagram, and Delaunay triangulation. We recall
that, contrary to the case of the other statistics, the limit
distribution of the statistics above is known to be normal,
but the actual parameters are unknown. In order to be
accurate, we considered a very large sample of 100000 simu-
lations. The average value and standard deviation of these
statistics for networks of size n=49, n=100 and n=900 have
been determined. These values are used to derive the upper
and lower bounds for the corresponding statistical test as
described in Section 2.

Another goal of this set of preliminary simulations was to
evaluate the rate of convergence of the experimental distri-
bution obtained from a large sample of uniformly distributed
points to the limit distribution. In fact, if the rate of conver-
gence of the actual distribution to the limit distribution is
very low, the uniformity test could be inaccurate. In other
words, it could be the case that, for moderate values of n,
the test (which is based on the limit distribution) is not
passed even by a sample of uniformly distributed nodes.

In order to keep the simulation time reasonable and the
size of the output files manageable, we considered a network
of n=100 nodes and a sample of 10000 experiments. From
the data contained in each file, we generated a histogram
representing the experimental density of the statistic. For
the test to be accurate, this histogram should closely resem-
ble the theoretical density function, which is obtained by
the limit distribution?.

As shown in Figure 1, this is actually the case for the
MST, Voronoi diagram and Delaunay triangulation total
edge length statistic, and for the empty cell statistic, mean-
ing that the tests based on these parameters are very ac-
curate. On the contrary, the longest nearest neighbor edge
and, more notably, the longest MST edge statistic show sig-
nificant discrepancy between the experimental and the the-
oretical distribution. As observed above, this is due to the
fact that the rate of convergence to the limit distribution is
very low. In the case of the longest nearest neighbor edge
statistic, the resemblance is anyway sufficient to ensure the
accuracy of the test: when the test is executed on small in-

’In the case of the MST, Voronoi diagram, and Delaunay
triangulation total edge length statistic, we have used the
parameters calculated in the preliminary simulation.
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Figure 1: Experimental vs. theoretical density of the six statistics considered.

stances (n=49) of uniformly distributed nodes, it is passed.
This is not the case of the longest MST edge statistic, for
which the test on uniformly distributed nodes is not passed
even for very large instances (n=900). Hence, the test based
on this statistic is inaccurate, and will not be considered in
the remainder of this paper.

5.2 Theuniformity test

In the second set of simulations, we have performed the
uniformity test on networks of size n=49, n=100 and n=900
using the two mobility models with different parameters.

First, we considered the random waypoint model, setting
the mobility parameters as follows: tpquse=0, Vmin=0.001,
Umaz=0.01, pstat=0. Then, we varied each of these parame-
ters separately (for the velocity, we considered only different
values of vmaz).> For each experiment, we ran 10000 simu-
lations with 1000 steps of mobility each, and we performed
all the statistical tests. The tests, all with a 95% accuracy,
were performed on the average value of the statistic of inter-
est, measured on the node distribution resulting at the end
of the 1000 mobility steps.

The results of these experiments, which are reported in
Tables 1, have shown a significant effect of the pause time
on the test outcomes: a longer pause time results in a more
uniform node spatial distribution. A pause time of 200 steps
(over 1000 steps of mobility) is sufficient to render the node
spatial distribution indistinguishable from uniform, except
for the longest nearest neighbor edge statistic when n=900.
A similar, although less evident, effect on the node spatial
distribution is displayed by pstq:. Conversely, the uniformity
of the node spatial distribution appears to be completely in-
dependent of vma.. Indeed, this is due to the fact that in
our simulations we varied the velocity when tpquse Was set
to 0: in this scenario, varying the velocity has no effect on
the intensity of the border effect, which is responsible for
the non-uniformity of the distribution. However, v, has
some influence on the uniformity when ¢pquse is greater than
0: with an increased velocity, nodes arrive quickly at desti-
nation, where they rest for t,quse steps; hence, the fraction
of moving nodes in the network (which is responsible for the

3The unit of time is a “simulation step”, and velocity is
expressed as normalized spatial unit over simulation step.

border effect) is reduced. Anyway, the influence of vyez On
the node spatial distribution is very limited [5].

Regarding the size of the network, small networks (n=49)
passed more uniformity tests than larger ones (n=100 and
n=900). As discussed in Section 2, this does not necessarily
imply that the node spatial distribution for small networks
is “more uniform” than for large ones. It could also be the
case that since the accuracy of the statistical test increases
with n, it succeeds in rejecting an “almost uniform” sample
only for large values of n.

A similar set of simulations was also performed using the
Brownian-like mobility model. The default values of the
mobility parameters were set t0 pmove = 0.7, pstat = 0 and
m=0.1. As in the case of the random waypoint simulations,
we varied each parameter separately and we performed the
five statistical tests. In particular, we varied pmove from
0.7 to 1 in steps of 0.1, pster from 0 to 0.5 in steps of 0.25,
and m from 0.01 to 0.1 in steps of 0.03. The experiments
produced the same positive test outcomes, i.e. all the statis-
tical tests were passed for each combination of the mobility
values considered. These results confirm the intuition that
the Brownian-like motion has a “more uniform” nature com-
pared to the random waypoint model.

The results of the statistical tests presented above give
only a qualitative analysis of the node spatial distribution
of mobile networks, and give no numerical estimate of how
close to the uniform distribution they actually are. In order
to better evaluate this aspect, we performed a further set of
simulations. We considered each statistic separately, and we
compared the theoretical probability density function (ob-
tained by the limit distribution) with the experimental den-
sity obtained in different mobile network scenarios. Since
the resemblance of the experimental distribution with the
uniform distribution in the random waypoint model is not
always guaranteed, we focused our attention on this mobil-
ity model. In particular, we simulated two mobile scenar-
ios for a network with n=100 nodes: one which is critical
from the uniformity’s point of view (tpause=0, Umin=0.001,
VUmaz=0.01 and ps+e+=0), and the other for which all the uni-
formity tests are passed (tpquse =200, Vmin=0.001, Vymqz=0.01,
Pstat=0.3). As in the previous simulations, the size of the
sample was 10000, and the statistics were calculated at the



LongestNN TotalMST TotalVor TotalDel EmptyCells

49 | 100 | 900 49 | 100 | 900 49 | 100 | 900 49 | 100 | 900 49 | 100 | 900

tpause 0 yes | no no no | no no yes | yes | no no | no no yes | yes | no
100 yes | yes | no yes | yes | no yes | yes | no yes | yes | no yes | yes | no

200 yes | yes | no yes | yes | yes || yes | yes | yes || yes | yes | yes | yes | yes | yes

300 yes | yes | no yes | yes | yes || yes | yes | yes || yes | yes | yes || yes | yes | yes

Umaz 0.01 || yes | no no no no no yes | yes | no no no no yes | yes | no
0.05 || yes | no no no no no yes | yes | no no no no yes | yes | no

0.1 yes | no no no | no no yes | yes | no no | no no yes | yes | no

Pstat 0 yes | no no no | no no yes | yes | no no | no no yes | yes | no
0.3 yes | no no yes | no no yes | yes | no yes | yes | no yes | yes | no

0.5 yes | yes | no yes | yes | yes || yes | yes | yes || yes | yes | no yes | yes | yes

Table 1: Outcomes of the statistical tests on networks of size n=49, 100 and 900 with different mobility

parameters.

—— Theoretical

e “‘Non-uniform” mobile scenario

“Uniform” mobile scenario

0.05 0.1 0.15 0.2 0.25 0.3

Longest Nearest Neighbor edge

Total MST edge length

Number of empty cells

Figure 2: Density functions of the longest nearest neighbor edge, total MST edge length, and number of
empty cells for the theoretical distribution, and for two different mobile scenarios.

end of the 1000 mobility steps.

The results of these simulations are reported in Figure
2. The graphics report three curves: the theoretical den-
sity, and the experimental density in the “non-uniform” and
“uniform” mobile scenarios. Due to the low rate of conver-
gence to the limit distribution, for the longest nearest neigh-
bor edge statistic we have reported, instead of the theoret-
ical density, the experimental density obtained from a very
large sample of uniformly distributed points. The graphics
for the total Voronoi diagram and Delaunay triangulation
edge length are not shown, since they are very similar to
that of the total MST edge length.

As it is seen, the density in the mobile “non-uniform” sce-
nario is similar in shape to the theoretical density, but it is
shifted and somewhat scaled with respect to the theoretical
curve. This seems to indicate that, also in presence of a
relevant border effect, the limit distribution of the statistics
considered is the same. However, the parameters of these
limit distributions (expected value and standard deviation)
are different.

This fact, at least for the total MST, Voronoi diagram,
and Delaunay triangulation edge length, and for the empty
cell statistic, is confirmed by the very close resemblance of
the experimental distribution to the normal distribution,
where the parameters of the latter distribution are the av-
erage value and the standard deviation obtained by the ex-
perimental data. An interesting open issue is characterizing
these parameters as a function of the mobility parameters.

As it is seen from Figure 2, the expected number of empty
cells is larger than in the uniform case (this easily follows
from the fact that nodes are concentrated in the center of
the deployment region), while the expected total MST edge
length (as well as the total Voronoi diagram and Delaunay
triangulation edge length) is smaller than in the uniform
case. This fact merits some discussion. The nodes’ con-

centration in the center of the deployment region caused by
the border effect tends, on one hand, to reduce the length
of the “inner” edges of the graph®. On the other hand,
the “outer” edges, i.e. those close to the boundary, tend
to be longer. The results of our simulations have shown
that, on the average, the overall length reduction of “inner”
edges outweighs the increment of the “outer” edges. A final
observation regards the Voronoi diagram statistic, which is
calculated considering only the internal Voronoi edges, i.e.
those edges that do not intersect the boundary of the de-
ployment region. In this case, the difference between the
theoretical and the “non-uniform” mobile density is signifi-
cantly reduced.

The experimental density in the “uniform” mobile sce-
nario was always very similar to the theoretical (or, in the
case of the longest nearest neighbor statistic, to the experi-
mental uniform) density. In the case of the Voronoi diagram
statistic, the two densities were almost identical.

Altogether, the results presented in this subsection have
shown that, if the border effect is not too intense, the node
spatial distribution of a mobile network can be well approx-
imated by the uniform distribution. If the border effect is
very intense, the similarity with the uniform distribution
is no longer valid. However, the limit distributions of many
statistics of interest calculated on these networks remain the
same, although with different parameters.

5.3 Occupancy-based analysis

The results presented in the previous subsection have pro-
ved that in the Brownian-like model and, for appropriate
values of the mobility parameters, in the random waypoint
model, the node spatial distribution resulting after a large
number of mobility steps is compatible with the uniform

“With the word graph, we intend here either the MST, the
Voronoi diagram or the Delaunay triangulation.



distribution. Once more, we want to emphasize that this
does not mean that the distribution s uniform, but that,
from the point of view of the five statistics considered, it
is indistinguishable from the uniform distribution. On the
other hand, it is known that in the random waypoint model
and, to a lesser extent, in the Brownian-like model, nodes
are subject to the border effect, which tends to concentrate
them in the center of the deployment region. In order to
better evaluate and “visualize” this phenomenon, we have
performed a last set of simulations.

As in the case of the empty cell test, we subdivided the
deployment region into n square cells of side Ln, that are
arranged in a grid fashion. Once the nodes are distributed
uniformly at random in the region, they move according to
the chosen mobility model for 1000 steps. At the end of the
mobility steps, the number of nodes in each cell is recorded.
Each experiment consisted of 10000 such simulations, and
the simulator reported the cumulative number of nodes in
each cell. If the node spatial distribution was uniform, this
number should be approximately 10000 in every cell (we
have n nodes to be distributed in n cells, hence the expected
number of nodes in a cell for each simulation is 1). However,
if the border effect occurs, cells in the center of the region
should record a larger number of nodes than boundary cells.

The outcomes of these simulations have been used to build
an “occupancy graphic”, i.e. a three-dimensional graphic
that for each cell in the 2D-plane, reports the cumulative
number of nodes as its value in the third dimension. These
graphics allow us to “visualize” the border effect.

As in the case of the previous simulations, we considered
the two mobility models, and we assigned default values
(the same as in the previous subsection) to the mobility
parameters. Then, we varied each parameter separately, and
we built the occupancy graphic.

The occupancy graphics for the random waypoint model
with different settings of the mobility parameters have been
calculated (n was set to 100), and are reported in the full
version of the paper [5]. The central cross-cross section of
these graphics, reported in Figure 3, have shown that tpause
has a significant effect on the intensity of the border ef-
fect: when tpquse = 0, the average number of nodes (over
the 10000 simulations) in the corner cells is approximately
0.19, while in central cells this number is above 2, i.e. it is
more than ten times larger than in the corner cells. As the
pause time increases, the node spatial distribution becomes
more and more flat: when tpquse = 300, the average number
of nodes in corner cells is approximately 0.76, while in the
central cells it is approximately 1.31, and the ratio between
these numbers is below 2. A similar behavior is displayed
for increasing values of pstqt, while the effect of vynqe. on the
node spatial distribution is negligible.

We have also investigated whether the intensity of the
border effect is influenced by the size of the network or not.
To this purpose, we set tpause=200, Pstat = 0, Vmin = 0.001
and vmqez = 0.01, and we simulated networks of sizes n=49,
n=100 and n=900. The occupancy graphics obtained by
these simulations, which are reported in the full version of
the paper [5], have shown that the intensity of the border
effect seems to be virtually independent of the size of the
network. However, a slight increment of the intensity for
large networks is observed: while the ratio of the maximally
over the minimally occupied cell is 2.027 when n=49, it is
2.191 when n=100, and 2.399 when n=900.

Finally, we simulated the Brownian-like mobility model.
We considered networks of size n=100, we set the default
values of the mobility parameters as in Subsection 5.2, and
we varied each parameter separately. As expected, the node
spatial distribution was practically indistinguishable from
the uniform distribution for many combinations of the mo-
bility parameters. The only parameter that displayed some
influence on the node spatial distribution is m, whose incre-
ment causes a moderate border effect. This is due to the fact
that, as m increases, nodes more and more distant from the
border may choose as next position a point which is outside
the boundaries of the deployment region. Hence, the “bias-
ing towards the center” caused by the border rule becomes
more and more intense. The occupancy graphics generated
for different values of m are reported in Figure 4. As it is
seen, the border effect is perceivable for m=0.05 and, more
clearly, for m=0.1. However, it seems to be very different in
nature from the border effect displayed by networks whose
nodes move according to the random waypoint model. In
fact, in the random waypoint nodes tend to be “smoothly”
concentrated in the center of the deployment region; i.e.,
the node density is low at the borders, it becomes larger
and larger as the cell is closer to the center, and is maxi-
mum in the central cells. What is observed here, instead, is
a “sharp” and “localized” border effect: the node density is
very low in boundaries cells, but it is practically uniform in
the rest of the deployment area.

As a final comment, it should be observed that, while
the “smooth” border effect generated by the random way-
point model renders the node spatial distribution remark-
ably different from the uniform distribution (we recall that
when tp,45c=0 many statistical tests are not passed), this is
not the case of the “sharp” border effect generated by the
Brownian-like motion, for which the resulting node spatial
distribution is always indistinguishable from uniform.

6. CONCLUSIONS

In this paper we have investigated the node spatial distri-
bution generated by a wireless ad hoc network whose nodes
move for a large number of steps. In particular, we have
tested whether this distribution can be approximated by the
uniform distribution or not.

The results of the extensive simulations presented in this
paper have shown that the truth of this hypothesis depends
on the mobility model adopted: if we consider a Brownian-
like motion, the hypothesis holds, except for a slight and
“sharp” border effect; conversely, in the random waypoint
model the hypothesis holds only when the border effect is
not too intense. The intensity of the border effect depends
on the pause time and, to a lesser extent, on pstqt, while it
is only marginally influenced by the velocity of the nodes.
For most typical settings of the mobility parameter (e.g.,
tpause = 200), the uniformity assumption holds, at least as
far as the five statistics considered in this paper are consid-
ered. As a side effect, the results presented in this paper
have indicated that the limit distribution of these statistics
are the same as those resulting from a uniform node distri-
bution, except for the values of their parameters (expected
value and standard deviation).

We believe that the results presented in this paper are a
further step in understanding the fundamental properties of
a mobile ad hoc network. As further directions of research
that this work has originated, we mention considering the



Figure 3: Central cross-section of the
values of the mobility parameters.
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Figure 4: Occupancy graphics for the Brownian-like mobility model with different values of m.

impact of different initial node distributions (besides the
uniform distribution considered in this paper) on the final
spatial distribution, and considering group mobility models.
Another very interesting direction of research is trying to
formally characterize the spatial distribution generated by
the mobility models considered in this paper.
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