
The Effect of Replica Placement on Routing Robustness
in Distributed Hash Tables ∗

Cyrus Harvesf and Douglas M. Blough
Georgia Institute of Technology

School of Electrical and Computer Engineering
Atlanta, GA 30318

{charvesf, dblough}@ece.gatech.edu

Abstract

To achieve higher efficiency over their unstructured
counterparts, structured peer-to-peer systems hold each
node responsible for serving a specified set of keys and cor-
rectly routing lookups. Unfortunately, malicious partici-
pants can abuse these responsibilities to deny access to a
set of keys or misroute lookups. We look to address both
of these problems through replica placement. Using Chord
as an example, we present an equally-spaced replication
scheme and prove that it can be tuned to produce any de-
sired number of disjoint routes. To be specific, we prove that
d disjoint routes can be produced by placing 2d−1 replicas
around a fully populated Chord ring in an equally-spaced
fashion. In this situation, we also prove that there exists a
route to at least one replica, which contains only uncompro-
mised nodes, even if an attacker controls more than a quar-
ter of the contiguous identifier space in the system. Simu-
lation experiments demonstrate that this scheme performs
better than previously proposed replica placement schemes
in rings that are sparsely populated, populated in clusters,
or populated partially by compromised nodes.

1. Introduction

Structured peer-to-peer networks provide the benefits
of efficiency, scalability, resilience, and self-organization
when building distributed applications. These systems
achieve efficiency by utilizing their structure to reduce re-
dundant operations. With this structure comes added re-
sponsibility for each node participating in the system. For
instance, Chord [16] and other distributed hash table (DHT)
implementations depend on each node to efficiently route
lookups. Therefore, each node has the power to route and

∗This research was funded in part by the National Science Foundation
under Grant ITR-NHS-0427700.

misroute lookups. Malicious routing is not the only vul-
nerability; adversaries may act upon several attack vectors.
Before DHTs can be applied as real world solutions in ar-
eas like the domain name system and voice over IP systems,
these vulnerabilities must be addressed.

In our work, we consider two such attacks: malicious
routing and storage and retrieval attacks. In a storage and
retrieval attack, an adversary may seize control of a key or a
set of keys by selecting an appropriate node identifier. The
most commonly accepted defenses to these attacks are mul-
tipath routing and replication, respectively. Our solution
integrates these two approaches into a replica placement
scheme that can be tuned to produce a desired number of
disjoint routes.

2. Background

Sit and Morris [13] identify the major threats to struc-
tured peer-to-peer systems to be:

1. Routing attacks, in which a malicious node may mis-
route lookups or attempt to corrupt routing tables;

2. Storage and retrieval attacks, in which a malicious
node may claim that a key it serves does not exist; and

3. Miscellaneous attacks, in which a malicious node may
act arbitrarily to tamper with the correct operation of
the system. These attacks include Sybil and Eclipse
attacks [5, 12] as well as denial of service (DoS) at-
tacks [7, 15].

Our work mitigates the first two threat types. As suggested
in [14], routing attacks can be mitigated with alternative
lookup paths. To this end, they propose the notion of in-
dependent lookup paths. Two routes are said to be in-
dependent if they share no common node other than the

source and destination nodes. Independent routes help im-
prove routing robustness, but do not address storage and re-
trieval attacks because the routes share a common destina-
tion node. We define disjoint routes to be routes that share
no common node other than the source. This is a more ro-
bust notion of alternative paths.

To address storage and retrieval attacks, we use replica-
tion as recommended in [13]. The novel contribution of our
approach is that the replica placement naturally produces
disjoint routes without significant modification to the un-
derlying peer-to-peer system.

In order for disjoint routes to improve the robustness of
our system, we require that the keys stored in the system
be self-verifying; that is, we assume that a key’s integrity
can be verified by the client. This is necessary to detect
when a node returns an incorrect entry. For types of data
where self-verification is not natural, we can generate key
identifiers by hashing the key object as in [4]. The client
can verify the key’s integrity by comparing its hash with the
key identifier. Castro et al. [2] discuss self-verifying data as
well as a method for managing mutable self-verifying data.

Under these assumptions, our system can tolerate attacks
by up to d − 1 malicious nodes acting arbitrarily, where d
is the number of disjoint routes. We also prove, under the
same assumptions, that the approach can tolerate a run of
contiguous nodes controlled by an adversary covering more
than one-quarter of the identifier space. To our knowledge,
this is the first approach to peer-to-peer routing for which
properties such as these have been formally proven.

3. Related Work

To our knowledge, no work has been done to use replica
placement to mitigate malicious routing behavior in peer-to-
peer networks. However, significant work has been done in
the areas of peer-to-peer routing security and replica place-
ment. In the following subsections, we discuss these previ-
ous works and contrast them with our solution.

3.1. Peer-to-Peer Routing Security

Many works have looked to improve the security and
robustness of peer-to-peer routing. Many approaches have
been centered around the notion of alternative paths [14].

Artigas, et al. [1] use a multipath concept to secure rout-
ing. They propose Cyclone, an equivalence-based routing
scheme that is built upon an existing peer-to-peer structured
overlay. Independent lookup paths can be created by rout-
ing along different equivalence classes. The key difference
between Cyclone and our work is that Cyclone creates in-
dependent lookup paths rather than disjoint paths. Since the
paths created do not differ in the destination node, Cyclone

will not prevent storage and retrieval attacks. Our work pro-
duces disjoint routes to several appropriately placed repli-
cas, thereby preventing a limited number of attacks of this
kind. Furthermore, Cyclone requires additional routing
overhead per node and employs a complex routing scheme.
We use a replica placement scheme that automatically pro-
duces disjoint routes without significant modification to the
underlying routing mechanism.

The notion of independent paths has been considered in
other works as well. In an effort to provide message con-
fidentiality, [11] suggest that messages be split, encrypted,
and sent to the destination along independent paths. Empir-
ically, [11] determines the finger table offsets to minimize
route overlap with high probability. We will show analyti-
cally that our placement scheme creates disjoint routes.

Castro et al. [2] propose a secure routing primitive us-
ing replication and two routing mechanisms. They combine
efficient, locality-based routing with constrained routing
mechanisms to find diverse routes to the replica set in the
event of routing failure. Rather than modifying the underly-
ing routing mechanism, we improve routing robustness by
carefully placing replicas. Using the robustness properties
we prove herein for equally-spaced replica placement, we
believe this technique can be combined with Castro’s rout-
ing approach to achieve even greater security. Thoroughly
investigating the combination of optimized replica place-
ment and diverse routing is an interesting topic for future
research.

3.2. Replica Placement

Replica placement has long been studied in realms out-
side of peer-to-peer systems. As more work has been done
within peer-to-peer systems, it has become clear that replica
placement can be used to manage load and satisfy capac-
ity constraints while improving the quality of service in the
system. Many studies have compared the performance of
several placement schemes in terms of quality of service,
availability, and time to recovery [3, 6, 8, 9]. However, to
our knowledge, none have considered routing robustness as
it relates to replica placement.

Castro et al. [2] discuss four well-known distributed hash
tables–CAN, Tapestry, Pastry, and Chord–within the con-
text of secure routing. These systems use two basic types of
replica placement: neighborhood-based and random. Pas-
try and Chord place replicas at the node locations “closest”
to the node storing the master replica. CAN and Tapestry
use hash functions to randomly map replicas within the key
space. A similar hash function-based, random replica place-
ment and enumeration scheme is discussed in [18]. We pro-
pose an equally-spaced replica placement scheme that out-
performs these existing schemes in terms of routing robust-
ness.

4. Equally-Spaced Replication

In this section, we discuss a replica placement scheme
that produces disjoint routes for each replica set. The sim-
plest method for generating disjoint routes is to ensure that
the routes are contained within non-overlapping segments
of the ring; this is the premise of our work. Although we
discuss equally-spaced replica placement in the context of
Chord, it can be applied to distributed hash tables that uti-
lize the prefix matching routing technique [10].

As replication is implemented in [16], keys are replicated
in a chain of nodes starting at the key’s home node. To
access a correct replica, the lookup begins at the first node in
the chain and iterates down the chain until a correct replica
is found. It is clear that the routes to each of the replicas
differ only in the final hop. An adversary could very easily
deny access to the entire replica set by controlling a single
node in the overlapping portion of the routes.

In our approach, we place replicas at equally-spaced lo-
cations over the entire ring. Rather than using the same
route for each replica, we initiate separate lookups for each
object in the replica set. Our placement scheme generates
disjoint routes, which improves routing robustness.

4.1. Evaluation of Disjoint Routes

The proposed solution is simple: replicas are assigned
equally-spaced identifiers starting at the master key identi-
fier and proceeding in a wrap-around fashion over the entire
identifier space. For example, consider a Chord ring of size
256 with a replication degree of 4. The four replicas of key
71 will be assigned identifiers 71, 135, 199, and 7. Note
that the replicas are equally-spaced; that is, the difference
between consecutive replica identifiers is equal to the total
identifier space size divided by the replication degree (e.g.
135 − 71 = 64 = 256

4). We claim that this replication
scheme produces a predictable number of disjoint routes.
To prove this claim, we first show that routes originating
from a common query node that differ in the first hop must
be disjoint.

Lemma. Routes originating from a common query node
that differ in the first hop are disjoint.

Proof. Consider a query node q and two routes originating
at q destined for keys k1 and k2

1. Suppose that the first hops
in the routes to these keys are q+2i and q+2j , respectively,
where i 6= j. According to the definition of the Chord proto-
col, k1 ∈

[
q + 2i, q + 2i+1

)
and k2 ∈

[
q + 2j , q + 2j+1

)
.

Furthermore, each hop in these routes must reside in their
respective intervals. Therefore, the routes from q to k1 and
k2 are disjoint.

1All identifiers are ordered on an identifier circle modulo n.

This lemma, though straightforward, provides insight
into the premise behind our solution. To produce disjoint
routes from a common source, the first hops in each route
must be different. The first hop in a route is determined
by the distance between the source and destination nodes.
Therefore, if we place replicas at carefully chosen locations,
we can produce disjoint routes.

We prove our claim within the context of a full Chord
ring. We define a full Chord ring to be a Chord ring wherein
all possible identifiers are represented. In other words, for
any key k, k will be located at the node with identifier k.

Theorem. To produce d disjoint routes to a key k from
any query node in a full Chord ring of size n with equally-
spaced replicas (d ≤ log2 n + 1), k must be replicated at
exactly 2d−1 locations in a wrap-around fashion starting at
k.

Proof. (by induction) In a full Chord ring of size n with
d = 2, k is replicated at nodes k and k + n

2 . Consider a
query node q. Let k1 be the replica in the interval

[
q, q + n

2

)
and k2 be in the interval

[
q + n

2 , q
)
. (Since k1 and k2 are

equally-spaced in the ring, they must reside on different
halves of the ring.) The first hop of the route from q to
k1 must be in

[
q, q + n

2

)
and the first hop of the route from

q to k2 must be q + n
2 . Thus, the routes from q to k1 and k2

are disjoint.
Assume 2d−1 equally-spaced replicas produce d disjoint

routes to k. Let I be the largest interval
[
q, q + 2i

)
that

contains exactly one replica of k. Since replicas are equally-
spaced and d < log2 n + 1 (i.e. there are fewer replicas
than nodes in the system), the interval I exists. Increasing
the replication degree to 2d guarantees that there are two
replicas in I . Since the 2d−1 replicas that formed d disjoint
routes are a subset of the new set of replicas, it is enough
to show that the two replicas in I produce disjoint routes.
Let k1 and k2 be the identifiers of these two replicas such
that k1 ∈

[
q, q + 2i−1

)
and k2 ∈

[
q + 2i−1, q + 2i

)
. The

first hop to k1 is in
[
q, q + 2i−1

)
and the first hop to k2 is

q+2i−1. Therefore, the routes to k1 and k2 are disjoint.

Although these claims are proven for a full Chord ring,
we hope to demonstrate that these concepts can be applied
to sparsely populated Chord rings with similar performance.
A formal analysis of the performance in sparsely populated
rings is left for future work. However, extensive simulation
results in sparse rings are provided in Section 5.2.

4.2. Toleration of Runs

In this section, we introduce the concept of a run, the
way in which a run can be used to disrupt the system, and
the degree to which equally-spaced replication can tolerate
runs. We define a run of length l to be a contiguous set of l

nodes from the Chord ring. Equivalently, the run of length l
starting at node m is denoted in set notation by [m,m + l).

As indicated in [16], an adversary can create imbalance
in the distribution of nodes in the ring by appropriately se-
lecting identifiers. In the worst case, an adversary can take
control of a contiguous sequence of identifiers or, using our
terminology, a run of nodes.

We claim that equally-spaced replication can tolerate ad-
versarial runs with bounded length. Before proving the tol-
erable length of a run, we provide some intuition of how a
run may be used to disrupt routing in the ring. Consider a
query node q. An adversary can reduce the number of repli-
cas reachable from q by half by controlling the node q + n

2 .
This is because all of the replicas in interval [q + n

2 , q) are
routed through the node q+ n

2 (half of the replicas are in this
interval). If the adversary controls a run of nodes ending at
q + n

2 , he can control a larger number of replicas.

Theorem. A full Chord ring of size n with 2d−1 (d > 2)
equally-spaced replicas can tolerate any adversarial run of
length 1 + n(1

2 −
1

2d−1).

Proof. (by induction) Consider a query node q. For d =
3, there exists a replica k ∈

[
q, q + n

4

)
. (There are four

replicas; one must reside in the first quadrant of the ring
starting at q.) If we assume that the adversary has control
of the node q + n

2 (which is the worst case), then we must
ensure that k is not in the run. Thus, the maximum length
run is [q + n

4 , q + n
2 + 1), which has length n

4 + 1 or 1 +
n(1

2 −
1
22).

Assume that the longest tolerable run in a full Chord ring
with 2d−1 equally-spaced replicas has length 1 + n(1

2 −
1

2d−1). Consider a query node q. If we assume that the
adversary takes control of the node q + n

2 , then he does not
control any nodes in the interval [q, q + n

2d−1). There must
exist at least one replica k in this interval. If we double the
replication degree to 2d, then there are two replicas in this
interval separated by n

2d . Thus, the length of the tolerable
run increases by n

2d to 1 + n(1
2 −

1
2d).

Note that with four equally-spaced replicas, an adversary
may control of a run of more than a quarter of the nodes in
the system and there will be a route to one replica for ev-
ery possible query. As the replication degree approaches
the identifier space size, the maximum tolerable length ap-
proaches one-half the identifier space.

4.3. Per-key Replication

Thus far, our discussion has assumed a fixed replication
degree for every key inserted into the ring. However, it is
oftentimes the case that certain objects inserted into the sys-
tem are more critical than others. It would be desirable to
replicate these objects to a higher degree and maintain the
benefits of equally-spaced replication.

The assumption of a fixed system-wide replication de-
gree is important because it allows any node to compute the
locations of all replicas for a given key. However, this is
not a necessary condition. For example, suppose we have
a Chord ring wherein the most critical objects should be
stored at 16 equally-spaced locations throughout the ring.
We can replicate objects that are less critical at 8, 4, or 2
locations in the ring. Since the replicas are equally-spaced,
we can guarantee that the actual replica locations will be a
subset of the 16 possible locations regardless of the key’s
actual replication degree. Note that this technique reduces
the replication effort for less critical objects without increas-
ing the query routing cost.

4.4. Implementation

To uniquely identify each replica, we use a key identifier
pair (k, v), where k is the key identifier and v is virtual
key identifier. For each replica, v gives the location of the
master key. By definition, the master key k is denoted by
the pair (k, k).

When a key k is inserted into a Chord ring of size n
with replication degree d, we first compute the key identifier
pairs for each replica: (k, k), (k+ n

d , k), (k+ 2n
d , k), . . . (k+

(d−1)n
d , k). For example, consider a Chord ring of size 256

with replication degree 4. When the key 71 is inserted, we
compute (71, 71), (135, 71), (199, 71), and (7, 71).

Once the key identifier pair for each replica is computed,
we use the traditional Chord key insertion mechanism to
insert the replicas. That is, we perform a lookup for each
key identifier and store the replica at those locations. In the
example above, we lookup keys 71, 135, 199, and 7 and
store the replicas at their respective locations.

Next, the Chord lookup primitive must be modified to
accommodate the new replication scheme. When a node is
queried for a key, the query node must first compute the lo-
cations of all replicas (using the known ring size and repli-
cation degree). The key identifier is used to route to the
replicas. Once a replica’s home node is found, the key iden-
tifier pairs are compared to return the appropriate replica.

It is worth noting that no additional finger table entries
are required to route to the replicas. In addition, if the query
node dispatches the lookups for the entire replica set simul-
taneously, there may be an improvement in performance be-
cause the query node can return the first correct response re-
ceived (which may have returned along a route shorter than
the route to the master key). However, if the added load
of the extra lookups puts strain on the system, the perfor-
mance may improve only slightly or even degrade. A study
of the effect of these extra lookups on system performance
is a topic for future work.

Finally, when nodes join or leave the ring, traditional
Chord node join and leave mechanisms can be used by sim-

ply ignoring the virtual peer identifiers in each key identifier
pair. Note that the traditional Chord replica placement re-
quires modification to the node join and leave mechanisms.
To maintain the replication degree, replicas will need to be
shifted for every node join or leave.

5. Experiments

5.1. Experimental Setup

A simulator was designed to model Chord rings at
message-level detail; that is, the simulator computes routes
from any query node to any key using finger tables. The
simulator was used to measure the performance of replica-
tion schemes over uniform and clustered node distributions.
To simulate a system with little or no malicious activity, a
uniform distribution was used to assign node identifiers.

One potential attack on equally-spaced replication is to
cluster the node identifiers, leaving unpopulated gaps in the
identifier space. With this distribution of identifiers, it is
possible that two or more replicas may be managed by a
single node, which eliminates one or more possible disjoint
routes. We model clustering by selecting an identifier for
the cluster mean and randomly sampling node identifiers
from a Gaussian distribution centered at the cluster mean. In
addition to varying the number of clusters, we can vary the
size of overlap by tuning the variances of the distributions.
The simulation parameters are summarized in Table 1.

Symbol Parameter
N Identifier Space Size
n Number of Nodes
C Number of Clusters
σ Cluster Width (standard deviation)

Table 1. Simulation Parameters.

Finally, we compare the performance of equally-spaced
replication to other schemes. Namely, we consider the
random placement of replicas, a variant of the replica-
tion scheme used in [16], and a simple spaced replication
scheme. We implement the same placement used in [16];
that is, we place replicas at the chain of nodes starting at
the key’s home node. However, rather than using a sin-
gle lookup to reach all replicas, we perform independent
lookups for each replica, which may slightly increase the
number of disjoint routes.

For the spaced replication scheme, we introduce a pa-
rameter s that can be used to indicate the spacing between
replica identifiers in the chain. Replicas of the key k are
placed the locations k, k + s, k + 2s, ..k + (r − 1)s, where
r is the replication degree. Unlike the Chord replication
variant, spaced replication may result in replicas being col-

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0 8 16 24 32

Replicas

Full Equally-Spaced Random Chord Variant

64-Spaced 128-Spaced 512-Spaced

Figure 1. Disjoint Routes for Uniformly Dis-
tributed Nodes (N = 8192, n = 512).

located for small spacings. Note that when s = N
r , this

scheme is equivalent to the equally-spaced scheme.
To manage our variant of Chord replication and the ran-

dom placement scheme, we maintain a mapping of each key
to its replica locations. More sophisticated techniques are
necessary to efficiently manage the mapping. Chord avoids
this complexity by using a single route for all replicas. For
equally-spaced replication, replica locations can be com-
puted directly from the key identifier.

5.2. Experimental Results

In each experiment, we consider 10 random node distri-
butions. For each distribution, 25 keys are selected at ran-
dom and routes are computed from every node in the ring
to each replica set. Each data point represents the average
over a total of the 250 trials.

The first series of experiments conducted was to mea-
sure the performance of each replication scheme with a uni-
formly populated Chord ring. A Chord ring with N = 8192
was modeled with a 6.25% load (or n = 512). The average
number of disjoint routes per key are shown in Figure 1.
The 95% confidence intervals were computed to be less than
0.01 routes for the experiments conducted. Therefore, these
results are representative of the relative performance of the
schemes tested.

The series marked “Full” reflects the number of disjoint
routes expected for a full Chord ring (d for 2d−1 repli-
cas). It is clear that equally-spaced replication approximates
this curve and outperforms all other replication schemes.
A random replication scheme performs well compared to
other methods and is only about 10% worse than equally-
spaced replication. This is because replica locations are
selected at random from a uniform (equally-spaced) distri-
bution. As the number of replicas increase, random repli-

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

1 10 100 1000 10000 100000

n

Figure 2. Disjoint Routes with Increasing Uni-
form Load for 2, 4, 8, 16, and 32 Equally-
Spaced Replicas (N = 220).

cation will better approximate equally-spaced replication.
However, as mentioned above, random replication may in-
troduce added implementation complexity to store the un-
predictable replica locations.

Of the replication schemes tested, the Chord replication
variant performs worst in terms of the average number of
disjoint routes. As expected, the Chord variant does not sig-
nificantly improve robustness against routing attacks with
increasing replication degree.

The remaining series show the increase in performance
in using spaced replication with spacings of 64, 128, and
512 between replica identifiers. The number of disjoint
routes increases linearly with the number of replicas up to
N
s replicas, where s is the spacing. At this point, the optimal

number of replicas (as determined by equally-spacing) is
reached and no additional disjoint routes can be generated.
Once the replication degree surpasses this optimal value,
the replicas begin to wrap-around and overlap so that no
new disjoint routes are created. This implies that to achieve
the best performance, the spacing between replicas should
vary with the replication degree, which is precisely what the
equally-spaced replication scheme does.

To measure equally-spaced replication performance in
sparsely populated Chord rings, N was fixed and n was var-
ied. The results are depicted in Figure 2. For these exper-
iments, N was fixed at 1048576 (a 20-bit identifier space).
n is shown on a logarithmic scale to better reflect the rate of
convergence. Equally-spaced replication converges to the
expected full Chord ring results for n > 1000 or about a
0.1% load. These results scale well with network size; to
achieve a near-theoretical number of disjoint routes for a
32-bit identifier space, the required load is less than 0.1%.
Clearly, equally-spaced replication can achieve near-ideal
performance for very sparsely populated Chord rings.

-2.00%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

0 8 16 24 32

Replicas

Equally-Spaced Random Chord Variant

64-Spaced 128-Spaced 512-Spaced

Figure 3. Percent Error for Clustered Nodes
(N = 8192, n = 512, C = 4, σ = 200).

There does seem to be one anomaly in the convergence
of the number of disjoint routes; that is, the number of
disjoint routes increases above the theoretical value before
converging. This is because a small fraction of the replica
sets produces one additional disjoint route. This additional
disjoint route comes from the replica which precedes the
query node in the ring. Typically, when the ring is moder-
ately populated, this replica will be managed by a node that
precedes the query node. However, in a sparsely populated
ring, this replica may be managed by the query node itself.
We count this scenario as an additional route although no
routing is actually performed. However, clearly, this replica
can be used to satisfy the lookup and should be considered
to improve routing robustness.

To model the population distribution that may result
from the collusion of several malicious nodes, a series of ex-
periments were run on clustered rings. To model a clustered
distribution, four node identifiers were randomly selected as
cluster means such that the clusters are non-overlapping and
unpopulated gaps exist in the identifier space.

Clustering did not affect the relative performance of the
schemes tested; however, there was a decrease in the overall
performance. To determine which schemes are most resis-
tant to clustering, we computed the percent error based on
the difference between the number of disjoint routes for uni-
formly distributed and clustered nodes (Figure 3).

For a small number of replicas, equally-spaced replica-
tion is resistant to the effects of clustering. To have a no-
ticeable effect, two or more replicas must fall into an un-
populated gap in the identifier space so they are collocated.
In the case of equally-spaced replication, the spacing must
be smaller than the largest gap size. For eight replicas, the
spacing is 1024 for N = 8192. Using two standard devi-
ations to capture 95% of the nodes within each cluster, we
can estimate the gap size to about 1200 for σ = 200, which

0%

20%

40%

60%

80%

100%

0% 25% 50%

Compromised Nodes

Equally-Spaced Random Chord Variant

64-Spaced 128-Spaced 512-Spaced

Figure 4. Probability of Routing Success with
Compromised Runs for a Replication Degree
of 4 (N = 220, n = 1024).

0%

20%

40%

60%

80%

100%

0% 25% 50%

Compromised Nodes

Equally-Spaced Random Chord Variant

64-Spaced 128-Spaced 512-Spaced

Figure 5. Probability of Routing Success with
Randomly Compromised Nodes for a Repli-
cation Degree of 4 (N = 220, n = 1024).

is greater than the spacing. This correlates well with the
data; the error does not significantly increase until a repli-
cation degree of eight is reached. Therefore, for a small
number of replicas, where the spacing is large compared to
the gap size, equally-spaced replication can resist the dense
clustering of nodes.

When the number of replicas increase, equally-spaced
replication is less resistant to clustering because more repli-
cas fall into unpopulated gaps in the ring. However, at
higher replication degrees, equally-spaced replication pro-
duces a relatively large number of disjoint routes and the
7-9% reduction in the number of routes can be tolerated.

Of the schemes tested, the Chord variant seems to react
the best to clustering. In fact, there is a slight improvement
in its performance when the number of replicas is small.

In this case, the chain of replicas may span an unpopulated
gap in the identifier space and replicas will be located in
two clusters, which will likely produce an additional dis-
joint route. The performance of a few replicas spanning an
unpopulated gap in the identifier space is similar to that of
a chain of many replicas. This is why the benefit decreases
and disappears as the replication degree increases.

As discussed, an adversary may use a run of nodes to
create imbalance or disrupt the system otherwise. We mea-
sure the probability of routing success per query by deter-
mining the proportion of nodes for which a correct replica
can be found along a route that contains only uncompro-
mised nodes. The results are shown in Figure 4. Clearly,
equally-spaced and random replication outperform the other
replica placement schemes tested. As the theory indicates,
equally-spaced replication tolerates compromised runs of
length less than one-half of the identifier space well, even
with a small replication degree (four replicas).

Furthermore, we investigated the possibility that an ad-
versary may compromise a random subset of the nodes in
the system. The results, shown in Figure 5, are astound-
ing; when the adversary controls 25% of all nodes in the
system, equally-spaced replication produces routes with no
compromised nodes 98% of the time. Under the same level
of attack, the Chord variant and spaced replication schemes
successfully route only 25-60% of queries.

With only four equally-spaced replicas, we expect three
disjoint routes. This implies that an adversary could prevent
the success of a given query by compromising only three
nodes. However, with far more nodes than that compro-
mised in runs or randomly, almost all queries are resolved
successfully. This result is extraordinary and confirms that
route diversity does indeed improve routing robustness.

6. Discussion

To our knowledge, no significant work has been done to
mitigate the effects of malicious routers in structured peer-
to-peer systems using replica placement. We have shown
that an equally-spaced replica placement scheme can im-
prove routing robustness. To produce d disjoint routes per
replica set using this scheme, each key must be replicated
2d−1 times. The solution requires minimal modification to
the traditional Chord implementation and produces desir-
able results, even for sparsely populated rings. Our exper-
iments have shown that equally-spaced replication can be
used to successfully route 98% of queries in a ring that is
25% compromised.

A random replication scheme performs nearly as well as
equally-spaced replication, but the complexity of the imple-
mentation makes it a less than ideal solution. Peers must
apply a computationally expensive hash function or main-
tain a mapping of master key identifiers to replica locations

for every key. Equally-spaced replication allows peers to
compute replica locations directly using addition.

Although we have discussed our work in the context of
the Chord peer-to-peer system, we believe that it can be ap-
plied to any distributed hash table that routes as in [10].
Note that Chord is a prefix matching system with base equal
to two. The equally-spaced replication scheme can be ap-
plied to a prefix matching system of any arbitrary base b. In
this case, bd−1 equally-spaced replicas produce d disjoint
routes. As the base increases, more and more replicas are
necessary to achieve the same number of disjoint routes.

Our work has also shed light on several avenues for fu-
ture work. In particular, we hope to encourage the study of
replica placement as it impacts routing. We have focused
on producing disjoint routes by varying the first hop in each
route. However, it may be possible to produce semi-disjoint
routes by varying intermediate hops within the route. One
direction we have considered is the notion of virtual rings.
The equally-spaced replication scheme can be modeled as
several virtual rings (where the number of virtual rings is
equal to the replication degree) implemented over a single
real ring. Each virtual ring consists of the same node and
key identifiers; however, the node identifiers are shifted to
different real nodes. Thus, each virtual ring represents a
different rotation of the original ring. However, the virtual
rings need not be rotations of the real ring; they may be
any arbitrary mapping of virtual nodes to real nodes. This
virtual ring representation may lead to an optimal mapping
that produces the greatest number of semi-disjoint routes.

In our implementation, we left some flexibility in the
timing for each replica query. These queries may be dis-
patched in parallel, sequentially, or some combination of
the two. At first glance, the dispatch of all queries in parallel
might seem optimal since the correct replica with the short-
est route will be returned first. However, dispatching all of
the lookups in parallel may put excessive load on the system
thereby degrading overall performance. The study of a real
implementation or a simulation-based study of these effects
would be a valuable topic for future research.

Finally, we assume that the data in the system is self-
verifying. If we are able to determine the correspondence
between each replica and the route along which it was
found, it may be possible to select the correct object from
a set of possibly incorrect replicas through a voting mecha-
nism. This would eliminate the need for self-verifying data.

References

[1] M.S. Artigas, P.G. Lopez, A.F. Gomez Skarmeta, “A Novel
Methodology for Constructing Secure Multipath Overlays,”
IEEE Internet Computing, vol. 9, no. 6, pp. 50–7, Nov. 2005.

[2] M. Castro, P. Druschel, A. Ganesh, A. Rowston, D. Wal-
lach, “Secure Routing for Structured Peer-to-Peer Overlay

Networks,” In Proc. OSDI 02, Boston, Massachusetts, pp.
299–314, Dec. 2002.

[3] Y. Chen, R. Katz, J. Kubiatowicz, “Dynamic Replica Place-
ment for Scalable Content Delivery,” In Proc. IPTPS 02,
Cambridge, Massachusetts, pp. 306–318, Mar. 2002.

[4] F. Dabek, M.F. Kaashoek, D. Karger, R. Morris, I. Stoica,
“Wide-area cooperative storage with CFS,” In Proc. ACM
SOSP 01, Banff, Canada, pp. 202–215, Oct. 2001.

[5] J. Douceur, “The Sybil Attack,” In Proc. IPTPS 02, Cam-
bridge, Massachusetts, pp. 251–260, Mar. 2002.

[6] J. Douceur, R. Wattenhofer, “Large-scale Simualtion of
Replica Placement Algorithms for a Serverless Distributed
File System,” In Proc. MASCOTS 01, Cincinnati, Ohio, pp.
311–319, Aug. 2001.

[7] D. Dumitriu, E. Knightly, A. Kuzmanovic, I. Stoica,
E. Zwaenepoel, “Denial-of-Service Resilience in Peer-to-
Peer File Sharing Systems,” In Proc. ACM SIGMETRICS
05, Banff, Canada, pp. 38–49, June 2005.

[8] Q. Lian, W. Chen, Z. Zhang, “On the Impact of Replica
Placement to the Reliability of Distributed Block Storage
Systems,” In Proc. IEEE ICDCS 05, Columbus, Ohio, pp.
187–196, June 2005.

[9] G. On, J. Schmitt, R. Steinmetz, “The Effectiveness of Re-
alistic Replication Strategies on Quality of Availability for
Peer-to-Peer Systems,” In Proc. IEEE P2P 03, Linkoping,
Sweden, pp. 57-64, Sep. 2003.

[10] C.G. Plaxton, R. Rajaraman, A. Richa, “Accessing Nearby
Copies of Replicated Objects in a Distributed Environment,”
In Proc. ACM SPAA, Newport, Rhode Island, pp. 311–320,
June 1997.

[11] M. Portmann, S. Ardon, A. Seneviratne, “Mitigating Rout-
ing Misbehaviour of Rational Nodes in CHORD,” Sympo-
sium on Applications and the Internet 04, Tokyo, Japan, pp.
541–545, Jan. 2004.

[12] A. Singh, M. Castro, P. Druschel, A. Rowstron, “Defend-
ing Against Eclipse Attacks on Overlay Networks,” In Proc.
ACM SIGOPS 04, Leuven, Belgium, pp. 115–120, Sep.
2004.

[13] E. Sit, R. Morris, “Security Considerations for Peer-to-Peer
Distributed Hash Tables,” In Proc. IPTPS 02, Cambridge,
Massachusetts, pp. 261–9, Mar. 2002.

[14] M. Srivatsa, L. Liu, “Vulnerabilities and Security Threats in
Structured Peer-to-Peer Systems: A Quantitative Analysis,”
In Proc. IEEE ACSAC 04, Tuscon, Arizona, pp.252–261 ,
Dec. 2004.

[15] A. Stavrou, A. Keromytis, D. Rubenstein, “Exploting Struc-
ture in DHT Overlays for DoS Protection,” Columbia Uni-
versity Computer Science Tech. Rep. CUCS-019-04, May
2004.

[16] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, H. Balakr-
ishnan, “Chord: A Scalable Peer-to-Peer Lookup Service for
Internet Applications,” In Proc. ACM SIGCOMM 01, San
Diego, California, pp. 149–160, Aug. 2001.

[17] D. Wallach, “A Survey of Peer-to-Peer Security Issues,”
International Symposium on Software Security 02, Tokyo,
Japan, pp. 42–57, Nov. 2002.

[18] M. Waldvogel, P. Hurley, D. Bauer, “Dynamic Replica Man-
agement in Distributed Hash Tables,” IBM Tech. Rep. RZ-
3502, July 2003.

