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Abstract—Topology control, wherein nodes adjust their transmission ranges to conserve energy and reduce interference, is an

important feature in wireless ad hoc networks. Contrary to most of the literature on topology control which focuses on reducing energy

consumption, in this paper we tackle the topology control problem with the goal of limiting interference as much as possible, while

keeping the communication graph connected with high probability. Our approach is based on the principle of maintaining the number of

physical neighbors of every node equal to or slightly below a specific value k. As we will discuss in this paper, having a nontrivially

bounded physical node degree allows a network topology with bounded interference to be generated. The proposed approach

enforces symmetry on the resulting communication graph, thereby easing the operation of higher layer protocols. To evaluate the

performance of our approach, we estimate the value of k that guarantees connectivity of the communication graph with high probability

both theoretically and through simulation. We then define k-NEIGH, a fully distributed, asynchronous, and localized protocol that uses

distance estimation. k-NEIGH guarantees logarithmically bounded physical degree at every node, is the most efficient known protocol

(requiring 2n messages in total, where n is the number of nodes in the network), and relies on simpler assumptions than existing

protocols. Furthermore, we verify through simulation that the network topologies produced by k-NEIGH show good performance in

terms of node energy consumption and expected interference.

Index Terms—wireless ad hoc networks, topology control, spatial reuse, energy consumption, connectivity.

Ç

1 INTRODUCTION

TOPOLOGY control (TC for short) has been recently
proposed as a technique to increase network capacity

and to reduce energy consumption in ad hoc networks. The
goal of a TC protocol is to reduce the transmission power
level used by network nodes, with the constraint of
preserving some fundamental properties of the commu-
nication graph (typically, connectivity). Decreasing the
nodes’ transmission power with respect to the maximum
level potentially has two positive effects: 1) reducing the
nodes’ energy consumption, and 2) increasing the spatial
reuse, with a positive overall effect on network capacity
[13]. Due to the limited availability of both energy and
capacity in ad hoc networks, topology control is considered
to be a fundamental building block of forthcoming wireless
networks.

Although the potential advantages of applying TC

techniques in ad hoc networks are two-fold, the current

literature on topology control (with the notable exception of

[10], which we will discuss later) has focused attention

solely on energy consumption, trying to minimize the
“energy cost” of the generated (connected) network topol-
ogy. This is the case, for instance, of the TC protocols
presented in [1], [8], [14], [15], [16], [22], [24], [26], [28]. In
these works, the issue of increasing spatial reuse, if
considered at all, is addressed by providing upper bounds
on the node degree in the final network topology. The
rationale for considering node degree is that, if a node has
relatively small degree, then it will experience relatively
low contention when accessing the wireless channel. As a
consequence, it is argued that spatial reuse is increased, as
well as network capacity. However, the definition of node
degree used in the current TC literature is the number of a
node’s one-hop neighbors in the final communication
graph. Unfortunately, as we will discuss in this paper, this
definition of node degree (called logical node degree in the
following) turns out to be inappropriate to measure the
expected capacity increase due to the use of an optimized
network topology. In Section 2, we provide examples
supporting this claim, and we propose the notion of physical
node degree (corresponding to the number of nodes within a
node’s transmission range) that better characterizes the
expected interference reduction in the final topology. More
specifically, in Section 2, we prove that a small physical
node degree in the communication graph results in a low
expected interference at the node.

Motivated by this observation, we tackle the TC problem
with the goal of generating a network topology in which the
physical node degree is limited, so that network capacity is
increased. More precisely, we study the problem of
producing a network topology in which the physical node

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 9, SEPTEMBER 2006 1267

. D.M. Blough is with the School of Electrical and Computer Engineering,
Georgia Institute of Technology, 801 Atlantic Dr., Atlanta, GA 30332
0250. E-mail: doug.blough@ece.gatech.edu.

. M. Leoncini is with the Dipartimento di Ingegneria dell’Informazione,
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degree is nontrivially upper bounded (i.e., in a network
with n nodes, we have an upper bound k on the physical
node degree, where k ¼ oðnÞ). Given the observation above,
we say that a network topology with this feature is
interference bounded.

On the negative side, we show that producing an
interference bounded network topology that preserves
connectivity in the worst case (as is typically required in
the current TC approaches [1], [8], [14], [15], [24], [26], [28])
is impossible. In other words, the goals of preserving worst-
case connectivity and having a nontrivial upper bound on
the physical node degree (and, thus, on the interference
level) inherently conflict with each other.

In view of this result, and given that connectivity is often
regarded as the most important feature of the network
topology, one might wonder whether attempting to
produce an interference bounded topology is worthwhile
at all. Our belief is that producing an interference bounded
topology and increasing the network capacity can be
rewarding, at least in application scenarios where having
a few disconnected nodes is not critical. Examples of
applications of this type might be a wireless sensor network
used for environmental monitoring, or a mobile ad hoc
network in which users can tolerate short off-service
intervals.

On the positive side, our last claim is strengthened by the
theoretical and simulation-based results presented here
which show that, if we exclude pathological node place-
ments,1 almost full connectivity and bounded interference
can be achieved at the same time. More precisely, we prove
that under the assumptions of uniformly distributed nodes
and physical node degree upper bounded at each node by
k ¼ �ðlognÞ ¼ oðnÞ, network connectivity can be achieved
with high probability (w.h.p.).2 For clarity of presentation,
in the remainder of this paper we use “w.h.p.” to mean
“w.h.p., under the assumption that the network nodes are
distributed uniformly at random in a square area.” In
summary, our goal is to design a TC protocol that builds an
interference bounded topology which is connected w.h.p.
(provided the maximum power topology—i.e., the graph
obtained when all the nodes transmit at maximum
power—is connected). In our design, we must also fulfill
the following requirements, which are fundamental if the
protocol has to be implemented in practice: 1) the protocol
must be asynchronous and fully distributed, and it must
rely only on local information; 2) the protocol should
exchange as few messages as possible to build the
communication topology; and 3) the final topology should
contain a backbone of bidirectional links. This latter
property is important to favor the integration of TC with
existing MAC and routing protocols [5].

To meet our design goals, we consider a topology control
approach based on the generation of a symmetric subgraph
of the k-neighbors graph, where k ¼ oðnÞ, and n is the
number of network nodes. The k-neighbors graph, i.e., the
graph in which every node is connected to its k-closest

neighbors, can be computed in a fully distributed and
localized way, and has a nontrivial upper bound of k ¼ oðnÞ
on the physical node degree (i.e., it is interference
bounded). Since, for the reasons discussed above, this
communication graph may be disconnected in the worst
case, we analyze its connectivity in a probabilistic setting,
and we show that, assuming a uniform, random node
spatial distribution, the probability of obtaining a discon-
nected communication graph can be made arbitrarily low.

We also present a specific protocol, called k-NEIGH, that
is based on this approach and generates the desired
topology in a fully distributed, asynchronous, and localized
way. Our k-NEIGH protocol relies on distance estimation, a
technique that can be implemented at a reasonable cost in
many realistic scenarios [5]. We prove that the overall
number of messages exchanged by k-NEIGH is exactly 2n,
and that its execution time is strictly bounded. Simulation
results show that our protocol reduces energy consumption
and the average physical node degree considerably with
respect to the case where no topology control is used, and
that it compares favorably with the highly regarded CBTC
protocol of [15], [28] (which, however, guarantees worst-
case connectivity).

The rest of this paper is organized as follows: In Section 2,
we motivate our work, discussing the difference between
logical and physical degree of a node in the communication
graph. In Section 4, we give some preliminary definitions,
and in Section 5, we characterize the minimum number of
neighbors needed to generate a connected communication
graph. In Section 6, we introduce the k-NEIGH protocol,
which is a distance-estimation based implementation of the
approach to topology control described in Section 5. In
Section 7, we evaluate the performance of k-NEIGH through
simulation. Section 8 concludes the paper.

2 MOTIVATION: LOGICAL AND PHYSICAL NODE

DEGREE

As mentioned in Section 1, the starting point of our work is
the observation that the logical node degree is inappropriate
to model the expected interference observed in the network.

We recall that the logical node degree is defined as the
number of one-hop neighbors in the final communication
topology. In most of the literature on TC, it is argued that
this parameter is a measure of the expected contention at
the MAC layer. This is is not true, however, because the
contention depends on the number of nodes in the
transmission range of a given node, where the transmission
range is determined by the transmission power level as set
at the end of the TC protocol’s execution. We refer to the
number of nodes within transmission range of a given node
as the node’s physical degree.3

To better clarify the difference between logical and
physical node degrees, consider the example depicted in
Fig. 1. Node u has three neighbors in the communication
topology (nodes v, t, and z), so its logical degree is three.
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1. We recall that the observation that connectivity and bounded
interference are conflicting goals is based on a worst-case analysis.

2. A certain random event En is said to occur with high probability if
limn!1 ProbðEnÞ ¼ 1.

3. Although not necessary to the soundness of our definition, in this
paper, we assume that the path loss model is log-distance with distance
power-gradient equal to � � 2. This ensures that, for a given power level p,
all the nodes within a certain transmission range can correctly receive the
message.



Note that some energy-inefficient links are removed in the
communication topology (e.g., the link ðu;wÞ), so many
nodes (such as node w) do not contribute to u0s logical
degree. However, when u transmits to its farthest neighbor
(node z), it interferes with all the nodes within its
transmission range (including also node w). For this reason,
node w is accounted for when calculating u0s physical node
degree. Referring to the example of Fig. 1, the physical
degree of u is 6. It is not difficult to build examples in which
the difference between logical and physical node degree is
arbitrarily large.

The following proposition outlines a fundamental trade-
off between ensuring worst-case connectivity and having a
nontrivial upper bound on the physical node degree:

Proposition 1. Given a set N of nodes, with jN j ¼ n, let G ¼
ðN;EÞ be the communication graph obtained when all the
nodes transmit at maximum power and assume G is
connected. Let P be an arbitrary topology control protocol
that preserves worst-case connectivity (i.e., that generates a
connected topology whenever G is connected) and let GP ¼
ðN;EP Þ be the topology generated by P . There exist node
placements such that the maximum physical node degree in
GP is n� 1.

An example of node placement generating a connected
topology where at least one node has physical degree equal
to n� 1 is reported in Fig. 2.

Informally speaking, Proposition 1 states that if we want
to ensure network connectivity in the worst case, we must
admit the possibility of having a “high interference node,”
i.e., a node whose communications affect all the remaining
nodes in the network.

The physical node degree as defined here has a direct
relationship with the interference measure defined in [10],
which is, to the best of our knowledge, the only paper
tackling the TC problem with the goal of reducing
interference. In [10], Burkhart et al. introduce the notion
of interference of a graph, which is defined as follows:

Definition 1 (Coverage and Interference). Let G ¼ ðN;EÞ be
the communication graph. Given any ðu; vÞ 2 E, the coverage
of edge e ¼ ðu; vÞ, denoted CovðeÞ, is defined as the number of
nodes covered by the disks induced by u and v. Formally,

CovðeÞ ¼jfw 2 N : w is contained in Dðu; dðu; vÞÞg [
fw 2 N : w is contained in Dðv; dðu; vÞÞgj;

where Dðx; dðx; yÞÞ denotes the disk of radius dðx; yÞ centered
at x.

The interference of graph G is the maximum coverage of its

edges. Formally,

IðGÞ ¼ max
e2E

CovðeÞ:

In [10], Burkhart et al. revisit the TC problem in light of
this definition of interference, and define protocols for
removing high-interference edges while maintaining net-
work connectivity. However, no explicit upper bounds on
the interference of the graphs generated by these protocols
are given. Actually, since the protocols preserve worst-case
connectivity, the only possible bound on IðGÞ is OðnÞ (see
Proposition 1 and Theorem 1 below).

The following theorem establishes a relation between the
physical node degree and the interference of the commu-
nication graph:

Theorem 1. Let G ¼ ðN;EÞ be the communication graph and
assume that the physical degree of nodes in G is at most k, for
some k < n. Then, the interference of graph G is at most 2k.
Moreover, if the interference of graph G is at most k, then the
maximum physical node degree is at most k� 1.

Proof. Assume that the physical degree of nodes in G is
upper bounded by k < n. Given any edge e ¼ ðu; vÞ in G,
denote with Su the set of nodes in Dðu; dðu; vÞÞ, and with
Sv the set of nodes in Dðv; dðu; vÞÞ. Since the physical
degree of both u and v is at most k, it follows that jSuj �
kþ 1 (since Su includes node u), and that jSvj � kþ 1
(since Sv includes node v). By observing that at least
nodes u and v are included in Su \ Sv, we can conclude
that CovðeÞ ¼ jSu [ Svj � 2k. Since the bound on the
coverage holds for any edge e in G, the first part of the
theorem follows.

Assume now that IðGÞ � k. This implies that, for any
edge e in G, CovðeÞ � k. In turn, this implies that the
physical node degree of any node u is at most k� 1
(since node u itself is not accounted for in the definition
of physical degree). tu
Theorem 1 exposes the relationships between physical

node degree and expected interference: The smaller the
physical degree is, the less interference is experienced by
nodes. Motivated by Theorem 1, we give the following
definition of an interference bounded graph:

Definition 2 (Interference bounded graph). Let G ¼ ðN;EÞ
be a communication graph with n nodes. We say that G is
interference bounded if the physical node degree of nodes in G
is upper bounded by k, for some k ¼ kðnÞ ¼ oðnÞ.

BLOUGH ET AL.: THE K-NEIGHBORS APPROACH TO INTERFERENCE BOUNDED AND SYMMETRIC TOPOLOGY CONTROL IN AD HOC... 1269

Fig. 1. Difference between logical and physical node degree: Node u has

logical node degree equal to 3, but its physical node degree is 6.

Fig. 2. Example of node placement generating a connected topology

where at least one node has a physical degree equal to n� 1.



A clarification about the notion of bounded interference
used in this paper is in order. In some settings, the term
“bounded” refers to a quantity which is upper bounded by a
constant as n grows to infinity. In the definition above, we
use the term “bounded” in a weaker sense, i.e., referring to a
quantity which grows to infinity slower than n. Our choice
of using a weaker notion of boundedness is motivated by the
fact that several theoretical results have shown that if the
physical node degree (i.e., interference) is upper bounded by
a constant, then the resulting communication graph is
disconnected w.h.p. (see, for instance, [12], [25], [29]). On
the other hand, in the remainder of this paper, we show that
there exist communication graphs that enjoy the following
properties: 1) they are connected w.h.p., and 2) they have
interference upper bounded by �ðlognÞ ¼ oðnÞ. Note also
that, for practical purposes, �ðlognÞ can be considered as a
bounded quantity in the stricter sense: For instance, when
n ¼ 106, the logarithmic bound is less than 14 (assuming the
natural logarithm).

Motivated by the above discussion, we want to design a
TC protocol that generates an interference bounded topol-
ogy, thus increasing network capacity. At the same time, we
want to preserve connectivity as much as possible. By
Proposition 1, we know that preserving worst-case con-
nectivity in this setting is impossible. For this reason, we
weaken the connectivity constraint, requiring only that the
generated topology be connected w.h.p.

Our approach to the TC problem is based on the simple
idea of connecting each node to its k closest neighbors,
where k is a properly tuned parameter that guarantees
connectivity w.h.p. A remark on this simple idea is in order.
In this paper, we formally characterize the optimal (i.e.,
minimum) value of k. This is done by extending the
theoretical results presented in [29] to the symmetric
subgraph of the k-neighbors graph, and considering the
case of deployment regions with side of arbitrary length.
The selected value of k provides an upper bound on the
physical degree, thereby achieving the desired property of
bounded interference. Our approach also has the desirable
side effect of producing symmetry on the resulting
communication graph. The KNEIGH protocol that we
present in Section 6 is based on this approach and is
extremely efficient, exchanging only 2n messages total for
an n-node network. It relies only on the existence of a
distance estimation mechanism, which is achievable in
many settings [5].

A possible objection to the approach to topology control
presented in this paper is that connecting a node x to its
k closest neighbors (and only to those neighbors) might not
be possible. This occurs, for instance, when x has
k� 1 nodes at distance less than d and two or more nodes
at distance exactly d. In this case, depending on the nodes’
transmission ranges, the physical degree of x would jump
from less than k to strictly more than k. Generalizing this,
one could conclude that no nontrivial upper bound can be
devised in the worst-case. Yet, from the theoretical
perspective, our approach remains valid under very reason-
able assumptions. For instance, when nodes are uniformly
distributed, the cumulative probability that two nodes are at
exactly the same distance from a third node is zero. The

same holds true if nodes are distributed according to other
nondegenerate probability distributions (e.g., Normal,
Poisson, etc.). From a more practical standpoint, if the
transmission power levels are discretized, it is obviously
possible to experience jumps (like the ones depicted above)
in the function describing the number of neighbors.
However, it is also true that node distributions such that,
when increasing one level in transmission power, the
physical degree jumps from Oð1Þ or OðlognÞ to �ðnÞ (i.e.,
from few neighbors to very many neighbors) can be
regarded as pathological. In [6], we study a version of k-
NEIGH tailored for the discrete power levels scenario; in our
simulation results (using uniform node distributions) such
pathological cases never occurred.

3 RELATED WORK

The idea of maintaining a one-hop neighborhood of a

certain size has been used in the MobileGrid protocol of [17]

and in the LINT protocol of [22]. Both protocols try to keep

the number of neighbors of a node between low and high

thresholds centered around an optimal value. When the

actual number of neighbors is below (above) the low (high)

threshold, the transmission range is increased (decreased),

until the number of neighbors is in the proper range.

However, for both protocols, no characterization of the

optimal value of the number k of neighbors is given and,

consequently, no evaluation of the connectivity of the

resulting communication graph is provided. Another

problem of the MobileGrid and LINT protocols is that they

estimate the number of neighbors by simply overhearing

control and data messages at different layers. This approach

has the advantage of requiring no overhead, but the

accuracy of the resulting neighborhood estimate heavily

depends on the traffic present in the network. In the

extreme case, a node which remains silent is not detected by

any of its actual neighbors. Finally, MobileGrid and LINT

do not necessarily produce symmetric topologies, i.e., they

can produce unidirectional links, which can present

problems for other protocols in the network.

The most widely studied TC protocol in the literature is

the elegant CBTC (ConeBasedTopologyControl) protocol

introduced in [28] (and further analyzed in [15]). The basic

idea in CBTC is that a node u transmits with the minimum

power pu;� such that there is at least one neighbor in every

cone of angle � centered at u. The obtained communication

graph is made symmetric by adding the reverse edge to every

asymmetric link. The authors show that setting ��2�=3 is a

sufficient condition to ensure connectivity. A set of optimiza-

tions aimed at pruning energy-inefficient edges without

impairing connectivity (and symmetry) is also presented.

Further, the authors prove that if ���=2, every node in the

final communication graph has logical degree at most 6.
Compared with CBTC, our k-NEIGH protocol (which

implements the k neighbors approach outlined above) relies
on a weaker assumption, i.e., distance estimation versus
directional information. With respect to CBTC, k-NEIGH

requires the tuning of a parameter, the preferred number of
neighbors k. However, setting the proper value of k is an
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easy task. In fact, in Section 5, we show that the choice of k,
under reasonable assumptions, is influenced only by the
number n of nodes in the network, and it does not depend
on the node density. In practice, setting k ¼ 9 covers a wide
range of network sizes (values of n ranging from 50 to 500).
Finally, we have verified that if even weaker requirements
on connectivity are imposed (e.g., having at least 95 percent
of the nodes in the largest connected component), then
setting k ¼ 6 independently of n is the optimal choice.

CBTC and k-NEIGH can be seen as opposites in the
following respect. CBTC preserves connectivity in the worst
case but does not guarantee bounded physical degree (only
logical degree). k-NEIGH guarantees connectivity only with
a specified probability but does guarantee bounded physical
degree. Indeed, the simulation results presented in Section 7
show that, on the average, CBTC and k-NEIGH display
similar performance, generating in most cases connected
topologies with bounded interference.

A final difference between k-NEIGH and other protocols
is that, to our knowledge, k-NEIGH is the first protocol that
provides strict bounds on the number of messages ex-
changed and on the time taken and energy expended in
determining the proper transmission power settings.

4 PRELIMINARIES

Let N be a set of n nodes placed in ½0; 1�2 according to some
distribution. A range assignment for N is a positive real
valued function RA :N!ð0; rmax� that assigns to every
element of N a value in ð0; rmax�, representing its transmis-
sion range. Parameter rmax is called the maximum transmis-
sion range of the nodes in the network and depends on the
features of the radio transceivers of the nodes. We assume
that all the nodes are equipped with transceivers having the
same features; hence, we have a single value of rmax for all
nodes in the network.

Given N and a range assignment RA, the communication
graph induced by RA on N is defined as the directed graph
G ¼ ðN;EÞ, where the directed edge ½i; j� exists if and only
if RAðiÞ�dði; jÞ and dði; jÞ denotes the distance between
nodes i and j. In this paper, we are concerned with two
variants of this graph, defined as follows:

Definition 3. The symmetric supergraph of G is defined as the
undirected graph Gþ obtained from G by adding the undirected
edge ði; jÞ whenever edge ½i; j� or ½j; i� is in G. Formally,
Gþ¼ðN;EþÞ, where Eþ¼fði; jÞjð½i; j� 2 EÞ or ð½j; i� 2 EÞg.

Definition 4. The symmetric subgraph of G is defined as the
undirected graph G� obtained from G by removing all
the nonsymmetric edges. Formally, G� ¼ ðN;E�Þ, where
E� ¼ fði; jÞjð½i; j� 2 EÞ and ð½j; i� 2 EÞg.

The set of neighbors of a node i in the communication
graph G, denoted NðiÞ, is defined as the set of nodes to
which i is directly connected, i.e., NðiÞ ¼ fjj½i; j� 2 Eg.
Neighbor sets are defined similarly in graphs Gþ and G�,
the only difference being that we consider undirected
instead of directed edges. Note that, for these graphs, i2
NðjÞ if and only if j2NðiÞ.

Given a parameter k, with 1�k< n, the k-neighbors graph
is the communication graph Gk in which every node is

directly connected to its k nearest nodes. Formally, Gk is the
communication graph induced by the range assignment
RAk, where RAkðiÞ ¼ dði; jÞ and j is the kth nearest node to
node i.

It is known [19] that the power pi required by node i to

correctly transmit data to node j must satisfy pi
d�ij
� �,

where � � 2 is the distance-power gradient and � � 1 is the

transmission quality parameter. In ideal conditions, we have

� ¼ 2; however, in general, the value of � depends on

environmental conditions and is in the range 2 � � � 6.

Setting � ¼ 1, we can define the energy cost of a range

assignment RA as cðRAÞ ¼
P

i2NðRAðiÞÞ
�.

Note that the energy cost as defined above refers only to

the power used in the RF amplifier, and it does not account

for the power consumed in the other circuitry of the

wireless card, including the receiver. We are aware that

more realistic energy models have been proposed for ad hoc

networks (see, for instance, [11]). However, the energy cost

as defined above has been widely used in performance

evaluation of TC protocols. In [7], we evaluated k-NEIGH’s

performance with more realistic energy models (and also

considering multi-hop data traffic). In this paper, we focus

primarily on node degree when evaluating and comparing

protocols, and we use this simple energy cost function as a

secondary measure.
Several connectivity problems on the communication

graph have been studied in the literature (see [4] and

references therein). In this paper, we are concerned with the

following connectivity problem on the symmetric subgraph

of the k-neighbors graph. Motivations for our interest in G�k
can be found in Section 5.

Definition 5 (k-neighbors Range Assignment problem,
KNRA). Let N be a set of points in a two-dimensional square
region R. Determine the minimum value of k such that G�k is
connected.

The problem can be equivalently restated in terms of

minimum energy cost; furthermore, the optimal solution

can be easily found if node positions are known. In the next

section, we analyze KNRA under the hypothesis that nodes

are distributed uniformly at random in R. Our analysis will

be used to provide a (probabilistic) guarantee on the

connectivity of the topology generated by our k-NEIGH

protocol.

5 THE MINIMUM NUMBER OF NEIGHBORS FOR

CONNECTIVITY

Our approach to topology control consists in setting the
nodes’ transmission ranges in such a way that the resulting
symmetric subgraph G�k is connected w.h.p., using local
information only. The choice of limiting our consideration
to G�k is motivated by the following reasons:

. Although implementing wireless unidirectional
links is technically feasible (see [2], [20], [21], [23]
for unidirectional link support at different layers),
the actual advantage of using unidirectional links is
questionable. For example, in [18], it is shown that

BLOUGH ET AL.: THE K-NEIGHBORS APPROACH TO INTERFERENCE BOUNDED AND SYMMETRIC TOPOLOGY CONTROL IN AD HOC... 1271



the high overhead needed to handle unidirectional
links in routing protocols outweighs the benefits that
they provide, and better performance can be
achieved by simply avoiding unidirectional links.

. A recent theoretical result [4] has shown that,
starting from a strongly connected graph, obtaining
a connected backbone of symmetric edges incurs no
additional (asymptotic) energy cost.

In this section, we investigate the “preferred value” of k,

i.e., the minimum value of the node degree k which
guarantees connectivity w.h.p. of the communication graph.

First, we give a formal (asymptotic) characterization of this

value, then we evaluate it through extensive simulations.

5.1 A Formal Characterization of the Preferred
Value of k

While a formal analysis of the conditions on k under which

Gk is strongly connected w.h.p. is not straightforward, the
following recent result by Xue and Kumar [29] gives us the

necessary technical machinery to work on its symmetric

variants.

Theorem 2. Assume that n nodes are placed uniformly at

random in ½0; 1�2, and let Gþk be the symmetric supergraph of

the k-neighbors graph. There exist two constants c1; c2, with

0<c1<c2, such that:

lim
n!1

ProbfGþc1 logn is disconnectedg ¼ 1; and

lim
n!1

ProbfGþc2 logn is connectedg ¼ 1:

The authors also provide explicit values for c1 and c2,
which are c1 ¼ 0:074 and c2>5:1774. Recently, the value of

c2 has been improved to c2 ¼ �e, where � > 1 is an arbitrary

constant and e is the natural base [27].
Although the difference between the number of neigh-

bors necessary and sufficient for connectivity is quite large,

Theorem 2 is very important, since it states that �ðlognÞ
neighbors are necessary and sufficient for connectivity

w.h.p.
Theorem 2 refers to the symmetric supergraph of Gk, in

which a link that is physically unidirectional is considered

as bidirectional. In other words, the connectivity of Gþk is in

general higher than that of Gk since in Gþk there are links

that do not exist in the actual communication graph. In

other words, there exist situations in which Gk is not
strongly connected, but Gþk is connected. As a consequence,

the number of neighbors that is sufficient to obtain

connectivity w.h.p. in Theorem 2 may not be sufficient in

the actual communication graph. The following theorem

and proof extend the result of Xue and Kumar to the

symmetric subgraph Gk.

Theorem 3. Assume that n nodes are placed uniformly at

random in ½0; 1�2, and let G�k be the symmetric subgraph of the

k-neighbors graph. There exist two constants c1; c2, with

0<c1<c2, such that:

lim
n!1

ProbfG�c1 logn is disconnectedg ¼ 1; and

lim
n!1

ProbfG�c2 lognis connectedg ¼ 1:

Proof. The necessity part follows immediately by Theo-

rem 2, since G�c1 logn is a subgraph of Gþc1 logn. To prove the

sufficiency part, we have to show that the construction

used in the proof of Theorem 2 holds for G�c2 logn also. The

proof of Theorem 2 is based on the fact (proved in [29])

that any node in Gþc2 logn is directly connected w.h.p. to

every node that is within distance of ð1� �Þrn, where

rn ¼
ffiffiffiffiffiffiffiffiffiffi
� logn
�n

q
, � is an arbitrary constant inð0; 1Þ, and � is a

constant that depends on �. In words, this means that the

communication graph Gð1��Þrn generated by the ð1�
�Þrn-homogeneous range assignment is a subgraph of

Gþc2 logn (asymptotically, for n!1). Since Gð1��Þrn is

connected w.h.p. (for n!1) by Theorem 3.2 in [12],

then Gþc2 logn is also connected w.h.p.. The proof of our

Theorem follows immediately by observing that, since

any node is directly connected w.h.p. to every node that

is within distance of ð1� �Þrn, and distance is obviously

symmetric, Gð1��Þrn is a subgraph of G�c2 logn too. tu
Since the proof of Theorem 3 is an extension of Xue and

Kumar’s theorem, the same values of the constants c1 and c2

can be used.
Having a connected backbone of symmetric edges, as

provided by the G�k graph, allows us to use standard
bidirectional link-based protocols in the upper layers,
avoiding the expensive and technically difficult implemen-
tation of unidirectional links. Given the theoretical result of
[4] and Theorem 3, this additional requirement on the
communication graph will come with a limited additional
energy cost. This statement is validated by the simulation
results presented in the next section.

The analytical results of Theorems 2 and 3 hold under
the assumption that the deployment region is fixed (it is the
unit square), and the number of nodes grows to infinity. In
other words, these results can be applied only to dense
ad hoc networks, where the number of nodes per unit area
is quite large. In the following, we show that the same result
holds for arbitrary network densities in general. This
generalization of Theorems 2 and 3 is very important, since
it formally proves that, under the assumption that the nodes
are distributed uniformly at random in a square region, it is
only the number n of nodes in the network, and not the area
on which the network is deployed, that determines the
preferred value of k.4

Theorem 4. Assume that n nodes are placed uniformly at
random in ½0; l�2, for some l > 0, and let Gþk be the symmetric
supergraph of the k-neighbors graph. There exist two
constants c1; c2, with 0<c1<c2, such that:

lim
n!1

ProbfGþc1 logn is disconnectedg ¼ 1; and

lim
n!1

ProbfGþc2 logn is connectedg ¼ 1:

The same result holds for the symmetric subgraph G�k of the
k-neighbors graph.

Proof. The proof of this Theorem is reported in the
Appendix. tu
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Corollary 1. A number of neighbors in the order of �ðlognÞ is
necessary and sufficient for network connectivity w.h.p.,
independently of the node density. This is true for the
k-neighbors graph, and for its symmetric supergraph and
subgraph.

Proof. Asymptotically, we have three different regimes for
the network density: high-density networks (i.e., the
density grows to infinity as n!1), medium-density
networks (i.e., the density converges to a constant c > 0
as n!1), and low-density networks (i.e., the density
converges to 0 as n!1). We already know that the
statement of the corollary holds in case of high-density
networks. So, we have to prove that the corollary holds
also for medium and low densities.

Let us consider a sequence of sets of points: P1; P2; . . . ,
where P1 is composed of one point chosen uniformly at
random in S1, P2 is composed of two points chosen
independently and uniformly at random in S ffiffiffiffiffi

2=c
p , for

some constant c > 0, and so on. In general, sequence Pn is
composed of n points chosen independently and
uniformly at random in S ffiffiffiffiffiffi

n=c
p . For any 1 � k < n, by

Lemma 4, we have:

lim
n!1

PrðGkðPnÞ is connectedÞ ¼

lim
n!1

PrðGkðf ffiffiffiffiffiffi
n=c
p ðPnÞÞ is connectedÞ:

ð1Þ

Since the asymptotic node density in this case is
n

ð
ffiffiffiffiffiffi
n=c
p

Þ2
¼ c > 0, and given (1), we have that the corollary

holds also in the case of medium-density networks.
The proof for the case of low-density networks is

similar, and is omitted for brevity. tu
An interesting observation can be made by combining

the results presented in Proposition 1 and in Corollary 1.
Proposition 1 states that if the connectivity requirement on
the network topology is strong (worst-case connectivity),
the physical node degree can be as high as �ðnÞ. Corollary 1
states that, if we weaken the connectivity requirement by
allowing a vanishingly small probability of disconnection,
we can reduce the physical node degree to OðlognÞ, i.e., by
an exponential amount.

5.2 Simulation-Based Evaluation

The results of the previous section are asymptotic in nature,
hence, not very useful in practice. For this reason, we have

also investigated the preferred value of k through extensive
simulations.

In this section, the preferred value of k is selected as the
minimum value of the node degree k that guarantees
PrðG�k is connectedÞ is above a certain target probability,
which is set to 0.95.

The setting used for our experiments is the following:
The n nodes, all with the same maximum transmission
range Rn, are distributed uniformly at random in ½0; 1�2. The
maximum transmission range Rn is chosen such that the
communication graph that results when all nodes transmit
at maximum power is connected. Details on how Rn has
been set can be found in Section 7.

We have investigated the preferred value of k for
different values of n. In the first experiment, n ranged from
10 to 100 in steps of 10. The reason for the small steps of n is
that in most ad hoc network applications the number of
nodes is expected to be in this range. For every value of n
and for every random node placement, we have calculated
the minimum value of k such that Gk is strongly connected
(denoted kasym), and the minimum value of k such that G�k
is connected (denoted ksym), subject to the constraint that
every node has maximum transmission range Rn. Given our
choice for Rn, such minimum values for k always exist in
practice. For each setting of n, we generated 100,000 random
node placements, and recorded kasym and ksym for each of
them. These data gave us the empirical probability
distributions of kasym and ksym, which can be used to
evaluate the preferred value of k. The two distributions for
the case of n ¼ 100 are shown in Fig. 3. From the figure, it is
evident that the requirement for symmetry has little
influence on the minimum value of k for connectivity. This
is made clearer by Fig. 4, which reports the preferred value
of k in the asymmetric and symmetric cases when the target
probability of connectivity is set to 0.95. These values can be
easily obtained by the cumulative distributions of kasym and
ksym: The preferred value is the minimum value of k such
that the cumulative frequency is above 0.95. The plots
reported in Fig. 4 show that the preferred value of k in the
symmetric case is at most 1 greater than the value in the
asymmetric case. To a certain extent, this confirms the
theoretical results of Theorem 3 and of [4].

We have also evaluated how the preferred value of k
varies for larger values of n. We have used the following
settings for n: 10, 25, 50, 75, 100, 250, 500, 750, 1,000. For
every value of n, we have calculated the preferred value of k
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in the asymmetric and symmetric cases (with target
probability 0.95), proceeding as in the previous experiment.
The results of this experiment are shown in Fig. 5. Again,
the difference between the preferred value of k in the
asymmetric and symmetric cases is at most 1, and the two
values are the same for many settings of n. Interestingly,
setting k ¼ 9 produces a symmetric graph which is
connected with probability at least 0.95 for values of n in
the range 50-500.

We have also repeated the experiments using different

deployment areas, obtaining essentially the same results.

This empirically confirms what was proved in the previous

section (Theorem 4), i.e., that the preferred value of k is

determined only by the number n of nodes in the network

and not by the size of the region in which the nodes are

deployed.
A final investigation concerned the number of asym-

metric neighbors when k ¼ ksym, i.e., in the minimal

scenario for achieving connectivity in G�k . From our

experiment, the results of which are not reported for lack

of space, we observed that the average number of

asymmetric links removed per node is slightly above 1.2,

independently of n.
Overall, the results of this first set of simulations have

shown that the requirement for symmetry has little influence

on the preferred value of k, and that setting k ¼ 9 provides

connectivity w.h.p. for a wide range of network sizes (from

50 to 500 nodes).
In a second set of experiments, we have weakened the

connectivity requirement on the communication graph. In

particular, we have redefined the preferred value of k as

the minimum value of k such that at least 95 percent of

the nodes are in the largest connected component of G�k ,

with high probability. Here, w.h.p. means with probability

at least as high as 0.95. The rationale for this investigation

is that in some scenarios weaker connectivity requirements

are acceptable, especially if they are counterbalanced by

significant energy savings. A similar investigation for the

critical transmission range for connectivity has been done

in [25].
Fig. 6 shows the preferred values of k for different values

of n, under strong and weak connectivity requirements. As

is seen from the figure, the type of connectivity requirement

does have an influence on the preferred value of k: If we

want full connectivity (all the nodes connected), then k

shows an increasing behavior with n (proportional to logn);

conversely, if we can tolerate a small percentage of

disconnected nodes, then k shows a converging behavior

towards the value of 6.
The results shown in Fig. 6 merit discussion. The fact that

weaker requirements on connectivity induce a significant

reduction of the preferred value of k indicates quite clearly

that the “giant component” phenomenon occurs in the

k-neighbors graph. The giant component phenomenon,

which is well known in the theory of geometric (and

nongeometric) random graphs, can be informally described

as follows: Assume nodes connect first to their closest

neighbor, then to the second closest neighbor, and so on,

until connectivity is achieved. With high probability, a large

connected component (the giant component) is formed very

soon in this process, and the remaining steps are needed to

connect the few remaining isolated nodes to the giant

component. Combining our theoretical and experimental

results, we can say that if the goal is full network

connectivity, the above described process stops w.h.p. after

a number of steps in the order of logn. However, if we are

satisfied with a large fraction (95 percent) of nodes in the

largest component, we can stop the process after only six

steps, regardless of the number n of nodes in the network.
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Fig. 4. Preferred values of k in the asymmetric and symmetric cases

(y-axis), with target probability 0.95, for different values of n (x-axis). The

graphic also reports the lower and upper bounds on k derived from

Theorem 3.

Fig. 5. Preferred values of k in the asymmetric and symmetric cases

(y-axis), with target probability 0.95, for different values of n (x-axis). The

graphic also reports the lower and upper bounds on k derived from

Theorem 3. Values on the x-axis are reported in logarithmic scale.

Fig. 6. Preferred values of k for different values of n under strong and

weak connectivity requirements. Values on the x-axis are reported in

logarithmic scale.



The effect of the connectivity requirements on the

preferred value of k is even more evident in case of mobile

networks. It is known that some mobility models, such as

the well-known random-waypoint model, generate a long-

run node spatial distribution which is not uniform [3], but

tends to concentrate nodes in the center of the deployment

region. It is interesting to evaluate the preferred value of k

in presence of RWP mobility, as the distribution resulting

from this type of mobility is an instance of nonuniform,

spatially concentrated node distribution, which can occur in

real ad hoc networks.
To investigate the preferred value of k with RWP

mobility, we have extended our simulator and performed

another experiment. We have set the pause time between

movements to 0 since this setting corresponds to the spatial

distribution that most concentrates nodes in the center of the

deployment region (see [3]). The node velocity is set to v ¼
0:01 space units per second. We initially distributed the

nodes according to the uniform distribution, and then

simulated a large number (10,000) of RWP mobility steps.

We then evaluated the preferred value of k on the resulting

node distribution. The preferred value of k was computed

both for connectivity of all nodes and for connectivity of

95 percent of the nodes. The results of our experiment are

shown in Fig. 7. As seen from the figure, the connectivity

requirement plays a fundamental role: If the goal is full

network connectivity, k shows an increasing behavior with

n, more evident than in the stationary case; with 1,000 nodes,

14 neighbors on the average are necessary to achieve full

connectivity. On the other hand, if connectivity of 95 percent

of the nodes is sufficient, then the preferred value of k still

shows a convergent behavior toward the value of 6,

although with a somewhat lower convergence rate with

respect to the stationary case.
Before ending this section, we remark that, not surpris-

ingly, 6 is the magic number very famous in the networking

community. As stated in [29] and confirmed by our

findings, there does not exist a magic number of neighbors

that achieves full connectivity in ad hoc networks. However,

if we are satisfied with connectivity of almost all nodes, 6 is still

the magic number of neighbors, both in stationary networks

and in mobile networks.

6 THE k-NEIGH PROTOCOL

In this section, we describe the k-NEIGH topology control
protocol—an implementation of the computation of G�k —
and prove its correctness and complexity.

The protocol is based on the following assumptions:

1. Nodes are stationary.
2. The maximum transmission power P is the same for

all the nodes.
3. Given n, P is chosen in such a way that the

communication graph that results when all the
nodes transmit at power P is connected w.h.p.

4. A distance estimation mechanism, possibly error
prone, is available to every node.

5. The nodes initiate the k-NEIGH protocol at different
times.

However, the difference between node wake up times is
upper bounded by a known constant �.

Assumption 4 is clearly the most critical and has been
thoroughly discussed in [5], where it is also shown that k-
NEIGH performance is resilient to moderate inaccuracy in
distance estimation.

In the protocol specification, which is reported in Fig. 8,
we assume without loss of generality that the first node
wakes up at time 0. At the end of the protocol execution,
node i considers as neighbors (e.g., for the purpose of
routing) only the nodes in the list LSi . Note that these are
logical neighbors, and the set of physical neighbors in general
is larger than LSi (yet bounded by k): When i transmits at
power Pi, it is possible that some node j =2 LSi receives the
message. However, these are asymmetric neighbors, which
are not considered. Also, the pruning stage reported in
Fig. 9 can be executed to further reduce the logical (and
possibly physical) degree of some nodes, without requiring
any additional messages to be exchanged.

The following results show that the k-NEIGH protocol is
correct.

Lemma 1. Let �t be the time necessary to transmit a message. For

d ¼ m�t, the probability that no contention will occur in the

wireless channel during step 1 of the k-NEIGH protocol is

� e�
3hðh�1Þ

2m , where h is the number of nodes that are contending

for the channel when transmission is done at maximum power,

and m is a substantially large integer (with respect to h).

Proof. In the worst case, all the nodes wake up at the
same time �� 2 ½0;�� and all the transmissions in
step 1 will occur at a time taken uniformly at random
in the interval ½�þ ��;�þ ��þ d�. Fix d ¼ m�t so that
the interval ½�þ ��;�þ ��þ d� can be divided into
m subintervals of length �t each. If node i initiates the
transmission during the zth interval (i.e., at some time
in ððz� 1Þ�tþ�þ ��; z�tþ�þ ���, for some integer
z 2 1 . . .m), we say that the zth interval is occupied.
Now, the following is clearly a sufficient condition for
the occurrence of the “no contention” event: No pair
of nodes occupies the same interval z and, if an
interval z is taken, then intervals z� 1 and zþ 1 are
free. Since the transmission times are independent
events, we may assume that the “choices” of the
transmission intervals made by nodes form a sequence
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Fig. 7. Preferred values of k for different values of n under strong and

weak connectivity requirements in case of RWP mobility. Values on the

x-axis are reported in logarithmic scale.



of independent random variables Zi uniformly dis-
tributed in ½1;m�, with i ¼ 1; . . . ; h. A success in the
ith trial occurs when jZi � Zjj > 1, for any j < i. It is
easy to see that this happens with probability at least
m�3ði�1Þ

m . The probability of no contention is then lower
bounded by

Prfno contentiong � 1 � 1� 3

m

� �
� . . . � 1� 3ðh� 1Þ

m

� �
:

Taking the logarithms and using the first term of the
Taylor expansion of logð1� xÞ at x ¼ 0, we have:

logPrfno contentiong �
Xh
i¼2

log 1� 3ði� 1Þ
m

� �

¼ �
Xh
i¼2

3ði� 1Þ
m

þ o i

m

2� �� �
� � 3

m

Xh�1

i¼1

i ¼ � 3hðh� 1Þ
2m

:

The proof follows by exponentiation. tu

Lemma 1 can be used to compute a lower bound to the
probability that there is no contention when accessing the
wireless channel. For example, if n ¼ 100 nodes are
distributed uniformly at random in a square region and P
is chosen in accordance with Assumption 3, the expected
number of nodes within the maximum transmission range
is about 33 (see Section 7 for details). Given these settings, d
must be around 16; 000�t to obtain a contention-free
probability of at least 0.9. With �t in the order of, say,
milliseconds, d will be in the order of tenth of seconds,

which is reasonable for most topology control scenarios.

Clearly, Lemma 1 provides only a crude lower bound on

Prfno contentiong, and smaller values of d should be usable

in practice.

Lemma 2. Let G�k ¼ ðN;EÞ be the undirected graph computed

by steps 1-6 of the k-NEIGH protocol and suppose G�k is

connected. Let G0 ¼ ðN;E0Þ be the directed graph obtained as

the result of the pruning stage of k-NEIGH. Then, G0 is

strongly connected and symmetric.

Proof. We first prove that G0 is strongly connected by

showing that, if ði; jÞ 2 E and ði; jÞ is deleted, then ie> j
will still hold in G0. Consider the pruning stage executed

by node i.

According to the protocol, node i deletes ði; jÞ
provided that there is a neighbor i1 of i such that ie>pi1,

for some path p in G�k , and moreover ði1; jÞ 2 E.

Now, let p0 denote the whole path from i to j (i.e., p0 is

p plus the final edge ði1; jÞ). By the same argument above,

if some edge ðs; tÞ of p0 is removed in G0 as the result of

the pruning stage executed by node s, then an alternative

path p00 exists in G0 that connects s to t, and hence i to j. It

is an easy consequence of the cost rule 2b of the pruning
protocol that all these paths must be acyclic (otherwise, a

contradiction would occur by summing the transmission

powers on a circuit). Since the number of nodes is finite,

the process of replacing an edge with a path must

eventually stop.
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As for the symmetry, it is sufficient to observe that if
node i deletes ði; jÞ, then P ði; zÞ þ P ðz; jÞ � P ði; jÞ, for
some node z.

The symmetry of the power function P implies that
node j will delete ðj; iÞ as well. tu

The following theorem summarizes the properties of the
k-NEIGH protocol:

Theorem 5. Assume that k is chosen in accordance with

Theorem 4. Then, the k-NEIGH protocol: 1) terminates at time

at most 4�þ 2dþ � (where d is set in Lemma 1), i.e., by this

time all the nodes have set their transmitting power correctly

and terminated the protocol execution, 2) generates a

symmetric communication graph with physical node degree

at most k, which is connected w.h.p. under the hypothesis that

nodes are distributed uniformly at random in ½0; l�2, where l is

an arbitrary positive constant, and 3) has communication

complexity �ðnÞ. More precisely, it exchanges a total of

2n messages.

7 EVALUATION OF k-NEIGH PERFORMANCE

In this section, we evaluate the k-NEIGH protocol through
simulation. The main goal of this section is to show that,
despite its extremely simple design and efficient operation,
the topologies generated by k-NEIGH can provide signifi-
cant improvements compared to networks without topol-
ogy control, and that these improvements are, in typical
cases, comparable to those provided by other protocols that
rely on more accurate information about the neighborhood,
such as the CBTC protocol of [15], [28] (which relies on

directional information) and the LMST protocol of [16]

(which relies on location information). We recall that these

protocols, differently from k-NEIGH, preserve connectivity

of the network topology in the worst case.

7.1 Simulation Setup

The metrics we use for evaluation are: energy cost (as

defined in Section 4), physical node degree, and path length. As

discussed extensively earlier in the paper, physical degree

is important to evaluate the expected contention at the

MAC layer.
In our simulations, we have considered values of n

ranging from 10 to 1,000. For each value of n, we have

generated 10,000 random node placements, and executed

the following topology control algorithms:

. MST: Although impractical (its computation re-

quires global knowledge), the Euclidean Minimum

Spanning Tree produces a range assignment that is

within a factor of 2 from the optimal weakly

symmetric range assignment (see [4]). We have used

the MST as the “optimal” topology (from the energy

consumption point of view) against which the
topologies generated by the other protocols will be

compared.
. k-NEIGH: For each setting of n, the value of k used in

the protocol is the value that guarantees connectivity

with probability 0.95 (as evaluated in Section 5.2).
. CBTC: We have simulated CBTC using two values

for � (the maximum angular gap required): � ¼ 2
3�

and � ¼ �
2 .

BLOUGH ET AL.: THE K-NEIGHBORS APPROACH TO INTERFERENCE BOUNDED AND SYMMETRIC TOPOLOGY CONTROL IN AD HOC... 1277

Fig. 9. The pruning stage.



. LMST: The “local MST” protocol of [16], which

computes an approximation of the MST based on

local information only.
. Homogeneous: We have also considered the situation

in which no topology control is used. In this case, the
value of the transmission range is defined as the
0.95 quantile of the empirical distribution of the
critical transmission range (see [25]).

The maximum transmission range used in our simula-
tions, for every value of n considered, is shown in Table 1.
As discussed in detail in [5], these values of the transmis-
sion range ensure that Assumption 3 of Section 6 is
satisfied. A sample of the topologies generated by the
various protocols for n ¼ 100 are shown in Fig. 10 and
Fig. 11.

7.2 Energy Cost

Recall that the energy cost is defined as

cðRAÞ ¼
X
i2N
ðRAðiÞÞ�;

where RA is the range assignment as defined at the end of
the protocol execution. The energy cost gives a measure of
the “energy efficiency” of the topology generated by a
topology control algorithm.

For the k-NEIGH and CBTC protocols, we have con-
sidered both the result of Phase 1 only (without pruning),
and the result of the full protocols with the pruning phase
implemented. We have considered two values for the
distance-power gradient �, i.e., � ¼ 2 and � ¼ 4. The value
of the distance-power gradient has a strong influence on the

pruning phases of k-NEIGH and CBTC, which are essen-

tially based on triangular inequalities on the power

function: The higher � is, the more edges are pruned.

In Fig. 12, we show the energy cost (normalized with

respect to the cost of the MST) of the different protocols

when � ¼ 2, for increasing values of n. To summarize the

figure, k-NEIGH significantly reduces energy cost compared

to networks without topology control—even without the

pruning phase, it is up to seven times better and with the

pruning phase it is up to 14 times better. With the pruning

phases implemented, the energy costs of k-NEIGH and

CBTC are comparable, both being roughly twice that of an

“optimal” protocol. It should be noted that the pruning

phase of k-NEIGH can be implemented with no additional

message exchanges, i.e., the total message cost of both

phases combined is 2n messages, which is extremely

efficient. The energy cost of LMST is quite close to that of

the actual MST.
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TABLE 1
Values of the Maximum Transmission

Range Rn Used in Our Simulations

Fig. 10. Sample topologies produced by the MST, LMST, and homogeneous topology control protocols with n ¼ 100.

Fig. 11. Sample topologies produced by the k-NEIGH and CBTC

topology control protocols with n ¼ 100. In CBTC, � is set to 2
3 �.



7.3 Physical Node Degree

In Fig. 13, we report the average logical (left) and physical

(right) node degrees of the topologies generated using k-
NEIGH, CBTC, and LMST. Since LMST has been seen to
perform very similarly to MST, we omit the MST results in
this figure. From Fig. 13, it is evident that k-NEIGH-Phase 1
outperforms CBTC-Phase 1 in terms of both logical and
physical degree. Observe that in k-NEIGH we have the

upper bound k on the number of physical neighbors of any
node, which holds for Phase 1 also. The result of [28] on the
logical degree (which, we recall, is 6) pertains to the
topology generated by CBTC after pruning.

When the pruning phase (Phase 2) is considered, the
performances of the two protocols in terms of average
physical degree become much closer, with k-NEIGH

performing only slightly better than CBTC. We recall again
that, for k-NEIGH, the pruning phase comes at no additional
message cost. LMST, being an approximation of the sparsest
possible topology, achieves a slightly lower average
physical degree compared to k-NEIGH.

7.4 Path Length

The energy cost, as defined herein, and the average degree do
not tell the whole story in terms of energy consumption and
interference. In fact, while bounded degree is desirable to

limit maximum interference, energy consumption and inter-

ference that consider multi-hop traffic give a better view of

overall performance of a particular topology. However, such

results are strongly dependent on assumed traffic models,

which can vary significantly from application to application.

To provide a traffic-independent assessment of this aspect,

we consider path length, which, when combined with

physical degree and energy cost, can provide a better overall

picture of topology control performance.
Fig. 14 shows the average path length of k-NEIGH, CBTC,

and LMST. Again, MST is omitted due to its similar

performance to LMST. From Fig. 14, we see that average

path length increases rapidly for the very sparse topologies

produced by LMST. Thus, for traffic patterns that include a

modest percentage of nonlocal traffic, the large number of

hops required for the sparsest topologies will produce

significantly higher overall interference and consume

greater amounts of energy than the slightly denser

topologies produced by protocols such as k-NEIGH and

CBTC. The results in this section demonstrate that, in

absence of specific knowledge of traffic patterns, protocols

such as k-NEIGH that can reduce energy cost, bound

physical degree and maintain short path lengths are the

best candidates for topology control.
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Fig. 12. Energy cost of different topology control protocols. For k-NEIGH and CBTC, we have considered (a) Phase 1 only and (b) Phases 1 and 2
implemented. The energy cost is normalized with respect to the cost of the MST. Values on the x-axis are reported in logarithmic scale.

Fig. 13. Average (a) logical and (b) physical degree of the topologies generated by the k-NEIGH, CBTC, and LMST protocols. Values on the x-axis
are reported in logarithmic scale.



8 CONCLUSIONS AND FUTURE WORK

In this paper, we have tackled the TC problem with the goal

of reducing interference between nodes while preserving

network connectivity as much as possible. To this end, we

have defined a quantity, the physical node degree, which is

strictly related to interference, and we have designed a

protocol that generates a topology with physical node

degrees that are upper bounded by k. We have shown that,

by setting k ¼ �ðlognÞ and under the assumption of

randomly, uniformly distributed network nodes, the topol-

ogies generated by our protocol are connected w.h.p.

Our protocol, called k-NEIGH, is based on the simple idea

of connecting each node to its k closest neighbors. We have

seen that in practice k-NEIGH does not require the knowl-

edge of the exact number n of nodes in the network to work,

as k is only loosely dependent on n (e.g., k ¼ 9 for n in the

range 50-500); if a small percentage of disconnected nodes

can be tolerated in the application scenario, the simulation

results suggest that k can be set to 6 independently of n.

Also, the maximum transmission range of nodes can be

overestimated without problems, since our protocol is not

influenced by the choice of a specific maximum transmis-

sion range. Whenever distance estimation is a viable choice,

our protocol can be easily implemented in practice.

There are several avenues for further research on

neighborhood-based topology control. Recently, we have

proposed a variation of k-NEIGH which does not require

distance estimation, while maintaining similar performance

to the k-NEIGH protocol described herein. This variation of

k-NEIGH deals also with mobile networks. We plan to

investigate the performance of our protocols in the presence

of multi-hop data traffic, and using a more sophisticated

model for the radio signal propagation, such as that recently

proposed in [9].

APPENDIX A

PROOF OF THEOREM 4

Let Sl denote the square of side l centered at the origin (i.e.,
the lower left corner of Sl is ð�l=2;�l=2Þ), where l is an

arbitrary constant greater than 0. Consider the following
scaling function fl : Sl 7!S1:

flðx; yÞ ¼ ð
x

l
;
y

l
Þ:

The following facts are easy to prove:

. Fact 1. fl is a bijection.

. Fact 2. If p1; p2 2 Sl, then dðp1; p2Þ ¼ l � dðflðp1Þ; flðp2ÞÞ.

. Fact 3 Let S � Sl be a rectangular region with sides

parallel to the axes. Then, areaðSÞ ¼ l2 � areaðflðSÞÞ.
. Fact 4. If p1; p2; . . . ; pn are chosen independently and

uniformly at random in Sl, then

flðp1Þ; flðp2Þ; . . . ; flðpnÞ

are independently and uniformly distributed in S1.

In particular, uniformity follows from Fact 3.
. Fact 5. Let P ¼ fp1; p2; . . . ; png � IR2 and let 1 � k < n.

For any p 2 P , letNP;kðpÞ denote the set of the k points

in P closest to p. If P � Sl, then Q ¼ flðP Þ � S1 and

NQ;kðflðpÞÞ ¼ flðNP;kðpÞÞ. In words, the k closest

neighbors of flðpÞ in Q are those in the image set

flðNP;kðpÞÞ of the k closest neighbors of p in P . Note

that this follows immediately from Fact 2. The reverse
implication holds as well.

For any P ¼ fp1; p2; . . . ; png � IR2, let GkðP Þ denote the
k-neighbors graph over P . Similarly, we can define the
symmetric super and subgraph of GkðP Þ, denoted Gþk ðP Þ
and G�k ðP Þ, respectively.

Lemma 3. Let P ¼ fp1; . . . ; png be an arbitrary set of points in

Sl. Then, GkðP Þ is strongly connected if and only if GkðQÞ is

strongly connected, where Q ¼ flðP Þ � S1.

Proof. Suppose GkðP Þ is strongly connected. Then, for any

p; q 2 P , q is reachable from p, i.e., there is a sequence of

vertices p ¼ p1; p2; . . . ; pt ¼ q such that ðpi; piþ1Þ is an

edge in GkðP Þ, for i ¼ 1; . . . ; t� 1. By definition, this

means that piþ1 2 NP;kðpiÞ. By Fact 5, it follows that

flðpiþ1Þ 2 NQ;kðflðpiÞÞ for any i, which means that

ðflðpiÞ; flðpiþ1ÞÞ is an edge of GkðQÞ for i ¼ 1; . . . ; t� 1.

Thus, flðqÞ is reachable from flðpÞ in GkðQÞ. Since p and q

are arbitrary nodes, it follows that GkðQÞ is strongly

connected. The reverse implication easily follows by

exchanging the roles of P and Q. tu
Note that Lemma 3 can be easily extended to Gþk ðP Þ and

G�k ðP Þ.
We make use of Lemma 3 to prove that the distribution

of connected k-neighbors graphs with vertex set in Sl does
not depend on l.

Lemma 4. Let 1 � k < n and l > 0. The probability that the

k-neighbors graph GkðP Þ is connected, where

P ¼ fp1; . . . ; png � Sl
is independent of l provided that p1; . . . ; pn are chosen

independently and uniformly at random.

Proof. We shall prove that the probability that GkðP Þ is
connected equals the probability that the k-neighbors
graph is connected when the vertices are chosen inde-
pendently and uniformly at random inS1. For i ¼ 1; . . . ; n,
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Fig. 14. Average path length of the topologies generated by the k-
NEIGH, CBTC, and LMST protocols. Values on the x-axis are reported in
logarithmic scale.



let @Pi � Sl denote a sufficiently small region around pi,
such that @Pi

T
@Pj ¼ ; if i 6¼ j. Here, sufficiently small

means that, for anyP ¼ fp1; . . . ; png, the k-neighbors graph
GkðP Þ does not change if pi moves in @Pi, for i ¼ 1; . . . ; n.
Analogously, let Q ¼ fflðp1Þ ¼ q1; . . . ; flðpnÞ ¼ qng � S1,
and @Qi ¼ flð@PiÞ. By Fact 2, we can conclude that the
k-neighbors graph GkðQÞ does not change as qi moves in
@Qi. Furthermore, by Lemma 3, we have:

PrfGkðP Þ is connected jpi 2 @Pi; i ¼ 1; . . . ; ng ¼
PrfGkðQÞ is connected jqi 2 @Qi; i ¼ 1; . . . ; ng:

ð2Þ

(It is immediate to see that the above conditional
probability is 0 or 1.)

Now, suppose that p1; . . . ; pn are chosen indepen-
dently and uniformly at random in Sl. From the
definition of conditional probability and the indepen-
dence assumption, we have

PrfGkðP Þ is connected ^ all pi 2 @Pig ¼ 	 � Prfall pi 2 @Pig

¼ 	 �
Yn
i¼1

Prfpi 2 @Pig;

ð3Þ

where 	 denotes the value of (2), while the shorthand
“all pi 2 @Pi” stands for “pi 2 @Pi; i ¼ 1; . . . ; n.” Since, by
Fact 4, q1; . . . ; qn are also independently and uniformly
distributed in S1, we have:

PrfGkðQÞ is connected ^ all qi 2 @Qig ¼ 	 � Prfall qi 2 @Qig

¼ 	 �
Yn
i¼1

Prfqi 2 @Qig:

ð4Þ

The final step is to compute the probability of con-
nectivity by integrating (3) and (4):

PrfGkðP Þ is connectedg

¼
Z
Sl

. . .

Z
Sl

PrfGkðP Þ is connected ^ all pi 2 @Pig

¼
Z
Sl

. . .

Z
Sl

	 � Prfall pi 2 @Pig ¼ 	 �
Yn
i¼1

Z
Sl

Prfpi 2 @Pig

¼ 	 �
Yn
i¼1

Z
Sl

@Pi
l2
¼ 	 �

Yn
i¼1

Z
S1

@Qi ¼ PrfGkðQÞ is connectedg;

where the last equality follows clearly by applying the
very same transformations in reverse order. tu
As in the case of Lemma 3, the result of Lemma 4 can be

easily extended to the symmetric super and subgraph of the
k-neighbors graph.

The proof of the theorem follows immediately from
Theorems 2 and 3 and from Lemma 4.
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