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Abstract of a standard for classifying DO techniques, comparison
and performance analysis of the different techniques is not
Privacy is defined as the freedom from unauthorized in- straight-forward. The domain of interest in this reseasch i
trusion. The availability of personal information through data mining. Many data mining applications involve learn-
online databases such as government records, medicaing through cluster analysis. The tetdsability is used to
records, and voters’ lists poses a threat to personal pyvac refer to the usefulness of the transformed data. In this pa-
Intelligent search engines and data mining techniques fur- per, the usability is measured in terms of the preservation
ther exacerbate the problem of privacy by simplifying ac- of the inherent clustering of the original data. The need
cess and retrieval of personal recordBata Obfuscation for an obfuscation technique that preserves privacy as well
(DO) techniques distort data in order to hide information. as usability of the transformed data has motivated the de-
One application area for DO is privacy preservation. Many sign, development, and preliminary performance analysis
data obfuscation techniques have been suggested and imef a robust cluster retaining DO technique in this research.
plemented for privacy preserving data mining applications The paper proposes the use of Beversibility Propertyas
However, existing approaches are either not robust to pri- a measure of privacy preservation. The privacy provided by
vacy attacks or they do not preserve data clusters, therebythe proposed data obfuscation technigNeNDSis evalu-
making it difficult to apply data mining techniques. The ab- ated and compared with other obfuscation techniques with
sence of a standard for measuring the privacy provided by respect to its reversibility and usability.
the various data obfuscation techniques makes it hard to  The main contribution of this paper is the design, de-
compare the robustness of the techniques. The main convelopment, and analysis of the proposed DO technique
tributions of this paper arel() to propose a data obfus- NeNDSas well as a hybriGGeometrically Transformeder-
cation technique calleflearest Neighbor Data Substitu- sion calledGT-NeNDSThe motivation for the choice of the
tion (NeNDS), that has strong privacy-preserving proper- DO technique as well as the description of the proposed
ties and maintains data cluster)(to define a property  technique is provided in Section 3. The definition of the
calledReversibility for the categorization and comparison Reversibility Propertythe classification of different trans-
of data obfuscation techniques, in terms of their resileenc formation techniques based on reversibility, and the evalu
to reverse engineering, and)(to formally prove that clus-  tion of existing DO techniques is provided in Section 4. An
ter preserving geometric transformations, by themselves a experimental analysis deNDSis carried out in Section 6
extremely easy to reverse engineer. to study its cluster preserving characteristics.

2. Motivation and Related Work
1. Introduction

The abundance of information available online has re-
The concern over privacy of personal and sensitive infor- sulted in the loss of individual privacy [5]. Several meth-

mation has led to the implementation of several techniquesods have been proposed and implemented towards privacy
for hiding, obfuscating and encrypting sensitive informa- preservation of sensitive data sets. DO techniques [4Jgang
tion in databases. The need for privacy has led to the de-from encryption based techniques [1, 16] to geometrical
velopment of several (data obfuscation) DO techniques thattransformation schemes [12, 13]. In the case of encryp-
provide privacy preservation at the cost of informatiorslos tion based DO techniques, the data is unusable in the en-
Most of the techniques cater to specific domains and per-crypted form, and the decryption key for obtaining the orig-
form well for a limited set of applications. In the absence inal data is provided only to a limited set of users. For sev-



eral applications, it is necessary to provide differenelsv ~ database is temporarily lefipen i.e. without an obfusca-
of precision of data, based on the type of user type of usertion mechanism in place. Before the situation is detected,
requesting access. Data encryption does not provide thisan attacker can access some unobfuscated data records.
capability as the data is either usable in its original form Clearly, if the database is extremely large and the probdemi
or completely unusable. Hence, for trend analysis and sta-discovered quickly, only a small percentage of the database
tistical and inference-based computations from data setswill be revealed in its original unobfuscated form. Such sit
encryption-based security schemes add complexity withoutuations can occur due to programming errors, soft failures,
much benefit in terms of privacy. Geometric transforma- or configuration (human) errors. The second example is a
tion schemes, on the other hand, are extremely vulnerabldarge distributed database, e.g. that of an internatiooal ¢
to privacy breaches and provide very little privacy. poration with many data sites throughout the world. In this
Other existing techniques include Data Randomiza- situation,_an insidg attacker will be ab]e to access the unop
tion [2], Data Anonymization [17] [9] and Data Swap- fuscated information from one data site and might use this

ping [15]. Data Randomization and Data Anonymization to try to reveal information from the remaining sites.
perform obfuscation by “modification” of the original data
and do not address cluster preservation. They are also vul-
nerable to the notion of privacy breaches proposed in [6],
which describes a privacy breach as the revelation of any -
property of the original data in the obfuscated data. One | %" = o il O ‘
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of the techniques that proposes to preserve usability while P
preserving privacy is Geometric Transformation [12] [13]. ——— {

While this technique does involve “modifying” of data, the o ey UL
inter-relation of the data elements within the data sets and (Urfusated | brezch Par e rough dea el "
across the fields are maintained even after the obfuscation. provo
Geometric transformation based DO is very weak in terms
of privacy preservation and unsuitable for use in sensitive
databases. The concept of data-swapping was first proposed
in [15]. This technique intelligently swaps entries witkin
single field in a set of records so that the individual record Figure 1. Attack Models for Analysis

entries are unmatched. The reflective nature of data swap-

ping, however, makes it vulnerable to reversal. The reguire

ment of preserving privacy as well as the usability of sen- ~ One useful byproduct of this model is a measure of the
sitive data has led to the proposal and development of a ro+obustness of a data obfuscation technigue, namely the per-
bust DO technique calleearest Neighbor Data Substitu- centage of the unobfuscated data set that an attacker must
tion (NeNDS)A hybrid version oNeNDSs also proposed  know in order to be able to learn the entire set. Using this
here, called>T-NeNDSwhich provides stronger privacy by new measure, we are able to demonstrate that many well-
combining geometric transformations witteNDS known data obfuscation techniques are highly vulnerable to
reverse engineering through unintentional release of anly

the attack model for encryption-based security techniques small percentage of the unobfuscated data set. We also pro-

but no common standard has been implemented as yet foP95¢ to use the amount of information required for reverse
DO. Each of the proposed obfuscation techniques Uses £ngineering as a measure of privacy preservation for this
different form of comparison of the effectiveness of the attack mode.

approach. Existing work on the privacy analysis of DO

techniques has primarily considered a model where the at-3. Proposed Data Obfuscation Technique

tacker correlates obfuscated responses with data from othe

publicly-accessible databases in order to reveal the sensi  This section provides a detailed description of the pro-
tive information of interest. In this work, we consider a posed DO technique callédearest Neighbor Data Substi-
model where the attacker uses side-channels to obtain somuution (NeNDS)Applications of the proposed technique lie
partial information about the process used to obfuscate thein sensitive databases that require a data protection tech-
data and/or some of the original data items themselves. Thenique without loss of information content. Examples of
attacker can then use this partial information to attempt to such applications are medical records as well as micro-
reverse engineer the entire data set. To motivate this newdatabases released by the Census Bureau, where the pri-
attack model, we give two concrete examples where par-vacy of individuals is important as the correctness of the
tial information can be revealed. In the first example, the data provided to the end user [10]. The data substitution

(a) Existing model (b) Proposed Model

The attack model for data obfuscation is different from



technique proposed here preserves privacy by permuting ela finite number of subsets, which is then followed by a data
ements among groups of data items that are close to eaclsubstitution algorithm that is performed on the subsetg Th
other. Data substitution is performed individually for eac first step, called the neighborhood selection step, praceed
field (dataset) in the database, and each field is permutedy selecting sets efnon-identical elements that are close to
independently of the rest of the fielddeNDScan be used  each other in the metric space. Once the neighborhoods are
for transformation of any data set that has some notion of selected, data substitution is performed in parallel omeac
distance among the elements. In other words, any datasetf the neighborhoods.

that forms a metric space can be transformed ulielyDS The substitution process is performed by determining the
] o optimal permutation set subject to the following conditon
31 NeareSt NEIgthI‘ Data-SubStItutlon - NeNDS (1) No two elements in the neighborhood undergo swap-
ping, ) The elements are displaced from their original po-
NeNDSs a lossless DO technique that preserves privacy sition, and §) Substitution is not performed between iden-
of individual data elements by substituting them with one tical elements. These three conditions ensure that each el-
of their neighbors in the metric space. A set of neighbor- ement in the transformed dataset is different from the orig-
ing data elements are grouped together to form a neigh-inal dataset. The restriction on swapping of data makes
borhood. The minimum number of neighbors that com- the transformed data robust to partial reversibility, vhic
prise a neighborhood is specified by the parametehere s a shortcoming of data swapping techniques. The cluster
1 < ¢ < N —1,and Nis the size of the data set. The mini- preservation of the data set depends strongly on the value of
mum size of a neighborhood is givenas- 1, so that each ¢ that is selected. Reducing the size of the neighborhoods,
data element in a neighborhood has at leaseighbors.  however, would lead to fewer elements in each neighbor-
Hence, the number of nEighborhOOdS in a data set is giverhood, which would fail to provide the necessary protec-
by LC]LJ- In the case where = 1, each neighborhood tjon of privacy. Selecting a small value forresults in a
would contain at least two neighbors, redUCing the substi- h|gh|y cluster preserving database, but limited privaay. pr
tution technique to data swapping in some cases. The retection, while a large value af might render the database
flective nature of data swapping makes it vulnerable to pri- |ess clustered as a result of substitution among neighbors
vacy breaches in case of prior knowledge of some of the ele-that are further away. The selection ©fs specific to the
ments of the original data set thereof. In order to strengthe nature of the database and the amount of protection that is
the privacy preserving capability ?feNDS c is set to be  required. The effect of on the computation time and the

greater thar. cluster preservation property is evaluated in Section 6.
The NeNDSprocess involved is explained here with an

example database. Each field in the database is treated in- The neighborhoods created are likely to be of different

dividually andNeNDStransformed independently of other izieiggfﬁggén%ﬁg ;Teor;iL:rTmbirstsliet?ggilr;l/ee?szrllf 'Srizzh
fields in the database. L&t represent the entire database 9 ' 9 b

. . to obtain an optimum substitution pattern. The nodes of the
that consists ofn attributes andh records. The obfusca- P batte ;
. ; _ : . tree correspond to the elements of a single data set with the
tion technique performs substitutions on data items tleat li . .
o : : ) first element as the root of the tree. The children are ordered

close to each other within a single attribute field, so that th . i

. . ! . from left to right based on their nearness to the parent node.
correlation of the data across the different attributesois n : . .
destroved The distance between the parent and child are given along

yed. the edge connecting them. A Depth First Search (DFS) ap-

proach is used here to traverse the tree. Identical values of

g%e ?:Ig(r))c/) tzcatlon Af: 33'886 LOEZ“O” grandpargnt and grandchild nodes imply swgpping and thus
37 801000 NY 35 95:000 NY the node is aborted, followed by back-tracking to the next
40 | 78,000| sSJC 42 | 75,000 sJC unexplored node in the subtree. Child nodes with identical
42 | 95,000| SFO 37 | 78,000 SFO values as the parent are aborted as well. Since the tree is
finite, DFS will complete and will yield a solution. A max-
Table 1. Orig. DB Table 2. Trans. DB imum edgeC),g cost counter is maintained for each path

being probed. An optimum substitution pattern is one that
In the example in Tables 1 and 2, a simple substitution has the least cost);r. The substitution corresponding to

technique is used, where data substitution is performéd wit the path chosen is the permutation used to replace the orig-
the entire dataset as a whole. A more usable transformednal data set. The data substitution process for neighbor-
database can be obtained by creating smaller subsets of dataoods that contain multiple identical elements is the same
that fall within pre-specified intervals. The data subsititu as described above, with the additional restriction on-iden
algorithm NeNDSproposed in this paper uses a two step tical element substitution - a parent node cannot have an
process for DO: In the first step, the dataset is divided into identical child. The existence of such a path with no identi-



cal substitutions is ensured by including a sufficientnumbe  NeNDSensures a completely robust framework for data
of non-identical elements in each neighborhood. In situa- mining applications by preserving all the information con-
tions where the number of identical elements exceeds theent for cluster preservation and providing a secure and pri
number of non-identical elements in the neighborhood andvacy preserving framework for drawing inferences on the
the neighborhood size can no longer be increased, a predata. AsNeNDSpreserves the original values of the data
processing step is performed, in which a randomized off- even after transformation, it is still vulnerable to priyac
set is added to the identical data elements, after which thebreaches as mentioned in [6]. This type of privacy breach

dataset is transformed usihgeNDS may be unacceptable in highly sensitive databases. Sec-
tion 3.4 provides a hybrid version dfeNDSthat preserves
3.2. Algorithm for NeNDS all the favorable characteristics dleNDSand also over-

comes this shortcoming &§feNDS
1. Foreach € [1,m] perform stepsd) to (e) . . .
3.3. Geometric Transformation Technique
(a) DivideX* into neighborhoods ... r
(b) For eachVH, perform stepsij to (v) An overview of the geometric transformation based DO
. proposed in [12] [13] is given here. This approach is of in-
terest in data mining applications due to its inherent elust
ii. Order the child of each parent from left to right  reservation property. Hence, this technique will be used
in increasing order of distance from the parent 55 5 hanchmark to evaluate the cluster retention capability
iii. All the children of a parent have a non-zero dis- of NeNDS Transformations such as rotation, scaling and

i. Create a c-ary tree with first elementf as root

tance from the parent node translation are used for distorting the data [7].
iv. Mark the distance between parent(p) and child(c)  With geometric transformations, any pair of numerical
node to the edge connecting thel.. fields in the database is interpreted as a two-dimensional
v. Mark child noder as leaf node if node has ap-  space and the co-ordinates of the data items are distorted
peared earlier in the path by geometric transformation. The approaches can also be

(c) Only paths that have a depth equal to one less than theScaled to three or more dimensions without loss of general-
number of elements in the neighborhood are selected ity. The database is denoted by, ,,, whered is the number
as candidates for substitution of attributes anad: represents the number of records or en-
tries in the database. The transformations translatiat; sc
b- ing and rotation can be implemented using matrix multipli-
cation. Each of the three transformations can be repregente
in terms of the equatiopX’ Y']7 = A[X Y]T + B. Inall
of the transformations4, B are the transformation matri-
ces,(X,Y) are the original data, andX’,Y’) are the re-

In the algorithm, a databasewmfattributes and records sults of the transformations on the original data. From the

is denoted by=. Each individual field (also called dataset description of the transformations, it can be observed that
attribute) is denoted by?, wherei € [1, m]. cis the thresh- each data set is distorted by the same amount relative to the

old for the minimum number of non-identical elements in Placement of the individual elements in the set. In this way

each neighborhoodleNDScan be performed on any data the clusters are maintained during obfuscation.

set in which the elements are related by some notion of dis-

tance, and can be expressed as a metric space.The algorithi+4. A Hybrid Data Substitution Approach

is run for each field in the database forms a metric space.

Each neighborhood is denoted ByH, j € [1,7],and the In this section, we propose a hybrid versionNgNDS
number of neighborhoodsis dependent on the value of In this approach, termed &T-NeNDS$ the data sets are

c. The algorithm produces the most optimum substitution first geometrically transformed, and then operated upon by
transformations subject to the conditions listed preMipus NeNDS NeNDSprovides a privacy preserving wrapper on
in this section. A brute-force analysis of the DFS based the geometrically transformed data. The transformation
algorithm for finding the substitution pattern indicateatth  functions like rotation and translation are isometric in na
the algorithm has an exponential order of complexity. How- ture, thereby preserving cluster information of the data se
ever, the heuristic nature of the branch and bound imple-and retaining the nearest neighbor information for the sub-
mented reduces the exponential order of complexity to astitution step. In this way, the data can be transformed to
much smaller value, which is indicated by the successful a form suitable for use by a third party analyst. The two
completion oMNeNDSeven for large data sets. step transformation results in transformed data that prese

(d) The path with minimum value fat'y; g is selected as
the substitution pattern to produce the new data su
set.

(e) If X' # ¥™, apply substitution pattern of' to the
nextX* to be obfuscated



clustering information, but bear no resemblance to the orig are unknown to the attacker, the obfuscated data is ro-

inal database. As a resusT-NeNDSs also robust to the bust to reversal. Once this information is revealed, and
notion of privacy breaches as proposed by [6], making it a the obfuscation process is known, the entire data is
suitable candidate for privacy preserving data mining. compromised. Transformations that fall under this cat-

egory cannot be analyzed using cryptanalysis due to
4. Reversibility - A Standard for Classification their non-deterministic nature.

Obfuscation techniques that result in a non-invertible
(%ransformation exhibit Irreversibility. AMaximum likeli-

ood reversibilityestimate can be made in the case of some

of the techniques, which provides an estimate of the con-

. o fidence with which a guess can be made on the original
niques. The ternReversibilityis used to denote the prop- data. Cryptanalysis fails to account for such transforma-

erty of the DO technique, that dictates the ease or difficulty o : : : )
. . -tions as well. With irreversible techniques, there is areinh
of the process of reverse engineering obfuscated data. This

. ; o ent loss of information. Lossy compression techniques and
property, was first proposed in [4], and specifies how robust o ; . i i
a given obfuscation technique is in terms of hiding serssitiv data generalization tephnlques, which make It impossible t

. : : exactly recover the original data, fall under this category
data. The reversibility property of an obfuscation techieiq
is an indicator of the robustness of its privacy preservatio o )
Cryptanalysis is used for analyzing the security provided 5. Reversibility Analysis
by encryption-based techniques [18]. Since encryption is a
deterministic and reversible process, cryptanalysisrassu Section 4 provides a classification of all transformation
the transformation to be deterministic as well as revegsibl functions based on their reversibility property. Randotada
However, DO techniques have no such restriction and there-perturbation techniques are hard to reverse because they ex
fore require a new standard for analysis. hibit random number reversibility. Geometric transforma-
An obfuscation technique that can be reversed with thetions, being lineaone-to-onetransformations can be re-

knowledge of the process, is known as a process reversible/ersed with the knowledge of a finite number of original
transformation function. Process reversible DO techrsque records.NeNDSinvolves a non-lineaone-to-ondransfor-
are analyzed with respect their vulnerability to completer mation, and hence can also be reversed with the knowledge
versal with little or complete a priori knowledge of the pro- of sufficient number of original records. In this section,
cess used for DO. Process reversibility is sub-classified in  we derive the value for the minimum number of original
the following categories. records that are required to reverse engineer data that is ob
fuscated using Geometric Transformations BletNDS

The proposed DO techniquBleND$S was described in
Section 3.1. The absence of a standard for measuring an
comparing the privacy provided by different DO techniques,
makes it difficult to evaluate the performance of the tech-

1. Partial knowledge reversibility: Partial knowledge re-
versibility implies that a transformation function ex-
hibiting this property can be reverse engineered with

the knowledge of either some of the original data en- . . .
Geometric transformations fall under the category of lin-

tries, or a combination of some original entries of data . . .
and some information regarding the process used. TheSar transformation functions. These functions are the most

level of difficulty of the reversal process is dependent vulngr.a'ble DO techniqu'es that are subjegt to partial re-
on the DO technique. Obfuscation techniques that in- versibility. A cryptanalysis of linear geometric trangfua-

volve aone-to-onanapping between the original and tions renders it weak to ciphgr-textonl_y attacks. The knqwl
the transformed data, are vulnerable to partial know- edge of the type of obfuscation technique used results in an

edge reversibility. The reversibility analysis for linear |mmed|ate reversgl of the (_jata. The linearity property of
and non-linear one-to-one transformations is provided this data obfuscation technique preserves the clustered na

ture of the data, but also results in weak privacy protection

The assumption made here is that the attacker is aware that

2. Random number reversibility: This property indicates the DO process is a linear transformation. In this case, we
that the original data set can be reverse engineeredorove that for a database with« n entries, wherel is the
with knowledge of the process, tlikseudo-Random- number of attributes and is the number of records, the
Number Generator (PRNG&GnNd the seed. Most ob- knowledge of onlyd + 1 affinely independent [11] records
fuscation techniques invoke PRNGs to generate ran-in the original matrix, is sufficient to uniquely determine
dom sequences. The robustness of DO techniques exthe linear transformation. Once the transformation matrix
hibiting this property relies in protecting the PRNG se- is obtained, all the original data entries for which the @bfu
guence. As long as the random seed and the sequenceated values are available, are compromised. Therefore the

5.1. Analysis of Geometric Transformations

in Section 5.2.



Geometric Transformations of [12] [13], being instances of in the data space representing thecluster centers. A
linear transformation functions, are compromised with the quantitative analysis of the cluster preservation is evalu
knowledge ofi+ 1 affinely independent records in the orig- ated using theMisclassification Error (MCE) which is a

inal data, which is a proved fact. measure of the percentage of legitimate data points that
are not well-grouped in the transformed data set. The
5.2. NeNDS versus Data Swapping expression for MCEMg [19] is given asMg = %

, S (|Cluster;(X)| — |Cluster;(X1)|), whereN is the

Data Swapping as well adeNDSfall under the cate-  total number of records in the data Sét: X € Dy, k is
gory of Non-linear bijective transformations. Inthis type  the number of clusters into which the data are grouped, and

transformation, reversibility is dependent on the minimum |Cluster;(Y)| is the number of points df in the cluster.
number of records that are sufficient for complete reverse The selection of the number of neighborhoods is an im-

engi”ee””Q- In the case of data swapping, the minimum portant factor inNeNDS The number of neighborhoods
value fo;r :s half the Eumber of elr:am.ent(s in the da.ta'se;. NH is expressed as 4%%J' wherec + 1 is the neigh-
For each element in the data set that is known a priori, they, 544 size andv is the size of the data set. The effect

corresponding element involved in the swap is .revealed. INof the change in number of neighborhoods on the compu-
the case oNeNDS complete reversal of the entire data set 445, time ofNeNDSas well as the misclassification error

would require the knowledge of at least= c distinctdata  5er clustering are shown in Figure 6. The data set size

elements for each neighborhood, where 1 is the min- 5 3300 and the X-axis represents the number of neighbor-
imum size of a nelghborhood. Even partial reyersal of a hoods[1, 32]. In Figure 6() it is observed that the compu-
neighborhood would require the knowledgecas its ele- (445 time reduces exponentially as the number of neigh-

. : : . ;
ments. The fraction-=+ determines the ease of reversal y,00ds increases. This decrease is due to the fact that

of a specific neighborhood having exactlyc; elements. 5 increase in number of neighborhoods leads to a smaller
The robustness of the obfuscation technique proposed inwj;¢ of each neighborhood, which results in an exponential

griasesbm{[i.tth tliarg.er va;lues;n; Fgr ;che case.whelr(eal, decrease in the time taken for the tree-based search. The
the complexity of reversal s reduced 1o, For all val. . 2raphin Figure 80 shows the variation of MCE with the
piexity : number of neighborhoods. The figure shows that the mis-

ues ofc > 1, NeNDSprovides a more robust DO, since  |assification error is maximum for a single neighborhood

C%Tp!ete reversal would require the knowledge of at Ieastand has a minimum value when the number of neighbor-

27\;7}[“ > &, where NH is the number of neighbor-  hoods corresponds to the inherent clustering degree of the
hoods. This shows that the reversibility provideddBNDS data, which isl0 for this data set. The misclassification er-

is stronger than data swapping making it a favorable candi-ror increases slightly when the number of neighborhoods is
date for use in public databases as well as Census recordsncreased beyond the inherent clustering degree. Thelactua
where “unmodified” techniques are favorgdT-NeNDSs values of the MCE are very small, being.02% between

a combination of a geometric transformation a¥eND$S the extreme values in the figure shown. Hence, the effect of
hence the fraction of the original data that is required for the number of neighborhoods on M&gs almost negligi-
complete reversal is greater than or equal to that requiredble.

for NeNDS along with the added robustness to the notion  The computation time foNeNDSis dependent on the

of privacy breaches [6]. number of neighborhoods and yields better performance
for smaller neighborhoods. The branch-and-bound search
6. Experimental Results technique used byNeNDSis able to reduce the compu-

tation time significantly compared to an exponential-time

This section provides an experimental analysis of the brute-force search. This is evidenced by the fact that, even
cluster preserving performanced&éNDS Geometrictrans- ~ for a very large neighborhood sizg000 records)NeNDS
formations are inherently cluster preserving and are there Yielded a solution withiri, 700 seconds. Furthermore, Fig-
fore used as a benchmark for evaluating the performance otire 6 shows that the selection of the number of neighbor-
NeNDSwith respect to cluster preservation. The datasetshoods does not significantly affect the accuracy of the re-
used for performance analysis are obtained fromulez sult. Therefore, the neighborhood size can be suitably cho-
Knowledge Discovery Archiveatabase [20] as well as Sen based on the level of privacy required for the database.
an open source synthetic data generator [8]. The experi-In order to evaluate the worst case performanciefDS
ments are performed using the clustering toolbox in Mat- the experimental evaluation for the rest of the sectioniis ca
lab, and cluster analysis is performedibyneanswhichis  ried out for a single neighborhood of si2e
a partition-based clustering technique [3]. K-means takes Figure 6 shows the performance of thNeNDStrans-
as input the number of clusteks and select& centroids formed data with respect to rotational transformation. The
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Figure 2. Effect of Varying Number of Neigh-
borhoods

the error in clustering is very small. It can be observed that
the rotational transformation has changed the shaped of the
clusters slightly, but cluster strengths remain the sarhe. T
misclassification error would be minimal across the entire
database only if all the attributes on which clustering is pe
formed are rotated by the same angle. This, however, would
weaken the privacy preservation capability of the transfor
mation.NeND$S on the other hand, is noted to perform con-
sistently in all cases. A detailed experimental evaluatibn
the performance dfleNDSis provided in [14].

Table 3 shows a summary of the misclassification er-
ror for the different DO techniques. Two sets of experi-
ments are performed for Random Data Perturbation (RDP),
denoted by RDRow and RDPRhigh. The values for the
noise vectofmean, var) for RDP_low are (0.0, 1) and for
RDP_high are(0.0,100). The angle of rotation for rota-
tion based Geometric Transformatior8i$.4 degrees. The

data used for these graphs is generated using the syntheti¢ e ofc for NeNDSis kept asV — 1 in order to compare

data generator. Herd)1, D2, D3 represent theéSalary,
Commission, Agéelds of the synthetic database. The DO
results are displayed for grouping parameter valu@qdé-
fault), 5, and15. The output clustering parametét,, in
this case is the same as the inherent clustering of the afigin
data. The angle of rotation between the attributas D2

is 89.9 and betweerD1, D3 is 35.4 degrees. The database
is inherently grouped intb clusters.

(a) Original Data (b) Rotated Data

(c) NeNDS transformed Data

Figure 3. Comparison of Cluster Preservation

the worst case performance of the algorithm. The size of
the database used for comparisorMs= 10, 000 and the
inherent clustering factar’;,, = 10. The error percentages
resulting from k-means is used in the table. The table pro-
vides a comparison of MCE as a percentage.

Obf. | RDP | RDP | Rot. | Rot. | NeNDS GT-
— low | high | const| var | c=N-1 | NeNDS
Clu. c=N-1
2 0.0 | 101 | 0.0 | 0.0 0.0 0.0
3 0.03 | 25.02| 0.05 | 0.10| 0.08 0.11
5 0.10 | 36.1 | 0.08 | 0.17| 0.11 0.13
10 | 0.21 | 405 | 0.18 | 0.24| 0.20 0.22
20 | 0.25| 405 | 0.40 | 0.45 1.60 2.18

Table 3. Comparison of MCE %

It is observed that RDPow yields a very low value of
MCE for all cases. This is because the amount of noise
added is extremely small. RDiFigh performs poorly for all
cluster sizes, whereas the other obfuscation techniqees ar
comparable. AlthougiRotationprovides a smaller MCE
percentage, its vulnerability to reverse engineering reake
it unusable for DO of sensitive data. The two columns for
Rotationtechniques show the performance of the algorithm
for a constant rotational angle over the entire databask, an
for different angles selected for each transformation. The
data obtained for rotational transformation assumes @
rotation. The performance deNDS GT-NeNDSare ob-
served to be almost as good as the rotational transformation
and their robust privacy preservation capability makesithe
more suitable candidates for data protection. The perfor-

In this figure, a comparison of the clustering nature with mance of the obfuscation techniques degrade if the number

respect to the attribute®2, D3 are shown. As the number

of clusters required is chosen as a number much larger than

of clusters are small, the neighborhoods remain intact, andthe inherent clustering of the data as can be noted in the case
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