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Abstract

Privacy is defined as the freedom from unauthorized in-
trusion. The availability of personal information through
online databases such as government records, medical
records, and voters’ lists poses a threat to personal privacy.
Intelligent search engines and data mining techniques fur-
ther exacerbate the problem of privacy by simplifying ac-
cess and retrieval of personal records.Data Obfuscation
(DO) techniques distort data in order to hide information.
One application area for DO is privacy preservation. Many
data obfuscation techniques have been suggested and im-
plemented for privacy preserving data mining applications.
However, existing approaches are either not robust to pri-
vacy attacks or they do not preserve data clusters, thereby
making it difficult to apply data mining techniques. The ab-
sence of a standard for measuring the privacy provided by
the various data obfuscation techniques makes it hard to
compare the robustness of the techniques. The main con-
tributions of this paper are (1) to propose a data obfus-
cation technique calledNearest Neighbor Data Substitu-
tion (NeNDS), that has strong privacy-preserving proper-
ties and maintains data clusters, (2) to define a property
calledReversibility for the categorization and comparison
of data obfuscation techniques, in terms of their resilience
to reverse engineering, and (3) to formally prove that clus-
ter preserving geometric transformations, by themselves are
extremely easy to reverse engineer.

1. Introduction

The concern over privacy of personal and sensitive infor-
mation has led to the implementation of several techniques
for hiding, obfuscating and encrypting sensitive informa-
tion in databases. The need for privacy has led to the de-
velopment of several (data obfuscation) DO techniques that
provide privacy preservation at the cost of information loss.
Most of the techniques cater to specific domains and per-
form well for a limited set of applications. In the absence

of a standard for classifying DO techniques, comparison
and performance analysis of the different techniques is not
straight-forward. The domain of interest in this research is
data mining. Many data mining applications involve learn-
ing through cluster analysis. The termUsability is used to
refer to the usefulness of the transformed data. In this pa-
per, the usability is measured in terms of the preservation
of the inherent clustering of the original data. The need
for an obfuscation technique that preserves privacy as well
as usability of the transformed data has motivated the de-
sign, development, and preliminary performance analysis
of a robust cluster retaining DO technique in this research.
The paper proposes the use of theReversibility Propertyas
a measure of privacy preservation. The privacy provided by
the proposed data obfuscation techniqueNeNDSis evalu-
ated and compared with other obfuscation techniques with
respect to its reversibility and usability.

The main contribution of this paper is the design, de-
velopment, and analysis of the proposed DO technique
NeNDSas well as a hybridGeometrically Transformedver-
sion calledGT-NeNDS. The motivation for the choice of the
DO technique as well as the description of the proposed
technique is provided in Section 3. The definition of the
Reversibility Property, the classification of different trans-
formation techniques based on reversibility, and the evalua-
tion of existing DO techniques is provided in Section 4. An
experimental analysis ofNeNDSis carried out in Section 6
to study its cluster preserving characteristics.

2. Motivation and Related Work

The abundance of information available online has re-
sulted in the loss of individual privacy [5]. Several meth-
ods have been proposed and implemented towards privacy
preservation of sensitive data sets. DO techniques [4] range
from encryption based techniques [1, 16] to geometrical
transformation schemes [12, 13]. In the case of encryp-
tion based DO techniques, the data is unusable in the en-
crypted form, and the decryption key for obtaining the orig-
inal data is provided only to a limited set of users. For sev-



eral applications, it is necessary to provide different levels
of precision of data, based on the type of user type of user
requesting access. Data encryption does not provide this
capability as the data is either usable in its original form
or completely unusable. Hence, for trend analysis and sta-
tistical and inference-based computations from data sets,
encryption-based security schemes add complexity without
much benefit in terms of privacy. Geometric transforma-
tion schemes, on the other hand, are extremely vulnerable
to privacy breaches and provide very little privacy.

Other existing techniques include Data Randomiza-
tion [2], Data Anonymization [17] [9] and Data Swap-
ping [15]. Data Randomization and Data Anonymization
perform obfuscation by “modification” of the original data
and do not address cluster preservation. They are also vul-
nerable to the notion of privacy breaches proposed in [6],
which describes a privacy breach as the revelation of any
property of the original data in the obfuscated data. One
of the techniques that proposes to preserve usability while
preserving privacy is Geometric Transformation [12] [13].
While this technique does involve “modifying” of data, the
inter-relation of the data elements within the data sets and
across the fields are maintained even after the obfuscation.
Geometric transformation based DO is very weak in terms
of privacy preservation and unsuitable for use in sensitive
databases. The concept of data-swapping was first proposed
in [15]. This technique intelligently swaps entries withina
single field in a set of records so that the individual record
entries are unmatched. The reflective nature of data swap-
ping, however, makes it vulnerable to reversal. The require-
ment of preserving privacy as well as the usability of sen-
sitive data has led to the proposal and development of a ro-
bust DO technique calledNearest Neighbor Data Substitu-
tion (NeNDS). A hybrid version ofNeNDSis also proposed
here, calledGT-NeNDS, which provides stronger privacy by
combining geometric transformations withNeNDS.

The attack model for data obfuscation is different from
the attack model for encryption-based security techniques,
but no common standard has been implemented as yet for
DO. Each of the proposed obfuscation techniques uses a
different form of comparison of the effectiveness of the
approach. Existing work on the privacy analysis of DO
techniques has primarily considered a model where the at-
tacker correlates obfuscated responses with data from other
publicly-accessible databases in order to reveal the sensi-
tive information of interest. In this work, we consider a
model where the attacker uses side-channels to obtain some
partial information about the process used to obfuscate the
data and/or some of the original data items themselves. The
attacker can then use this partial information to attempt to
reverse engineer the entire data set. To motivate this new
attack model, we give two concrete examples where par-
tial information can be revealed. In the first example, the

database is temporarily leftopen, i.e. without an obfusca-
tion mechanism in place. Before the situation is detected,
an attacker can access some unobfuscated data records.
Clearly, if the database is extremely large and the problem is
discovered quickly, only a small percentage of the database
will be revealed in its original unobfuscated form. Such sit-
uations can occur due to programming errors, soft failures,
or configuration (human) errors. The second example is a
large distributed database, e.g. that of an international cor-
poration with many data sites throughout the world. In this
situation, an inside attacker will be able to access the unob-
fuscated information from one data site and might use this
to try to reveal information from the remaining sites.
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Figure 1. Attack Models for Analysis

One useful byproduct of this model is a measure of the
robustness of a data obfuscation technique, namely the per-
centage of the unobfuscated data set that an attacker must
know in order to be able to learn the entire set. Using this
new measure, we are able to demonstrate that many well-
known data obfuscation techniques are highly vulnerable to
reverse engineering through unintentional release of onlya
small percentage of the unobfuscated data set. We also pro-
pose to use the amount of information required for reverse
engineering as a measure of privacy preservation for this
attack model.

3. Proposed Data Obfuscation Technique

This section provides a detailed description of the pro-
posed DO technique calledNearest Neighbor Data Substi-
tution (NeNDS). Applications of the proposed technique lie
in sensitive databases that require a data protection tech-
nique without loss of information content. Examples of
such applications are medical records as well as micro-
databases released by the Census Bureau, where the pri-
vacy of individuals is important as the correctness of the
data provided to the end user [10]. The data substitution
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technique proposed here preserves privacy by permuting el-
ements among groups of data items that are close to each
other. Data substitution is performed individually for each
field (dataset) in the database, and each field is permuted
independently of the rest of the fields.NeNDScan be used
for transformation of any data set that has some notion of
distance among the elements. In other words, any dataset
that forms a metric space can be transformed usingNeNDS.

3.1. Nearest Neighbor Data-Substitution - NeNDS

NeNDSis a lossless DO technique that preserves privacy
of individual data elements by substituting them with one
of their neighbors in the metric space. A set of neighbor-
ing data elements are grouped together to form a neigh-
borhood. The minimum number of neighbors that com-
prise a neighborhood is specified by the parameterc, where
1 < c < N − 1, and N is the size of the data set. The mini-
mum size of a neighborhood is given asc + 1, so that each
data element in a neighborhood has at leastc neighbors.
Hence, the number of neighborhoods in a data set is given
by ⌊ N

c+1
⌋. In the case wherec = 1, each neighborhood

would contain at least two neighbors, reducing the substi-
tution technique to data swapping in some cases. The re-
flective nature of data swapping makes it vulnerable to pri-
vacy breaches in case of prior knowledge of some of the ele-
ments of the original data set thereof. In order to strengthen
the privacy preserving capability ofNeNDS, c is set to be
greater than1.

The NeNDSprocess involved is explained here with an
example database. Each field in the database is treated in-
dividually andNeNDStransformed independently of other
fields in the database. LetΣ represent the entire database
that consists ofm attributes andn records. The obfusca-
tion technique performs substitutions on data items that lie
close to each other within a single attribute field, so that the
correlation of the data across the different attributes is not
destroyed.

Age Salary Location
35 75,000 LA
37 80,000 NY
40 78,000 SJC
42 95,000 SFO

Table 1. Orig. DB

Age′ Salary′ Location
40 80,000 LA
35 95,000 NY
42 75,000 SJC
37 78,000 SFO

Table 2. Trans. DB

In the example in Tables 1 and 2, a simple substitution
technique is used, where data substitution is performed with
the entire dataset as a whole. A more usable transformed
database can be obtained by creating smaller subsets of data
that fall within pre-specified intervals. The data substitution
algorithmNeNDSproposed in this paper uses a two step
process for DO: In the first step, the dataset is divided into

a finite number of subsets, which is then followed by a data
substitution algorithm that is performed on the subsets. The
first step, called the neighborhood selection step, proceeds
by selecting sets ofc non-identical elements that are close to
each other in the metric space. Once the neighborhoods are
selected, data substitution is performed in parallel on each
of the neighborhoods.

The substitution process is performed by determining the
optimal permutation set subject to the following conditions:
(1) No two elements in the neighborhood undergo swap-
ping, (2) The elements are displaced from their original po-
sition, and (3) Substitution is not performed between iden-
tical elements. These three conditions ensure that each el-
ement in the transformed dataset is different from the orig-
inal dataset. The restriction on swapping of data makes
the transformed data robust to partial reversibility, which
is a shortcoming of data swapping techniques. The cluster
preservation of the data set depends strongly on the value of
c that is selected. Reducing the size of the neighborhoods,
however, would lead to fewer elements in each neighbor-
hood, which would fail to provide the necessary protec-
tion of privacy. Selecting a small value forc results in a
highly cluster preserving database, but limited privacy pro-
tection, while a large value ofc might render the database
less clustered as a result of substitution among neighbors
that are further away. The selection ofc is specific to the
nature of the database and the amount of protection that is
required. The effect ofc on the computation time and the
cluster preservation property is evaluated in Section 6.

The neighborhoods created are likely to be of different
sizes depending on the number of identical elements in each
neighborhood. The algorithm uses a tree-traversal approach
to obtain an optimum substitution pattern. The nodes of the
tree correspond to the elements of a single data set with the
first element as the root of the tree. The children are ordered
from left to right based on their nearness to the parent node.
The distance between the parent and child are given along
the edge connecting them. A Depth First Search (DFS) ap-
proach is used here to traverse the tree. Identical values of
grandparent and grandchild nodes imply swapping and thus
the node is aborted, followed by back-tracking to the next
unexplored node in the subtree. Child nodes with identical
values as the parent are aborted as well. Since the tree is
finite, DFS will complete and will yield a solution. A max-
imum edgeCME cost counter is maintained for each path
being probed. An optimum substitution pattern is one that
has the least costCME . The substitution corresponding to
the path chosen is the permutation used to replace the orig-
inal data set. The data substitution process for neighbor-
hoods that contain multiple identical elements is the same
as described above, with the additional restriction on iden-
tical element substitution - a parent node cannot have an
identical child. The existence of such a path with no identi-
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cal substitutions is ensured by including a sufficient number
of non-identical elements in each neighborhood. In situa-
tions where the number of identical elements exceeds the
number of non-identical elements in the neighborhood and
the neighborhood size can no longer be increased, a pre-
processing step is performed, in which a randomized off-
set is added to the identical data elements, after which the
dataset is transformed usingNeNDS.

3.2. Algorithm for NeNDS

1. For eachi ∈ [1, m] perform steps (a) to (e)

(a) DivideΣi into neighborhoods1 . . . r

(b) For eachNHj perform steps (i) to (v)

i. Create a c-ary tree with first element ofΣi as root

ii. Order the child of each parent from left to right
in increasing order of distance from the parent

iii. All the children of a parent have a non-zero dis-
tance from the parent node

iv. Mark the distance between parent(p) and child(c)
node to the edge connecting themdp,c.

v. Mark child nodex as leaf node if nodex has ap-
peared earlier in the path

(c) Only paths that have a depth equal to one less than the
number of elements in the neighborhood are selected
as candidates for substitution

(d) The path with minimum value forCME is selected as
the substitution pattern to produce the new data sub-
set.

(e) If Σi 6= Σm, apply substitution pattern ofΣ1 to the
nextΣi to be obfuscated

In the algorithm, a database ofm attributes andn records
is denoted byΣ. Each individual field (also called dataset,
attribute) is denoted byΣi, wherei ∈ [1, m]. c is the thresh-
old for the minimum number of non-identical elements in
each neighborhood.NeNDScan be performed on any data
set in which the elements are related by some notion of dis-
tance, and can be expressed as a metric space.The algorithm
is run for each field in the database forms a metric space.
Each neighborhood is denoted byNHj , j ∈ [1, r],and the
number of neighborhoodsr is dependent on the value of
c. The algorithm produces the most optimum substitution
transformations subject to the conditions listed previously
in this section. A brute-force analysis of the DFS based
algorithm for finding the substitution pattern indicates that
the algorithm has an exponential order of complexity. How-
ever, the heuristic nature of the branch and bound imple-
mented reduces the exponential order of complexity to a
much smaller value, which is indicated by the successful
completion ofNeNDSeven for large data sets.

NeNDSensures a completely robust framework for data
mining applications by preserving all the information con-
tent for cluster preservation and providing a secure and pri-
vacy preserving framework for drawing inferences on the
data. AsNeNDSpreserves the original values of the data
even after transformation, it is still vulnerable to privacy
breaches as mentioned in [6]. This type of privacy breach
may be unacceptable in highly sensitive databases. Sec-
tion 3.4 provides a hybrid version ofNeNDSthat preserves
all the favorable characteristics ofNeNDSand also over-
comes this shortcoming ofNeNDS.

3.3. Geometric Transformation Technique

An overview of the geometric transformation based DO
proposed in [12] [13] is given here. This approach is of in-
terest in data mining applications due to its inherent cluster
preservation property. Hence, this technique will be used
as a benchmark to evaluate the cluster retention capability
of NeNDS. Transformations such as rotation, scaling and
translation are used for distorting the data [7].

With geometric transformations, any pair of numerical
fields in the database is interpreted as a two-dimensional
space and the co-ordinates of the data items are distorted
by geometric transformation. The approaches can also be
scaled to three or more dimensions without loss of general-
ity. The database is denoted byDd,n, whered is the number
of attributes andn represents the number of records or en-
tries in the database. The transformations translation, scal-
ing and rotation can be implemented using matrix multipli-
cation. Each of the three transformations can be represented
in terms of the equation[X ′ Y ′]T = A[X Y ]T + B. In all
of the transformations,A, B are the transformation matri-
ces,(X, Y ) are the original data, and(X ′, Y ′) are the re-
sults of the transformations on the original data. From the
description of the transformations, it can be observed that
each data set is distorted by the same amount relative to the
placement of the individual elements in the set. In this way
the clusters are maintained during obfuscation.

3.4. A Hybrid Data Substitution Approach

In this section, we propose a hybrid version ofNeNDS.
In this approach, termed asGT-NeNDS, the data sets are
first geometrically transformed, and then operated upon by
NeNDS. NeNDSprovides a privacy preserving wrapper on
the geometrically transformed data. The transformation
functions like rotation and translation are isometric in na-
ture, thereby preserving cluster information of the data sets
and retaining the nearest neighbor information for the sub-
stitution step. In this way, the data can be transformed to
a form suitable for use by a third party analyst. The two
step transformation results in transformed data that preserve
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clustering information, but bear no resemblance to the orig-
inal database. As a result,GT-NeNDSis also robust to the
notion of privacy breaches as proposed by [6], making it a
suitable candidate for privacy preserving data mining.

4. Reversibility - A Standard for Classification

The proposed DO technique,NeNDS, was described in
Section 3.1. The absence of a standard for measuring and
comparing the privacy provided by different DO techniques,
makes it difficult to evaluate the performance of the tech-
niques. The termReversibilityis used to denote the prop-
erty of the DO technique, that dictates the ease or difficulty
of the process of reverse engineering obfuscated data. This
property, was first proposed in [4], and specifies how robust
a given obfuscation technique is in terms of hiding sensitive
data. The reversibility property of an obfuscation technique
is an indicator of the robustness of its privacy preservation.
Cryptanalysis is used for analyzing the security provided
by encryption-based techniques [18]. Since encryption is a
deterministic and reversible process, cryptanalysis assumes
the transformation to be deterministic as well as reversible.
However, DO techniques have no such restriction and there-
fore require a new standard for analysis.

An obfuscation technique that can be reversed with the
knowledge of the process, is known as a process reversible
transformation function. Process reversible DO techniques
are analyzed with respect their vulnerability to complete re-
versal with little or complete a priori knowledge of the pro-
cess used for DO. Process reversibility is sub-classified into
the following categories.

1. Partial knowledge reversibility: Partial knowledge re-
versibility implies that a transformation function ex-
hibiting this property can be reverse engineered with
the knowledge of either some of the original data en-
tries, or a combination of some original entries of data
and some information regarding the process used. The
level of difficulty of the reversal process is dependent
on the DO technique. Obfuscation techniques that in-
volve aone-to-onemapping between the original and
the transformed data, are vulnerable to partial knowl-
edge reversibility. The reversibility analysis for linear
and non-linear one-to-one transformations is provided
in Section 5.2.

2. Random number reversibility: This property indicates
that the original data set can be reverse engineered
with knowledge of the process, thePseudo-Random-
Number Generator (PRNG)and the seed. Most ob-
fuscation techniques invoke PRNGs to generate ran-
dom sequences. The robustness of DO techniques ex-
hibiting this property relies in protecting the PRNG se-
quence. As long as the random seed and the sequence

are unknown to the attacker, the obfuscated data is ro-
bust to reversal. Once this information is revealed, and
the obfuscation process is known, the entire data is
compromised. Transformations that fall under this cat-
egory cannot be analyzed using cryptanalysis due to
their non-deterministic nature.

Obfuscation techniques that result in a non-invertible
transformation exhibit Irreversibility. AMaximum likeli-
hood reversibilityestimate can be made in the case of some
of the techniques, which provides an estimate of the con-
fidence with which a guess can be made on the original
data. Cryptanalysis fails to account for such transforma-
tions as well. With irreversible techniques, there is an inher-
ent loss of information. Lossy compression techniques and
data generalization techniques, which make it impossible to
exactly recover the original data, fall under this category.

5. Reversibility Analysis

Section 4 provides a classification of all transformation
functions based on their reversibility property. Random data
perturbation techniques are hard to reverse because they ex-
hibit random number reversibility. Geometric transforma-
tions, being linearone-to-onetransformations can be re-
versed with the knowledge of a finite number of original
records.NeNDSinvolves a non-linearone-to-onetransfor-
mation, and hence can also be reversed with the knowledge
of sufficient number of original records. In this section,
we derive the value for the minimum number of original
records that are required to reverse engineer data that is ob-
fuscated using Geometric Transformations andNeNDS.

5.1. Analysis of Geometric Transformations

Geometric transformations fall under the category of lin-
ear transformation functions. These functions are the most
vulnerable DO techniques that are subject to partial re-
versibility. A cryptanalysis of linear geometric transforma-
tions renders it weak to cipher-text only attacks. The knowl-
edge of the type of obfuscation technique used results in an
immediate reversal of the data. The linearity property of
this data obfuscation technique preserves the clustered na-
ture of the data, but also results in weak privacy protection.
The assumption made here is that the attacker is aware that
the DO process is a linear transformation. In this case, we
prove that for a database withd ∗ n entries, whered is the
number of attributes andn is the number of records, the
knowledge of onlyd + 1 affinely independent [11] records
in the original matrix, is sufficient to uniquely determine
the linear transformation. Once the transformation matrix
is obtained, all the original data entries for which the obfus-
cated values are available, are compromised. Therefore the
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Geometric Transformations of [12] [13], being instances of
linear transformation functions, are compromised with the
knowledge ofd+1 affinely independent records in the orig-
inal data, which is a proved fact.

5.2. NeNDS versus Data Swapping

Data Swapping as well asNeNDSfall under the cate-
gory of Non-linear bijective transformations. In this typeof
transformation, reversibility is dependent on the minimum
number of recordsr that are sufficient for complete reverse
engineering. In the case of data swapping, the minimum
value forr is half the number of elements in the data set.
For each element in the data set that is known a priori, the
corresponding element involved in the swap is revealed. In
the case ofNeNDS, complete reversal of the entire data set
would require the knowledge of at leastr = c distinct data
elements for each neighborhood, wherec + 1 is the min-
imum size of a neighborhood. Even partial reversal of a
neighborhood would require the knowledge ofc of its ele-
ments. The fraction ci

ci+1
determines the ease of reversal

of a specific neighborhoodi having exactlyci elements.
The robustness of the obfuscation technique proposed in-
creases with larger values ofc. For the case wherec = 1,
data substitution is reduced to data swapping. In this case,
the complexity of reversal is reduced to1/2. For all val-
ues ofc > 1, NeNDSprovides a more robust DO, since
complete reversal would require the knowledge of at least
Σ

NH

i=1
c

c+1

NH
≥ c

c+1
, whereNH is the number of neighbor-

hoods. This shows that the reversibility provided byNeNDS
is stronger than data swapping making it a favorable candi-
date for use in public databases as well as Census records,
where “unmodified” techniques are favored.GT-NeNDSis
a combination of a geometric transformation andNeNDS,
hence the fraction of the original data that is required for
complete reversal is greater than or equal to that required
for NeNDS, along with the added robustness to the notion
of privacy breaches [6].

6. Experimental Results

This section provides an experimental analysis of the
cluster preserving performance ofNeNDS. Geometric trans-
formations are inherently cluster preserving and are there-
fore used as a benchmark for evaluating the performance of
NeNDSwith respect to cluster preservation. The datasets
used for performance analysis are obtained from theUCI
Knowledge Discovery Archivedatabase [20] as well as
an open source synthetic data generator [8]. The experi-
ments are performed using the clustering toolbox in Mat-
lab, and cluster analysis is performed byk-means, which is
a partition-based clustering technique [3]. K-means takes
as input the number of clustersk, and selectsk centroids

in the data space representing thek cluster centers. A
quantitative analysis of the cluster preservation is evalu-
ated using theMisclassification Error (MCE), which is a
measure of the percentage of legitimate data points that
are not well-grouped in the transformed data set. The
expression for MCEME [19] is given asME = 1

N
∗

∑k

i=1
(|Clusteri(X)| − |Clusteri(X ′)|), whereN is the

total number of records in the data setX : X ∈ Dk,n, k is
the number of clusters into which the data are grouped, and
|Clusteri(Y )| is the number of points ofY in the clusteri.

The selection of the number of neighborhoods is an im-
portant factor inNeNDS. The number of neighborhoods
NH is expressed as as⌊ N

c+1
⌋, wherec + 1 is the neigh-

borhood size andN is the size of the data set. The effect
of the change in number of neighborhoods on the compu-
tation time ofNeNDSas well as the misclassification error
after clustering are shown in Figure 6. The data set size
is 3000, and the X-axis represents the number of neighbor-
hoods[1, 32]. In Figure 6(a) it is observed that the compu-
tation time reduces exponentially as the number of neigh-
borhoods increases. This decrease is due to the fact that
an increase in number of neighborhoods leads to a smaller
size of each neighborhood, which results in an exponential
decrease in the time taken for the tree-based search. The
graph in Figure 6(b) shows the variation of MCE% with the
number of neighborhoods. The figure shows that the mis-
classification error is maximum for a single neighborhood
and has a minimum value when the number of neighbor-
hoods corresponds to the inherent clustering degree of the
data, which is10 for this data set. The misclassification er-
ror increases slightly when the number of neighborhoods is
increased beyond the inherent clustering degree. The actual
values of the MCE% are very small, being0.02% between
the extreme values in the figure shown. Hence, the effect of
the number of neighborhoods on MCE% is almost negligi-
ble.

The computation time forNeNDSis dependent on the
number of neighborhoods and yields better performance
for smaller neighborhoods. The branch-and-bound search
technique used byNeNDSis able to reduce the compu-
tation time significantly compared to an exponential-time
brute-force search. This is evidenced by the fact that, even
for a very large neighborhood size (3000 records),NeNDS
yielded a solution within1, 700 seconds. Furthermore, Fig-
ure 6 shows that the selection of the number of neighbor-
hoods does not significantly affect the accuracy of the re-
sult. Therefore, the neighborhood size can be suitably cho-
sen based on the level of privacy required for the database.
In order to evaluate the worst case performance ofNeNDS,
the experimental evaluation for the rest of the section is car-
ried out for a single neighborhood of sizeN .

Figure 6 shows the performance of theNeNDStrans-
formed data with respect to rotational transformation. The
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Figure 2. Effect of Varying Number of Neigh-
borhoods

data used for these graphs is generated using the synthetic
data generator. Here,D1, D2, D3 represent theSalary,
Commission, Agefields of the synthetic database. The DO
results are displayed for grouping parameter values of2 (de-
fault), 5, and15. The output clustering parameterCqu in
this case is the same as the inherent clustering of the original
data. The angle of rotation between the attributesD1, D2
is 89.9 and betweenD1, D3 is 35.4 degrees. The database
is inherently grouped into5 clusters.
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Figure 3. Comparison of Cluster Preservation

In this figure, a comparison of the clustering nature with
respect to the attributesD2, D3 are shown. As the number
of clusters are small, the neighborhoods remain intact, and

the error in clustering is very small. It can be observed that
the rotational transformation has changed the shaped of the
clusters slightly, but cluster strengths remain the same. The
misclassification error would be minimal across the entire
database only if all the attributes on which clustering is per-
formed are rotated by the same angle. This, however, would
weaken the privacy preservation capability of the transfor-
mation.NeNDS, on the other hand, is noted to perform con-
sistently in all cases. A detailed experimental evaluationof
the performance ofNeNDSis provided in [14].

Table 3 shows a summary of the misclassification er-
ror for the different DO techniques. Two sets of experi-
ments are performed for Random Data Perturbation (RDP),
denoted by RDPlow and RDPhigh. The values for the
noise vector(mean, var) for RDP low are(0.0, 1) and for
RDP high are(0.0, 100). The angle of rotation for rota-
tion based Geometric Transformation is89.4 degrees. The
value ofc for NeNDSis kept asN − 1 in order to compare
the worst case performance of the algorithm. The size of
the database used for comparison isN = 10, 000 and the
inherent clustering factorCin = 10. The error percentages
resulting from k-means is used in the table. The table pro-
vides a comparison of MCE as a percentage.

Obf. RDP RDP Rot. Rot. NeNDS GT-
— low high const var c=N-1 NeNDS

Clu. c=N-1
2 0.0 10.1 0.0 0.0 0.0 0.0
3 0.03 25.02 0.05 0.10 0.08 0.11
5 0.10 36.1 0.08 0.17 0.11 0.13
10 0.21 40.5 0.18 0.24 0.20 0.22
20 0.25 40.5 0.40 0.45 1.60 2.18

Table 3. Comparison of MCE %

It is observed that RDPlow yields a very low value of
MCE for all cases. This is because the amount of noise
added is extremely small. RDPhigh performs poorly for all
cluster sizes, whereas the other obfuscation techniques are
comparable. AlthoughRotationprovides a smaller MCE
percentage, its vulnerability to reverse engineering makes
it unusable for DO of sensitive data. The two columns for
Rotationtechniques show the performance of the algorithm
for a constant rotational angle over the entire database, and
for different angles selected for each transformation. The
data obtained for rotational transformation assumes a2−D
rotation. The performance ofNeNDS, GT-NeNDSare ob-
served to be almost as good as the rotational transformation,
and their robust privacy preservation capability makes them
more suitable candidates for data protection. The perfor-
mance of the obfuscation techniques degrade if the number
of clusters required is chosen as a number much larger than
the inherent clustering of the data as can be noted in the case
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where the number of clusters is20. This is twice the value
of C. The loss of information in this case is a necessary
condition for privacy preservation in order to prevent indi-
vidual records from being exposed. The results indicate that
NeNDSandGT-NeNDSyield cluster-preserving obfuscated
data that are difficult to reverse engineer.

7. Conclusion

Technique Disp. Reversibility Clustering
RDP low Very Low Difficult Good
RDP high High Difficult Poor

Data Swapping Low Partial 1
2

Good
NeNDS Low Partial c

c+1
Good

Geometric High Easy Good
GT-NeNDS High Difficult Good

Table 4. Performance of DO Techniques

The main contributions of this paper are: (1) the proposal
of a robust DO technique for clustered data, (2) the defini-
tion of a standard for the classification of DO techniques,
and (3) the demonstration of the weak privacy provided by
existing obfuscation techniques such as linear transforma-
tions and data swapping. Table 4 provides a comparison of
NeNDS, GT-NeNDSwith existing DO techniques with re-
spect to three parameters: displacement, reversibility, and
cluster preservation. The first two parameters indicate the
strength of privacy provided by the DO technique, while
the third parameter is an indicator of the usability of the
DO. Displacement is the average value of MCE (MCEAvg).
A robust DO technique is one withHigh displacement, that
is Difficult to reverse engineer, and that hasGoodcluster
preservation. Random Data perturbation is difficult to re-
verse engineer, but the other two parameters are dependent
on the amount of noise added. A large offset provides more
displacement, and better privacy, but results in poor clus-
ter capability. On the other hand, a small offset preserves
clustering, but results in data with very small displace-
ment, thereby making them vulnerable. Data swapping and
NeNDSprovide small displacements dependent on the na-
ture of the dataset, but are cluster preserving.NeNDSis
more difficult to reverse than Data Swapping, which makes
it a more robust technique. Geometric transformations dis-
place the data substantially and also preserve clustering,but
are extremely easy to reverse, which makes them unsuitable
for sensitive databases.GT-NeNDSprovides cluster preser-
vation, high displacement, and is also difficult to reverse,
thereby proving to be a robust DO approach for the privacy
preservation of clustered data.
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