
A Reconfigurable Byzantine Quorum Approach for the Agile Store∗

Lei Kong†, Arun Subbiah‡, Mustaque Ahamad†, Douglas M. Blough‡

† College of Computing
‡ School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA 30332 USA

{konglei,mustaq}@cc.gatech.edu,{arun,dblough}@ece.gatech.edu

Abstract

Quorum-based protocols can be used to manage data
when it is replicated at multiple server nodes to improve
availability and performance. If some server nodes can
be compromised by a malicious adversary, Byzantine quo-
rums must be used to ensure correct access to replicated
data. This paper introduces reconfigurable Byzantine quo-
rums, which allow various quorum protocol parameters to
be adapted based on the behavior of compromised nodes
and the performance needs of the system. We present a pro-
tocol that generalizes dynamic Byzantine quorums by allow-
ing the system size to change as faulty servers are removed
from the system, in addition to adapting the fault threshold.
A new architecture and algorithm that provide the capabil-
ity to detect and remove faulty servers are also described.
Finally, simulation results are presented that demonstrate
the benefits offered by our approach.

1. Introduction

The Agile Store project at Georgia Tech targets new in-
formation rich applications, which will need to access and
manipulate sensitive and critical information. Such appli-
cations will require that their information is stored securely
and made available to only authorized parties when needed.
Our research seeks to build agile services that can be used
by these applications to store and access information in per-
vasive computing environments. The motivation for such
services comes from the fact that many future applications
will span resource-limited embedded processors or mobile
or hand-held computers that cannot be trusted to store infor-
mation securely (e.g. they can be easily compromised, lost

∗This research was supported by the National Science Foundation under
Grant CCR-0208655.

or stolen). Thus, the applications will require trusted ser-
vices that can store their information while addressing both
security and performance needs that may change over time.

Since these services will be accessible over public infras-
tructure, we must allow for the possibility that they will be
subjected to attacks. Thus, we are interested in storage ser-
vices that can guarantee confidentiality, integrity, and avail-
ability despite intrusions into and/or compromises of some
elements. Quorum systems [5] provide efficient and highly
available storage of data across multiple servers. Byzan-
tine quorum systems have been recently introduced [11] as a
way of guaranteeing high availability despite a limited num-
ber of servers being compromised. Earlier works from the
Agile Store project explored approaches to provide various
types of consistency within the store and studied how se-
cret sharing techniques can be integrated with replication to
provide confidentiality and availability [6, 7].

Assuming the worst case number of failed servers at all
times in a Byzantine quorum system can be quite expen-
sive in terms of the required quorum sizes and the associ-
ated load they impose on the system. To improve perfor-
mance, we would like the quorum protocols to be agile in
the sense of providing highly efficient execution under nor-
mal circumstances and a high degree of resilience with per-
haps lower performance at times of attack. The approach
we take in the Agile Store project is to monitor the current
threat level of the system through intrusion and failure de-
tection mechanisms. These mechanisms feed information
to the quorum system protocols, which adapt their behavior
accordingly, to provide the desired agile operation.

The first important step toward agile quorum systems
was the development of dynamic quorum protocols in [1].
These protocols assume some way of estimating the current
number of compromised servers and adapt the quorum sizes
accordingly. In this paper, we expand on this idea by adding
explicit fault detection and reconfiguration capabilities into

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

the system to further optimize performance and availability.
We provide a statistical fault detection technique that can
detect and identify compromised servers even when they try
to escape detection by returning incorrect responses only
occasionally. Furthermore, we use the identities of com-
promised servers to reconfigure the quorum system. This
improves system performance by keeping quorum sizes and
system load as low as possible, and it also extends system
lifetime. Simulations that are reported in Section 5 demon-
strate that these benefits are, in fact, substantial.

2. System Model

As shown in Figure 1, our reconfigurable Byzantine quo-
rum system consists of servers, clients, and a special diag-
nosis node. Each data object is replicated on a subset of
servers. The diagnosis node collects fault detection infor-
mation from servers, makes diagnosis decisions, and up-
dates quorum variables, which are defined later. The total
number of servers in the system is not fixed because we al-
low removal of servers that are diagnosed as faulty.

Figure 1. System Architecture

Unlike the traditional method where a client accesses a
quorum of servers directly to perform a read or a write, we
have for each read or write operation, a server picked ran-
domly by a client to act as a proxy. A client sends its read
or write request to the chosen proxy server, and the proxy
server forwards the request to the quorum of servers speci-
fied by the client. Server responses are returned through the
same proxy server to the client. This enables proxy servers
to monitor the responses of other servers for failure detec-
tion purposes. Both comparison-based detection [9] and ex-
plicit testing [3, 13] approaches are employed in our system.
Cryptographic methods are used to protect messages from
being tampered by faulty proxy servers.

Both clients and servers can experience Byzantine faults,
i.e. they can behave arbitrarily. In this paper, we focus
on detection and removal of compromised servers and do

not consider, in detail, detection of compromised clients.
Access control mechanisms are used to limit damage by
faulty clients, and clients do not control system operation
in our approach, contrary to [1]. Furthermore, correct proxy
servers can easily detect and prevent some faulty client be-
havior such as writing to a partial quorum, which can leave
the system in an inconsistent state. We leave dealing with
collusion between faulty clients and faulty servers as future
work. Faulty clients can have some impact on the accu-
racy of our fault detection technique. This issue is discussed
when describing the fault detection algorithm.

The diagnosis node, which is responsible for diagnos-
ing faulty servers and maintaining the quorum variables,
is assumed to be fault-free. The diagnosis node does not,
in general, accept connections from the outside world, and
communicates with only known nodes (the servers) to re-
ceive some fault information. Furthermore, the diagnosis
node runs a single, very simple application. These elements
should make it feasible to guarantee the security and pro-
tection of the diagnosis node. Alternatively, the diagnosis
node could be implemented as a Byzantine fault-tolerant
state machine [14].

The data service model in our system is based on mask-
ing quorum systems [11], but it could also work with other
quorum systems, such as dissemination [11] and grid [4]
quorum systems. A masking quorum system, defined on a
universe U of servers, requires that |Qr ∩ Qw| ≥ 2b + 1,
where the read quorum Qr and the write quorum Qw are
subsets of U , and b is the resilience threshold [1] of server
faults. Since at least b+1 non-faulty servers are in Qr∩Qw,
the correctness of read operations is guaranteed. In quo-
rum systems, timestamps are used to distinguish different
versions of data. Clients choose timestamps from non-
overlapping sets when writing data, and each client gener-
ates its timestamps in a monotonically increasing order.

It is assumed that the actual number of faulty servers
in the system does not exceed the fault threshold b. This
assumption is commonly made in work on Byzantine quo-
rum systems, secure group communication, secret sharing,
threshold cryptography, and other topics as well. Software
diversity can help prevent too many servers from being com-
promised by the same attack method. For example, different
servers could be run on different operating systems, thereby
preventing certain classes of attacks from being applied to
all servers.

We assume authentication, authorization, and key man-
agement services for the system, and digital certificates
from a certificate authority bind all parties to their public
keys. All parties use cryptographic methods to protect the
confidentiality and integrity of their communication.

Communication channels are assumed to be asyn-
chronous but reliable. Generally, clients wait for responses
from servers during both read and write operations. Non-

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

if (N(new) < N(old))
then X1 = Qmin(old) − (N(old) − N(new));
else X1 = Qmin(old);

X2 = �(N(new) + 2B(new) + 1)/2�;
Qmin(new) = min(X1, X2);

Figure 2. Updating Qmin

confirmative write [12] is useful only for special applica-
tions. In an asynchronous environment, it is impossible
to tell if a server is slow or not responding because it is
faulty. One solution is to send a request to all servers; this
will succeed when at least one quorum is available, which
occurs when when n ≥ 4b + 1 for masking quorum sys-
tems [11]. In masking quorum systems, the client can also
access servers incrementally until enough respond, or ac-
cess b or bmax more servers to guarantee that a quorum of
responses will be received. If a client times out waiting for
responses, then the proxy server may be faulty. The client
then chooses another proxy server and retries. However, de-
layed responses received later from the first proxy are still
accepted. To simplify the presentation, we omit details on
how quorums are collected in our protocols.

3. Reconfigurable Byzantine Quorums

This section details the protocols that are used to main-
tain quorum variables’ values and to read and write data ob-
jects in a reconfigurable Byzantine quorum system. Proofs
of the results in this section are omitted due to length re-
strictions.

3.1. Quorum Variables

In order to make the system adaptive, four quorum vari-
ables are defined in our system. These variables are denoted
by N,B,Qmin and S. (For clarity, we use n, b, qmin and s
to denote their values respectively.) A copy of these vari-
ables is maintained by every server in the system. N stores
the current system size, which can decrease as servers are
removed. B records the estimated upper bound on the num-
ber of faulty servers in the system. Its value is an integer in
the range [bmin, bmax], where bmin and bmax are the mini-
mum and maximum possible number of faults in the system
respectively. S is a boolean array, with an entry for each
server, which indicates if the server is faulty. Upon diagnos-
ing a server as faulty, the diagnosis node marks that server
as faulty in S. Clients do not choose servers that have been
marked as faulty to be in their read/write quorums, which
logically eliminates faulty servers from the system.

The dynamic Byzantine quorum protocols of [1] will not
work without modification if the system size n decreases.

Quorum protocols require the intersection between a read
quorum and a write quorum to be of some minimum size.
When computing the read quorum size in [1], the write quo-
rum size of an object is assumed to be �(n+2bmin +1)/2�.
However, faulty servers that are removed might have partic-
ipated in some write operations and �(n + 2bmin + 1)/2�
might not decrease as much as n does. Thus, it is necessary
to keep track of the effective minimum write quorum size.
The quorum parameter Qmin is defined for this purpose.
Suppose Q(V) stands for the number of servers that hold
the current value of data object V . Q(V) can be different
from the most recent write quorum size of the data value,
because removal of faulty servers can decrease Q(V). We
use Qmin to store the minimum value of Q(V) over all data
objects stored in the system. This enables us to compute the
proper read quorum size when both N and B are variables,
and it also leads to a smaller read quorum than in [1] for the
same system size and Qmin ≥ �(n + 2bmin + 1)/2�.

Initially when the system starts, N = initial system size,
B = some value in the range [bmin, bmax], and Qmin =
�(N + 2B + 1)/2�. Every time N or B is updated, the
system tries to update Qmin using the algorithm in Fig-
ure 2. Here, Y (new) and Y (old) denote the new and old
versions of variable Y respectively. The decrease of Qmin

could be caused by two reasons. First, faulty servers that
have been removed could belong to some write quorums, so
Qmin should decrease as much as N does. Second, Qmin

should be no greater than the new write quorum size. X1

and X2 in the algorithm denote the new value of Qmin com-
puted according to these two factors, and their minimum is
assigned as the new value of Qmin.

3.2. Read/Write Protocols for Quorum Variables

Quorum variables are read and written according to the
protocols shown in Figure 3. The four quorum variables
are read and written together. We use P to denote the four-
tuple of the variables and use tP to denote their timestamp.
A pair < p, tP > is countermanded if at least bmax + 1
servers return pairs with timestamp higher than tP .

Since the diagnosis node is the sole writer for the quorum
variables, the diagnosis node will always be able to update
tP with a value greater than any other value used so far with-
out having to perform an explicit read on tP to obtain tP ’s
current value. Also, there cannot be concurrent writes on
quorum variables. Theorem 1 states that the quorum vari-
ables’ protocols guarantee a property that is stronger than
safe variable semantics [8].

Theorem 1 A quorum variable read that overlaps with no
quorum variable write returns the most recently written
value. A quorum variable read never returns values older
than the values written by the most recently completed write.

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

Read Protocol
1) Randomly choose a quorum Qr such that |Qr| = 3bmax + 1;
2) Read < p, tP > from servers in Qr;
3) F1 = {< p, tP > | < p, tP > is returned

by at least bmax + 1 servers };
4) F2 = {< p, tP > |(< p, tP >∈ F1)

∧(< p, tP > is not countermanded) };
5) if (|F2| == 1) then return the pair in F2;
6) else return error;

endif;

Write Protocol
1) Randomly choose a quorum Qw such that |Qw| = n − bmax;
2) Write < p, tP > to servers in Qw;

Figure 3. Quorum Variable Protocols

3.3. Read/Write Protocols for Data Objects

Read and write operations proceed in two phases. First
quorum variables are read, from which the quorum size is
computed and a quorum is chosen, and then data objects
are read from or written to this quorum. Figure 4 shows
the read/write protocols, in which < v, t > stands for the
value and timestamp pair of a requested data object, and
< p, tP > stands for the pair of quorum variables. In the
write protocol, vnew denotes the new value to be written and
tVnew

denotes its new timestamp.
In read/write operations, servers send back their quorum

variable values < p, tP > as well as the requested data ob-
ject value. Thus, the client can check if it is using the most
up-to-date quorum variable values. After step 7 in a read op-
eration, the client recomputes quorum variable values based
on < p, tP > pairs it received in step 7. If quorum vari-
ables have different values from what were computed in step
1, then the client updates its quorum variable values, and
restarts the read operation from step 2. To ensure clients
are notified of changes to quorum variables when they read
data objects, the intersection of any data object read quo-
rum and any quorum variable write quorum needs to contain
at least 2bmax + 1 servers, which gives N a lower bound:
N ≥ 6bmax − 2bmin + 1, as in [1].

Theorem 2 states that the data object protocols guarantee
safe variable semantics [8].

Theorem 2 A read of V that overlaps with no write on V
returns < vcur, tVcur

>, which is the value of the most re-
cently completed write to V .

3.4. Other Protocol Issues

Since all client requests and server responses go through
proxies, we need to prevent faulty proxies from tampering

Read Data Object V
1) Execute a read on quorum variables;
2) Randomly choose a server as the proxy;
3) Randomly choose a quorum Qr s.t. |Qr| = n + 2b + 1 − qmin;
4) Randomly choose Qr1

s.t. (Qr1 ⊂ Qr) ∧ (|Qr1 | = n + b + bmin + 1 − qmin);
5) Send the read request and Qr1 to the proxy;
6) The proxy reads < v, t > and < p, tP > from each server in Qr1 ;
7) The proxy forwards < v, t > and < p, tP > pairs to the client;
8) R1 = {< v, t > | < v, t > returned by ≥ bmin + 1 servers };
9) if (R1 �= φ) then
10) R2 = {< v, t > | < v, t > returned by ≥ b + 1 servers };
11) if (R2 = φ) then
12) Notify the proxy to read from Qr − Qr1 ;
13) The proxy reads < v, t > and < p, tP > from

Qr − Qr1 and forwards them to the client;
14) R2 = {< v, t > | < v, t > returned by ≥ b + 1 servers };
15) if(R2 �= φ) then
16) return < v, t > in R2 with the newest time stamp;
17) else return error;
18)else return error;

Write Data Object V
1) Execute a read on V to get the current tV and < p, tP >;
2) if (read quorum size increases according to step 1) then

repeat
3) Read t and < p, tP > from every server node;
4) until at least n − bmax servers return the same < p, tP >;
5) Generate tVnew higher than any timestamp from Step 1 or Step 3
6) Randomly choose a server as the proxy;
7) Randomly choose a quorum Qw s.t. |Qw| = �(n + 2b + 1)/2�;
8) Send < vnew, tVnew > and Qw to the proxy;
9) The proxy writes < vnew, tVnew > to servers in Qw;
10)The proxy forwards write confirmations to the client;

Figure 4. Data Object Protocols

with them. MACs (message authentication codes) are used
to protect message integrity. Each client establishes a sym-
metric key with each server using their asymmetric keys pe-
riodically. Client write requests and server responses are
protected by MAC based on symmetric keys shared by the
client and each server node in the chosen quorum. In order
to make read requests anonymous to servers for diagnosis
purpose, proxy nodes don’t forward MACs of read requests
to servers, then servers have no way to check if read requests
are generated by clients or they are test requests from other
servers. This makes it possible for servers to generate extra
test read requests to speed up fault detection when neces-
sary.

In the data read/write protocols, quorum variables are
read in every operation. However, since quorum variables
do not change frequently, it is better to use cached values
when generating requests. Since servers send back their cur-
rent quorum variable values in their responses to data object

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

read/write requests, clients can detect quorum variable up-
dates and regenerate requests issued with old values.

4. Fault Detection

A new fault detection algorithm that identifies faulty
servers thus enabling their removal is described in this sec-
tion. Proxy servers monitor server responses during read
operations and, over time, the proxy servers are able to de-
termine if other servers are faulty with a specified false-
alarm probability. Proxy servers communicate their findings
to the diagnosis node, which is responsible for updating the
quorum variables N , B, Qmin, and S. Since faulty proxy
servers may report non-faulty servers as faulty, the diagno-
sis node employs a voting mechanism to decide if a server
is indeed faulty. Hence, the fault detection algorithm uses
a two-tiered approach: the proxy-node algorithm and the
diagnosis-node algorithm.

4.1. Fault Detection Algorithm at the Proxy Node

To better illustrate the algorithm, we make some simpli-
fying assumptions. The fault detection algorithm is run pe-
riodically and, in between two executions of the algorithm,
the following assumptions hold:

1. There are no changes in the quorum parameters.
2. No server becomes faulty.
3. There are no concurrent reads and writes.
4. A quorum of size q is chosen randomly from all possible

quorums of size q.

Assumptions 1 - 3 will be relaxed in Section 4.3. As-
sumption 4 will be commented on in the context in which it
appears in this section.

During a data read operation, the proxy server is aware
of the responses returned by the servers in the read quorum.
Hence, it can determine the result of the read as would be
chosen by the client, which will be termed here as the “cor-
rect response.” In a read operation, some servers will be un-
able to give the correct response because they were not part
of the write quorum of the last completed write to the data
object. Hence, to be able to distinguish faulty servers from
non-faulty servers using this approach, statistical analysis is
used over a sequence of read operations.

When a non-faulty server is part of a read operation on
a data object, the probability that it will return a correct re-
sponse is the probability that it belonged to the write quo-
rum of the last completed write on the same data object,
which is |Qw|/n. If read operations to r objects are moni-
tored, then the probability that a fault-free server returns u

correct responses is given by

(
r
u

)(|Qw|
n

)u (
1 − |Qw|

n

)r−u

(1)

Hypothesis testing is used to determine if a server is
faulty. The null hypothesis, H0, is defined as a server be-
ing non-faulty, and for a fixed false-alarm probability the
null hypothesis H0 is either rejected or accepted. The false-
alarm probability is fixed at 0.05, meaning the probability
that a non-faulty server is found faulty by a fault-free proxy
server is 0.05. From the false alarm probability, a threshold
value for u, denoted by uth, is determined, and if a server
returns uth or fewer correct responses in r read operations,
then the null hypothesis H0 is rejected and the server is said
to be faulty. uth is the maximum value of u such that the
following inequality is satisfied:

u∑
i=0

(
r
i

)(|Qw|
n

)i (
1 − |Qw|

n

)r−i

≤ 0.05 (2)

Since Byzantine faults are considered, faulty servers could
try to avoid detection by sporadically giving incorrect re-
sponses. Since the number of faulty servers is never greater
than b, incorrect responses by faulty servers will not affect
the result of a read operation when the read is not concurrent
with a write to the same data object. Note that faulty servers
do, however, have the incentive to respond incorrectly as
soon as they are compromised because, under Byzantine
quorum system operation, they can force old values to be
read when a read operation is concurrent with a write to the
same data object.

Let pic denote the probability with which a faulty server
returns an incorrect response when it has the correct value
for the data object being read. pic is a probability represen-
tative of the faulty server’s behavior over the sequence of r
read operations being monitored and cannot be estimated or
observed. An ideal fault detection algorithm would detect a
faulty server for all pic, 0 < pic ≤ 1.

The probability that a faulty server returns a correct re-
sponse during a read operation is |Qw|

n (1−pic) and the prob-

ability that an incorrect response is returned is 1 − |Qw|
n +

|Qw|
n pic. Since a server is said to be faulty if it returns uth

or fewer correct responses in r read operations, the proba-
bility that a faulty server will be detected as faulty in r read
operations is

uth∑
i=0

(
r
i

)(|Qw|
n

(1 − pic)
)i (

1 − |Qw|
n

+
|Qw|

n
pic

)r−i

(3)
For a store consisting of n = 70 servers and with a write

quorum size |Qw| = 42 servers, Figure 5 shows the prob-
ability that a faulty server is detected for various values of

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

0

0.2

0.4

0.6

0.8

1

1.2

p
0 0.2 0.4 0.6 0.8 1

ic

r=40

0

0.2

0.4

0.6

0.8

1

1.2

p
0 0.2 0.4 0.6 0.8 1

ic

r=60

0

0.2

0.4

0.6

0.8

1

1.2

p
0 0.2 0.4 0.6 0.8 1

ic

r=100

0

0.2

0.4

0.6

0.8

1

1.2

p
0 0.2 0.4 0.6 0.8 1

ic

r=200

0

0.2

0.4

0.6

0.8

1

1.2

p
0 0.2 0.4 0.6 0.8 1

ic

r=500

0

0.2

0.4

0.6

0.8

1

1.2

p
0 0.2 0.4 0.6 0.8 1

ic

r=1000

0

0.2

0.4

0.6

0.8

1

1.2

p
0 0.2 0.4 0.6 0.8 1

ic

r=10000

Figure 5. Probability that a faulty server is de-
tected vs pic for several r

pic and r with a false alarm probability of 0.05. Even for r
as low as 100 read operations, the probability that a faulty
server is detected is essentially one for a wide range of pic.
The probability that a faulty server is detected improves as
the number of monitored read operations increases.

It is interesting to note that a faulty server has to behave
at a very small pic to avoid detection. Thus, the algorithm
forces faulty servers to behave almost as though they were
correct in order to avoid detection.

The above analysis is valid as long as Assumption 4
holds when applied to write quorums. If the quorum se-
lection strategy is defined such that all the possible quo-
rums of size q are not equally likely to be chosen during
write operations, then the fault detection algorithm can be
suitably modified. Assumption 4 could be violated when
faulty clients do not adhere to the chosen strategy. For ex-
ample, faulty clients can deliberately exclude a particular
non-faulty server in their write operations. Although we do
not consider faulty clients in this paper, we note that it is
possible to have proxies monitor clients’ quorum selections
to detect this type of behavior.

Proxy servers run the above described algorithm period-
ically for each server in the store. At the end of one such
period for a monitored server, the proxy server determines if
the monitored server is faulty with the specified false alarm
probability and informs the diagnosis node of the result.

4.2. Fault Detection Algorithm at the Diagnosis
Node

For each server in the store, the diagnosis node maintains
a list of servers that found this server to be faulty. This list
may increase or decrease with time. If at any point, a certain
minimum number of servers, denoted by m, claim that some
server is faulty, then that server is diagnosed as faulty and
is removed from the system. The quorum parameters (N ,

B, Qmin, and S) are updated accordingly by the diagnosis
node. The value of m can be chosen to achieve a false alarm
probability lower than the false alarm probability used by
the proxy fault detection algorithm. The choice of m is also
influenced by the number of concurrent reads and writes in
the system, which are a potential source for false alarms.

For example, if the final desired false alarm probability is
10−4, then let m′′ be the smallest m′ such that the following
inequality is satisfied:

(
n − bmax

m′

)
(0.05)m′

(1 − 0.05)n−bmax−m′ ≤ 10−4

(4)
where 0.05 is the false alarm probability used in the proxy-
node fault detection algorithm. n−bmax and not n is used in
the above inequality because, in the worst case, bmax faulty
servers could try to vote a non-faulty server out of the sys-
tem. Hence, m given by m′′ + bmax guarantees a final false
alarm probability of at most 10−4.

A faulty server could defeat the above algorithm by re-
turning incorrect responses only when a particular set of
fewer than m servers are proxy servers and behaving cor-
rectly when other servers are proxy servers. Since the di-
agnosis node will then not be able to gather sufficient (m)
votes to identify the faulty server, the faulty server will go
undetected. Hence, we make the following assumption.

Assumption 5: The behavior of faulty servers is indepen-
dent of the identity of the proxy servers.

The above assumption can be relaxed by having proxy
servers drop servers they have found to be faulty from quo-
rums specified by a client. The client will then not be
able to get a quorum of responses and will generate re-
quests to other servers, ensuring that the read or write com-
pletes. Another technique is to have a proxy server tunnel
the client’s requests through other proxy servers before the
request reaches a quorum of servers. Thus, faulty servers
will not be able to single out specific proxy servers. Evalu-
ating these ideas more thoroughly is an area for future work.

4.3. Relaxing Assumptions 1 - 3

Assumption 1 states that |Qw|
n is assumed to be constant.

Reconfigurable quorums will have different |Qw|
n ratios as-

sociated with different data objects. This is handled by
clients writing the quorum variables’ timestamp along with
the data object during a write. To overcome this storage
overhead, when a server receives a write request for a data
object using a particular quorum timestamp as seen by the
client, the data object is stored in a directory identifying
the timestamp of the quorum variables with which the data
object is written. All previous instances of the data object
present in other directories are deleted.

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

At the end of r read operations that a server participated
in and were monitored by a proxy server, let the number
of data objects read that were written with quorum param-
eters |Qw|1 and n1 be r1, the number of data objects read
that used quorum parameters |Qw|2 and n2 be r2, etc. If
servers in the read quorum return the timestamp of the quo-
rum variables associated with the data object to the proxy
server during a read operation, then the proxy server can
easily estimate r1, r2, . . . and the |Qw|/n ratios associated
with the different quorum timestamps. The correct response
in a read operation has at least b + 1 servers returning the
same value and timestamp of the data object and timestamp
of the quorum variables that were used at the time the data
object was last written. This modification to the read proto-
col will not affect its correctness because when a data object
is written, the client specifies the quorum timestamp that it
is using during the write and the data timestamp and value
and the quorum timestamp are protected from tampering.
Taking into account varying write quorum sizes, the proba-
bility that a faulty server is detected is

uth∑
i=0

∑
x′

js,

0 ≤ xj ≤ rj,∑
xj = i

(
rj

xj

) (|Qw|j
nj

(1 − pic)
)xj

·

(
1 − |Qw|j

nj
+

|Qw|j
nj

pic

)rj−xj

With pic equal to zero, the minimum value of uth such
that the above expression is not greater than the false alarm
(0.05) gives the threshold value of u in r read operations.

Assumption 2 states that no servers become faulty during
the execution of the fault detection algorithm. If a server
becomes faulty during the r read operations that were mon-
itored, the average pic over the r read operations will be
lower than the actual pic that is representative of the faulty
server’s behavior. Hence, if a server became faulty recently,
the effective pic over the r read operations monitored could
be small enough so that it goes undetected. Then, the faulty
server will be detected in the next round of r read operations
provided it continues to perform with a pic in the detectable
range. Small values of r are particularly useful in detecting
servers that became faulty recently. Simulation results in
Section 5 show that even with r as low as 100 read opera-
tions, faulty servers with small pic are detected.

If Assumption 3 is relaxed, then concurrent reads and
writes can occur. It could then be possible that a wrong
“correct” response is determined during a read operation,
thereby counting fault-free servers as faulty. This would in-
crease the actual false alarm probability to be higher than
the target value used in Equation 4. This can be dealt

with simply by lowering the target false alarm probability
to counter the impact of concurrency.

4.4. Comparison with Related Work

The primary work in fault detection for Byzantine quo-
rum systems is [2]. The Write Marker Protocol of [2] can
identify faulty servers in a single read operation provided it
is guaranteed that no read will be concurrent with a write.
The Write Marker Protocol incurs an overhead of n bits per
data object, where n is the total number of servers in the
system. This overhead can be quite significant if a large
number of data objects are stored.

The overhead incurred in the proposed fault detection al-
gorithm described in this paper is the tracking of read re-
sponses of every server in the store by the proxy servers.
This storage overhead does not depend on the number of
data objects in the system. For each server in the store,
proxy servers maintain a chronological list of read opera-
tions in which the server participated. Each entry in the list
contains the quorum timestamp associated with the data ob-
ject that was the result of the corresponding read operation,
and a Boolean value indicating if the server returned the cor-
rect response. Since quorum parameters are assumed not to
change often, two bytes should be sufficient to hold each
entry in the list. Assuming a maximum of 1000 read opera-
tions are monitored for each server, a storage space of 2000
bytes will be required. For a store of size 70 servers, each
proxy will need approximately 140 KB of main memory
space, which is independent of the number of data objects
in the system and can be easily accommodated with typical
memory configurations in today’s server class machines.

Another benefit of our approach is that it can tolerate a
limited amount of concurrency between read and write op-
erations, while this is not true for the Write Marker Protocol.
In Section 5, simulation results demonstrating this capabil-
ity are presented.

5. Simulation Results

5.1. Comparison between Reconfigurable, Dy-
namic, and Static Quorum Systems

The read and write protocols and fault detection algo-
rithm of our approach were simulated and compared to dy-
namic and static Byzantine quorum systems. A system size
of 70 servers was assumed, with the fault threshold b rang-
ing within [1, 8]. Since the estimation of b is beyond the
scope of this paper, it is assumed, for both reconfigurable
and dynamic quorums, that b is updated as soon as a server
becomes faulty or when a faulty server is removed from the
system. In the simulations, b is maintained as the actual
number of faulty servers in the system plus one to model

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

 0

 10

 20

 30

 40

 50

 60

 70

 1000 2000 3000 4000 5000 6000 7000 8000

Time (seconds)

Reconfig. Quorum N

 0

 10

 20

 30

 40

 50

 60

 70

 1000 2000 3000 4000 5000 6000 7000 8000

Time (seconds)

Reconfig. Quorum B

 0

 10

 20

 30

 40

 50

 60

 70

 1000 2000 3000 4000 5000 6000 7000 8000

Time (seconds)

Static Quorum and Dynamic Quorum N

 0

 10

 20

 30

 40

 50

 60

 70

 1000 2000 3000 4000 5000 6000 7000 8000

Time (seconds)

Dynamic Quorum B

 0

 10

 20

 30

 40

 50

 60

 70

 1000 2000 3000 4000 5000 6000 7000 8000

Time (seconds)

Static Quorum B

Figure 6. Comparison of n and b between Recon-
figurable, Dynamic and Static Quorums

a safety margin that should be built into the b estimation.
Since n is constant and b is always equal to bmax for static
quorums, the read and write quorum sizes and workload re-
main constant in that case.

The time at which a server becomes faulty is computed
for each server using an exponential distribution with mean

MTBF
√

Bmin+Bmax
2(#faulty servers) , where MTBF is the Mean

Time Between Failures for a server and #faulty servers
is the total number of servers that became faulty since sim-
ulation start. Thus, the effective MTBF decreases as the
number of faulty servers increase. This is intended to model
scenarios such as virus propagation and progressive attacks.
The value of MTBF used in the simulations is 2 days. At
system start, there are no faults in the system and thus, b
is equal to 1 initially. When a server becomes faulty, the
pic value that will govern its subsequent behavior is chosen
uniformly over (0, 1]. When the number of faulty servers
reaches bmax = 8 in the case of dynamic and static quorum
systems, no more fault events are introduced.

The time taken for a message to traverse a communica-
tion link is a minimum message travel time (t1) + a random
amount of time exponentially distributed with mean t2. In
the simulations, t1 is 1 second and t2 is 4 seconds. Read and
write requests for each data object are modeled as Poisson
processes. For each object, the mean interarrival time for
reads is 80 seconds and the mean for writes is 150 seconds,
thus producing an average read/write ratio of 15 : 8.

Figure 6 compares the system size and the fault threshold
b between reconfigurable, dynamic and static quorum sys-
tems during the length of one simulation run. Since the fault
detection algorithm is incorporated into the simulation of
reconfigurable quorum systems, faulty servers are removed
some time after the fault event thus maintaining the fault
threshold b fairly constant. The false alarm probability is

set to 0.05 in the proxy-node fault detection algorithm and
10−20 in the diagnosis-node fault detection algorithm. For
a system size of 70 servers and with bmax = 8, at least 38
servers must notify the presence of the faulty server to the
diagnosis node before the faulty server is removed from the
system. Proxy servers run the fault detection algorithm on
other servers every r = 100 read operations. There were no
incorrect diagnoses even though the measured concurrency
between read and write operations was 32.63%.

In the depicted simulation, our fault detection algorithm
identified all but one failure and the average latency in de-
tecting faults was found to be 164 seconds. The fault event
that went undetected happened at time 8062.04, and the rea-
son it was not detected is because the pic value governing its
faulty behavior was a very small 0.0125. On the other hand,
a faulty server with a pic as low as 0.0775 was detected,
albeit with a high latency of 714 seconds. In general, it
was observed that faulty servers that behave with a small
pic require a long time to be detected. From Figure 5, we
see that, with r = 100, it is remarkable that a faulty server
with a pic equal to 0.0775 was detected, and a faulty server
with pic = 0.0125 going undetected is not unexpected. The
smallest latency in diagnosing a faulty server was found to
be 68.99 seconds, corresponding to a pic value of 0.807.

The system sizes for dynamic and static quorum sys-
tems remain constant at 70 because faulty servers are not
removed. The fault threshold b for the dynamic quorum sys-
tem increases with every fault event until bmax = 8, beyond
which no more fault events are introduced. Simulation for
reconfigurable quorum systems is shown till Qmin reaches
3bmax + 1, beyond which no more servers can be removed.

Once Qmin reaches 3bmax + 1, every additional fault
event increases b by 1 until b reaches bmax. The reconfig-
urable quorum system will stop functioning properly once
a fault event occurs after b reaches bmax. For the simula-
tion shown, the system lifetime for reconfigurable quorum
systems was found to be 9885.12 seconds. In the case of dy-
namic and static quorum systems, when a fault event hap-
pens at time t = 7501.81 seconds (see Figure 6), b will
exceed bmax which is not allowed. Thus, in this simulation,
the system lifetimes for dynamic and static quorum systems
were found to be 7501.81 seconds. Note that the MTBF
value used in the simulation is quite low so as to gener-
ate a large number of failures in a short period. Therefore,
the system lifetime values found in the simulation are much
lower than they would be in practice. However, the relative
lifetimes should be consistent with reality and they demon-
strate that reconfigurable quorums can significantly extend
a system’s life as compared to dynamic and static quorums.

Figures 7 and 8 compare the read and write quorum sizes.
The quorum protocol for dynamic quorums [1] specifies that
a read quorum of size

⌊
n+2b+1

2

⌋
is tried first for a read op-

eration, and if there is a need to query more servers, an ad-

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

 30

 35

 40

 45

 50

 55

 60

 65

 1000 2000 3000 4000 5000 6000 7000 8000

Time (seconds)

Worst Case Reconfig. Quorum Read Quorum Size

 30

 35

 40

 45

 50

 55

 60

 65

 1000 2000 3000 4000 5000 6000 7000 8000

Time (seconds)

Best Case Dynamic Quorum Read Quorum Size

 30

 35

 40

 45

 50

 55

 60

 65

 1000 2000 3000 4000 5000 6000 7000 8000

Time (seconds)

Static Quorum Read Quorum Size

 30

 35

 40

 45

 50

 55

 60

 65

 1000 2000 3000 4000 5000 6000 7000 8000

Time (seconds)

Worst Case Dynamic Quorum Read Quorum Size

Figure 7. Comparison of Read Quorum Sizes be-
tween Reconfigurable, Dynamic and Static Quo-
rums

 30

 35

 40

 45

 50

 55

 1000 2000 3000 4000 5000 6000 7000 8000

Time (seconds)

Reconfig. Quorum Write Quorum Size

 30

 35

 40

 45

 50

 55

 1000 2000 3000 4000 5000 6000 7000 8000

Time (seconds)

Dynamic Quorum Write Quorum Size

 30

 35

 40

 45

 50

 55

 1000 2000 3000 4000 5000 6000 7000 8000

Time (seconds)

Static Quorum Write Quorum Size

Figure 8. Comparison of Write Quorum Sizes be-
tween Reconfigurable, Dynamic and Static Quo-
rums

ditional b − bmin servers are queried. These two cases are
identified as the best and worst cases in the plots for the
read quorum size and the workload for dynamic quorums.
Reconfigurable quorum systems also use a two step read,
where n + b + bmin + 1 − qmin servers are queried first,
and, if required, an additional b − bmin servers are queried.
To simplify the simulations, we always used a read quorum
size of n + 2b + 1 − qmin servers. A single curve referring
to this case as the worst case for reconfigurable quorums is
shown for the read quorum size and the workload plots.

In the case of dynamic quorums, the read and write quo-
rum sizes increase when b increases. For reconfigurable
quorums, the read quorum size increases when a fault event
happens, but decreases when a faulty server is removed due
to the simultaneous decrease in n and b. For the same rea-

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 1000 2000 3000 4000 5000 6000 7000 8000

Time (seconds)

Worst Case Reconfig. Quorum Workload

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 1000 2000 3000 4000 5000 6000 7000 8000

Time (seconds)

Best Case Dynamic Quorum Workload

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 1000 2000 3000 4000 5000 6000 7000 8000

Time (seconds)

Static Quorum Workload

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 1000 2000 3000 4000 5000 6000 7000 8000

Time (seconds)

Worst Case Dynamic Quorum Workload

Figure 9. Comparison of Workload between Re-
configurable, Dynamic and Static Quorums

son, the write quorum size follows a similar pattern.
Figure 9 compares the workload between reconfigurable,

dynamic, and static quorum systems. The workload is de-
fined as the average fraction of servers involved in a read
or write operation. This is equivalent to r|Qr|+(1−r)|Qw|

n ,
where |Qr| is the read quorum size, |Qw| is the write quo-
rum size, n is the current system size, and r is the fraction
of operations that are reads. Figure 8 shows that the smaller
read and write quorum sizes for the reconfigurable quorum
system as compared to the dynamic quorum system result
in a lower workload for reconfigurable quorums despite the
fact that n is smaller also. After the dynamic quorum sys-
tem reaches its fault limit, the reconfigurable quorum sys-
tem has a worst case workload approximately 20% lower
than the best case dynamic quorum workload.

5.2. Concurrency Analysis

Figure 10 shows the performance of our fault detection
algorithm in the presence of concurrent reads and writes for
the same system parameters used in Section 5.1. In Sec-
tion 5.1, the read and write requests were generated by sep-
arate Poisson processes. To do concurrency analysis, finer
control over concurrency is needed. We achieved this by
having, for each data object, a write request generated peri-
odically at the same time as read requests. For example, if
50% concurrency is desired, then a write request is issued
with every other read request. In each concurrency interval
shown in the figure, 20 simulations were run and the number
of simulations that had any incorrect diagnoses were noted.
This is shown as a fraction of the total number of simula-
tions run for that particular concurrency interval.

Generation of write requests at exactly the same time as
read requests produces maximum overlap between them.
It can, therefore, be considered as the worst-case concur-

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 8 9 10 11 12 13 14 15 16

Figure 10. Fraction of Simulation Runs with
Incorrect Diagnosis vs. Percentage of Reads
Concurrent with Writes

rency scenario for a particular concurrency rate. From Fig-
ure 10, we find that no incorrect diagnoses were produced
in 20 simulation runs at a concurrency rate in the range
9% − 10%, while the number of runs with incorrect diag-
noses rose rapidly as the concurrency rate increased beyond
this point. In Section 5.1, there were no incorrect diagnoses
reported despite a concurrency rate of more than 32%. In
those simulations, however, read and write operations be-
gan at random times and concurrency happened naturally
as a result. When read and write operations overlap only
partially, incorrect diagnosis becomes less likely than in the
maximum overlap case. If the approximate concurrency rate
in the system is known, we could factor this into the diagno-
sis threshold calculation and eliminate incorrect diagnosis
even for higher concurrency rates. Verification and quantifi-
cation of this idea is left for future work.

6. Ongoing Research

Increasing Qmin will result in a lower read quorum size,
resulting in better performance and lower server work load.
As defined in Section 3.1, Qmin stores the minimum value
of Q(V) for all data objects in the system. Between two
successive writes to a data object V , Q(V) could be in-
creased if background dissemination is done. Quantitative
analysis of dissemination done in [10] suggests that it is rea-
sonable and feasible to increase Qmin when it is less than
min(Q(V)) over all data objects in the system. Algorithms
to update Qmin based on background dissemination are a
topic of current research. Since servers diagnosed as faulty
are removed, fault-free servers must be added to keep the
system running indefinitely. Dynamically adding servers to
the store is also a topic of current research.

Additional work underway involves implementation of a
prototype file system based on the agile store concepts dis-

cussed herein. On the client side, a local NFS loop back
server is employed to provide transparent access to our ag-
ile storage service for applications. The local NFS server
accepts requests from applications forwarded by the operat-
ing system and executes our reconfigurable Byzantine quo-
rum protocols. File blocks are replicated on servers, and the
server side software implements the functionality of both
servers and proxies in our system architecture. A logical
meta data server is implemented using the state machine
approach [14] to provide authentication, authorization and
access control service.

References

[1] L. Alvisi, D. Malkhi, E. Pierce, M. Reiter, and R. N. Wright.
Dynamic byzantine quorum systems. In Proc. Intl. Conf. on
Dependable Systems and Networks, pages 283–292, 2000.

[2] L. Alvisi, D. Malkhi, E. Pierce, and M. K. Reiter. Fault de-
tection for byzantine quorum systems. IEEE Trans. on Par-
allel and Distributed Systems, 12(9):996–1007, Sep. 2001.

[3] F. Barsi, F. Grandoni, and P. Maestrini. A theory of diag-
nosability of digital systems. IEEE Trans. Computers, pages
585–593, June 1976.

[4] S. Y. Cheung, M. H. Ammar, and M. Ahamad. The grid
protocol: A high performance scheme for maintaining repli-
cated data. Knowledge and Data Engineering, 4(6):582–
592, 1992.

[5] D. K. Gifford. Weighted voting for replicated data. In Proc.
of the 7th SOSP, pages 150–162, 1979.

[6] S. Lakshmanan, M. Ahamad, and H. Venkateswaran. A se-
cure and highly available distributed store for meeting di-
verse data storage needs. In Proc. Intl Conf. on Dependable
Systems and Networks, pages 251–260, 2001.

[7] S. Lakshmanan, M. Ahamad, and H. Venkateswaran. Re-
sponsive security for stored data. In Proc.Intl. Conf. on Dis-
tributed Computing Systems, pages 146–154, May 2003.

[8] L. Lamport. On interprocess communication, part I: Basic
formalism. Distr Comp., 1(2):77–85, 1986.

[9] M. Malek. A comparison connection assignment for diag-
nosis of multiprocessor systems. In Proc. of the 7th Annual
Symp. on Computer Architecture, pages 31–36, 1980.

[10] D. Malkhi, Y. Mansour, and M. K. Reiter. On diffusing up-
dates in a byzantine environment. In Symp. on Reliable Dis-
tributed Systems, pages 134–143, 1999.

[11] D. Malkhi and M. Reiter. Byzantine quorum systems. Dis-
tributed Computing, 11(4):203–213, 1998.

[12] J. Martin, L. Alvisi, and M. Dahlin. Small Byzantine quorum
systems. In Proc. of the Intl. Conf. on Dependable Systems
& Networks, pages 374–383, 2002.

[13] F. P. Preparata, G. Metze, and R. T. Chien. On the connection
assignment problem of diagnosable systems. IEEE Trans.
Electronic Computers, pages 848–854, Dec 1967.

[14] F. B. Schneider. Implementing fault-tolerant services using
the state machine approach: A tutorial. ACM Computing
Surveys, 22(4), Dec 1990.

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

