
Queueing Analysis of Auxiliary-Connection-Enabled
Switches for Software-Defined Networks

Chuanji Zhang, Hemin Yang, George F. Riley, and Douglas M. Blough
School of Electrical and Computer Engineering, Georgia Institute of Technology

{jenny.zhang, hyang350, riley, doug.blough}@ece.gatech.edu

Abstract— Software-Defined Networking (SDN) is a powerful
technology to enable future network innovations, especially
for data center networks. However, the limited capacity of
the switch-to-controller link is a scalability issue for data
center deployments. Auxiliary connections are introduced in the
OpenFlow 1.3 Specification to help alleviate switch-to-controller
link overflow and improve the scalability of SDN. In this paper,
an analytical model is proposed to study the performance
of auxiliary connections with OpenFlow switches. This model
characterizes different interactions between the controller and
the auxiliary-connection-enabled switches with limited buffer
space. The model produces evaluation results in seconds for
switches with realistic data center traffic loads, which would
require days of compute time with network simulation. The
analytical model is validated for lower traffic loads using ns-
3 and an example in-depth analysis of switch performance is
carried out with typical data center traffic loads to illustrate the
utility of the approach. To the best of our knowledge, this is the
first paper to study auxiliary connections for SDN analytically.

I. INTRODUCTION

Software-Defined Networking (SDN) is an emerging net-
work technology which enables flexible network manage-
ment and faster network innovations. It has been a popular
candidate for data center network since its emergence. In
SDN, the controller configures the network behaviors by
installing flow entries on the switches using southbound
protocols. OpenFlow is the de facto southbound protocol of
SDN and is envisioned as its enabler. However, due to the
large traffic demand in the data center and the weak capacity
of OpenFlow switches, the scalability issues arise. One of the
issues is the limited capacity of the switch-to-controller link.
An edge switch in an enterprise data center can see 100k new
flows per second [1], which corresponds to a large packet in
traffic load on the switch-to-controller link. The demand
will get much higher on the core switches, in commercial
cloud data center, and as the usage of DCN is increasing
dramatically recently. Besides, the collection of statistic and
network status is also conducted via the switch-to-controller
link. Such communications contribute to the traffic load on
the switch-to-controller link by a non-negligible fraction [2].
Moreover, in-band SDN is proposed [3] and reinforces the
need to have sufficient switch-to-controller link bandwidth.
In order to address this challenge, auxiliary connections
were introduced from OpenFlow 1.3 [4] to exploit the par-
allelism of switch implementation. The auxiliary connection
is already enabled by many open-source SDN controllers
such as OpenDaylight. Besides, some academic works also

propose auxiliary connections are beneficial [5]. However,
the auxiliary connection is not fully studied yet at the
switch side. Therefore, an understanding on the potential of
auxiliary connections in improving network performance is
a prerequisite for its real-world data center deployment. In
this context, an analytical model which produces evaluation
results with realistic data center traffic loads is indispensable.

In this paper, we develop a queueing model for auxiliary-
connection-enabled switches with limited buffer space. The
model captures not only the packet in interaction, but also
the stats/feature request/reply interactions, which are of great
importance to enable SDN benefits, such as efficient resource
allocation. Equations are derived to evaluate the network
performance. The model is validated for lower traffic loads
using the network simulator ns-3 [6], where network proto-
cols including OpenFlow are implemented. Our model is then
used to perform an in-depth analysis of switch performance
under realistic data center traffic loads. In particular, we
thoroughly characterize the packet loss rate, average number
of packets in switch, and flow setup delay in the network.
With limited hardware resource available at switch to build
auxiliary connections, our model can serve as a tool to
predict network performance and provision switches with the
appropriate number of connections to satisfy the network
QoS requirements. To the best of our knowledge, this is
the first analytical model of auxiliary-connection-enabled
OpenFlow switches. The rest of the paper is organized as
follows. The background is provided in Section II. The
queueing model is developed and validated in Section III.
Moreover, the network performance evaluation is provided
in Section IV. Finally, the paper is concluded in Section V.

II. BACKGROUND

A. OpenFlow-based SDN and Auxiliary Connections

As the de facto southbound protocol of SDN, Open-
Flow enables the communication between the controller and
switch. When a switch receives a packet from a host, it
iterates through its flow tables to look for matched flow
entry. If the switch cannot find a matched entry, it sends
a packet in message to the controller via the switch-to-
controller link. It can either send only the packet header
with the payload buffered at the switch, or send the whole
packet to the controller without buffering it depending on
the switch implementation. The first approach suffers from
the limited switch buffer size, while the second one suffers

�������	
���	���������
�
��
���������	�����
	�������������������	��������������������	���� �!�����
!"�	
��#��
���

�$%&�&'(%)&���(&(*��*+(�,���-������... 497



from the limited bandwidth of the switch-to-controller link.
With auxiliary connections implemented and the switch-to-
controller link limitation addressed, the second approach
is advantageous since it avoids switch buffer overflow.
Therefore in this work, we focus on the second approach,
which is utilized by Open vSwitch 2.7 and after. Once the
controller receives the packet in message, it will instruct the
switch to forward the incoming packets and install a new
flow entry. Besides this packet in interaction, the controller
also sends messages like feature/stats request to OpenFlow
switches periodically to query necessary information for
network management. The replies from OpenFlow switches
are feature/stats reply.

By default, the channel between an OpenFlow switch
and controller is a single network connection. In order to
exploit the parallelism of switch implementation, OpenFlow
1.3 proposed to create auxiliary connections besides the main
connection between switches and the controller. According
to the specification, the controller is free to use the various
switch connections for sending OpenFlow messages at its
entire discretion. Thus we assume that the auxiliary connec-
tions behave the same as the main connection and they are
all referred to as multiple connections in this work.

B. Related Work

Analytical models have been developed for SDN [7]–
[12], but they are limited in the following aspects. First,
none of them considers auxiliary connections in their model.
Second, the only interaction considered in these works is the
packet in process. They omit the feature/stats request/reply
interactions. Furthermore, only [10] considers a realistic
OpenFlow switch with limited buffer space. Without a re-
alistic assumption of the OpenFlow switch, the models will
not be able to capture the accurate network performance,
such as packet loss rate. Finally, the validation results are
not provided in [7]. In this context, we propose our model
to compensate for these limitations.

III. ANALYTICAL MODEL

In this section we develop and validate the queueing model
of auxiliary-connection-enabled switches as shown in Fig.1.

A. Queueing Model

The switch is modeled as a two-node queueing network
composing of S0 and S1. Node S0 collects all the incoming
messages to the switch while S1 sends messages to the
controller. External packets from the network arrive at S0
according to a Poisson process with rate λS . Its service time
is exponentially distributed with rate μS0. We assume that the
probability of packets not being sent to controller is β, e.g.,
packets from the matched flows. The messages need to be
sent to the controller, e.g., packets from the unmatched flows,
will be sent to S1. The multiple connections between the
switch and controller are modeled as W servers of S1, with
exponentially distributed service times at rates μ1, μ2 · · ·μW .
The total buffer space at the switch is limited at N and packet
loss will happen if the buffer space is full.

Fig. 1. Queueing model of auxiliary-connection-enabled switches for SDN.
The switch is modeled as a two-node queueing network composing of S0
and S1. The controller is modeled as a single queue node C.

The controller is modeled as a single queue node C with
service time, following exponential distribution at rate μC ,
which includes both the controller processing time and the
transmission time to switch, and is positively correlated
with W since the transmission time is dependent on the
number of connections. The incoming traffic to C is made
up of the messages from the switch, (such as packet in, fea-
ture/stats reply) and the controller-generated messages (such
as flow mod, feature/stats request). The second type of mes-
sages is generated according to a Poisson process with rate
λC . The incoming traffic to C either causes a corresponding
message to be sent to switch, (e.g., a packet out message
will be sent to the switch for each packet in message) or
will be finished at the controller (e.g., the controller collects
the statistics with the stats reply messages). We assume
the probability that the incoming messages are finished
at controller is α. Parameter λC and α varies based on
the number of feature/stats request/reply messages in the
network, and is used to model these interactions. Since SDN
controller is implemented on a high-power server, we assume
the buffer space of C is unlimited.

B. Model Analysis

This queueing model can be analyzed as a three-
dimensional continuous time Markov chain (CTMC) using
quasi-birth-death process [13]. Its multidimensional state
space T is given as set of tuples:

T = {(i, j, k)|i, j, k ∈ N0, j + k ≤ N},
where i, j, k is the number of packets in node C, S0, and
S1. With i as the level variable, the transition rate matrix
of the CTMC can be grouped into finite sub-matrices with
block structures: B0, A0, A1, and A2, which is given as:

Q =

T0 T1 T2 T3 · · ·⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

T0 B0 A0 0 0 · · ·
T1 A2 A1 A0 0 · · ·
T2 0 A2 A1 A0 · · ·
T3 0 0 A2 A1 · · ·
...

...
...

...
...

. . .

,

where Ti is a subset of T with the same i value. Moreover,
B0 is the transition rate matrix within level i = 0, and
A2, A1, A0 are transition rate matrices from level i to level

�������	
���	���������
�
��
���������	�����
	�������������������	��������������������	���� �!�����
!"�	
��#��
���

498



i − 1, within level i, and from level i to level i + 1,
respectively. Taking j as the second level variable, each of
the matrices can be further grouped into sub-matrices to
determine its elements.

1) A0: If the value of i increases by 1, the incoming
packet at C can come from the controller-generated messages
or from the switch, and thus the value of k does not change or
decreases by 1, respectively. The value of j does not change
in both cases. Therefore, A0 can be structured as:

A0 =

Ti+1,0 Ti+1,1 Ti+1,2 · · · Ti+1,N⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

Ti,0 C0 0 0 · · · 0
Ti,1 0 C1 0 · · · 0
Ti,2 0 0 C2 · · · 0

...
...

...
...

. . .
...

Ti,N 0 0 0 · · · CN

.

Matrix Cj is dependent on the second level variable j.

Cj

(k,k′ )∈NN−j×NN−j
=

⎧⎪⎨
⎪⎩
λC , if k

′
= k

μS1, if k
′
= k − 1

0, Otherwise
,

where Nn denotes the set of natural numbers {0, 1, · · ·n},
and μS1 is the overall service rate at queue node S1:

μS1 =

{
μ1 + · · ·+ μk, if k < W

μ1 + · · ·+ μR, Otherwise
.

2) A2: If the value of i decreases by 1, the outgoing
message either goes to S0 or is finished at C, and thus the
value of j increases by 1 or does not change, respectively.
The value of k does not change in both cases. Thus A2 is:

A2 =

Ti−1,0 Ti−1,1 Ti−1,2 · · · Ti−1,N⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

Ti,0 D0 E0 0 · · · 0
Ti,1 0 D1 E1 · · · 0
Ti,2 0 0 D2 · · · 0

...
...

...
...

. . .
...

Ti,N 0 0 0 · · · DN

,

where

Dj

(k,k′ )∈NN−j×NN−j
=

{
αμC , if k

′
= k

0, Otherwise
,

Ej

(k,k′ )∈NN−j×NN−j−1
=

{
(1− α)μC , if k

′
= k

0, Otherwise
.

3) A1: If the value of i does not change, the value of j
can increase by 1, decrease by 1, or do not change. Thus,
A1 is structured as following:

A1 =

Ti,0 Ti,1 Ti,2 · · · Ti,N⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

Ti,0 G0 H0 0 · · · 0
Ti,1 F 1 G1 H1 · · · 0
Ti,2 0 F 2 G2 · · · 0

...
...

...
...

. . .
...

Ti,N 0 0 0 · · · GN

.

If i does not change and j decreases by 1, the output
message of S0 can either be forwarded to S1 with probability
1− β, or be finished at switch with probability β. Thus

F j

(k,k′ )∈NN−j×NN−j+1
=

⎧⎪⎨
⎪⎩
βμS0, if k

′
= k

(1− β)μS0, if k
′
= k + 1

0, Otherwise
.

Next, we derive matrix Hj , where j increases by 1 and k
does not change. The incoming packet to S0 is from the
external network since i does not change.

Hj

(k,k′ )∈NN−j×NN−j−1
=

{
λS , if k

′
= k

0, Otherwise
.

The matrix Gj

(k,k′ )∈NN−j×NN−j
is a diagonal matrix, whose

elements stand for the transition rates where the values of
i, j, k do not change. It ensures that all elements in each row
of Q sum up to 0. Its diagonal elements are:

Gj
(k,k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−λC − λS − μC , if j = 0 and k = 0

−λC − λS − μC − μS1,

if j = 0 and 0 < k < N

−λC − λS − μC − μS0,

if k = 0 and 0 < j < N

−λC − μS1 − αμC , if j = 0 and k = N

−λC − μS0 − αμC , if k = 0 and j = N

−λC − μS1 − αμC − μS0,

if 0 < j < N and k = N − j

−λC − λS − μC − μS1 − μS0,

if 0 < j < N and 0 < k < N − j

4) B0: Matrix B0 has the same structure, and sub-
matrices F 0,j , H0,j as F j , Hj in A1. The only difference
is the diagonal matrix G0,j , where

G0,j
(k,k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−λC − λS , if j = 0 and k = 0

−λC − λS − μS1, if j = 0 and 0 < k < N

−λC − λS − μS0, if k = 0 and 0 < j < N

−λC − μS1, if j = 0 and k = N

−λC − μS0, if k = 0 and j = N

−λC − μS1 − μS0,

if 0 < j < N and k = N − j

−λC − λS − μS1 − μS0,

if 0 < j < N and 0 < k < N − j

This CTMC process is stable if πAA01 < πAA21,
where πA is the steady-state probability vector of the
generator matrix A = A0 + A1 + A2, and 1 is a column
vector of 1’s. With a stable CTMC and the transition
rate matrix Q constructed, the steady-state probability
vector π can be calculated. First, we partition π according
to the level variable i: π = [�π0, �π1, · · · ]T , where �πi =
[πi,0,0, πi,0,1, · · · , πi,0,N , πi,1,0, · · · , πi,1,N−1, · · · , πi,N,0].
The global balance equations for i > 0 is:

�������	
���	���������
�
��
���������	�����
	�������������������	��������������������	���� �!�����
!"�	
��#��
���

499



�πi−1A0 + �πiA1 + �πi+1A2 = 0. (1)

Since �πi can be defined in terms of �πi−1 and the transitions
between the levels are independent of level i, a constant rate
matrix R is defined to lead to the matrix-geometric equation:

�πi = �πi−1R = �π1R
i−1, i > 0. (2)

Substitute Equation (2) into Equation (1), we can get

A0 +RA1 +R2A2 = 0 (3)

to solve R. Finally, the steady-state probability vector �πi can
be obtained using R, the boundary condition:

�π0B0 + �π1A2 = 0,

�π0A0 + �π1A1 + �π2A2 = 0,

and the fact that the sum of all elements in π is 1.

C. Performance Analysis

With the steady-state probability calculated, we derive the
equations for main network performance metrics, including
the packet loss rate (PS), average number of packets in
switch (LS), and the flow setup delay (Tsetup).

The average departure rates at C, S0, and S1 are:

THC = μC(1−
∑

(0,j,k)∈T

π0,j,k),

THS0 = μS0(1−
∑

(i,0,k)∈T

πi,0,k),

THS1 = μS1(1−
∑

(i,j,0)∈T

πi,j,0).

In stationary state, the incoming and outgoing traffic at
switch obeys the following relation:

[λS + (1− α)THC ](1− PS) = β ∗ THS0 + THS1,

and thus the loss rate at switch can be derived. The average
number of customers in each queue node (LC , LS0, LS1) and
in the switch (LS) is:

LC =
∑

(i,j,k)∈T

i× πi,j,k,

LS0 =
∑

(i,j,k)∈T

j × πi,j,k,

LS1 =
∑

(i,j,k)∈T

k × πi,j,k,

LS = LS0 + LS1.

The flow setup delay is defined as the time interval between
the time that the first packet of a new flow arrives at the
switch and the time it is forwarded by the switch to network.
It is composed of the queueing delays at the switch and
controller and the propagation delay. Based on Little’s Law,

Tsetup =
LS0

THS0
+

LS1

THS1
+

LC

THC
+

LS0

THS0
+ Tprop,

where Tprop is the two-way propagation delay.

TABLE I
PARAMETER SETTINGS

Parameters Validation Evaluation
λC , μC [packets/s] 70, 220W 10k, 120000W
λS [packets/s] 25− 370 100k − 1000k
μS0 [packets/s] 2000 1000k
μ1, μ2, · · · [packets/s] 100, 100, · · · 50k, 50k, · · ·
W,N [1, 2, 3], 20 [1, 2, 3], 10− 120
α, β 1%, 80% 10%, 87%− 99%

D. Multiple-Switch Network

To utilize the switch model in network with M switches,
we assume that for a certain message sent from controller
to switch, the probability that the destination is switch
1, 2, · · · ,M is p1, p2, · · · , pM and

∑M
m=1 pm = 1. Thus,

the transition rate where switch m receives a packet from
controller is pm(1 − α)μC , and transition rate where C
receives a packet from switches is

∑M
m=1 μ

m
S1. The network

becomes a 2M +1 dimensional CTMC and the performance
of each switch can be analyzed following similar procedure
as presented above. Further exploration on the multiple-
switch case will be conducted in the future.

E. Validation through Simulation

We first confirm the mathematical solution using Python
simulation [14] and the parameters are in the “Validation”
column of Table I. The simulated queueing model reflects
the structure shown in Fig.1. Our analytical results for
PS , LS and Tsetup matched exactly with the simulation
results validating the correctness of our analyses.

In order to validate our queueing model in a realistic
network environment, we used ns-3 to simulate an SDN net-
work with OpenFlow and auxiliary connections implemented
[15]. There is one OpenFlow switch with varying number of
connections to the controller. There are 200 hosts attached
to the switch and each host starts to send traffic randomly.
In the simulation, we use a realistic traffic generator on each
host to relax the assumption of the Poisson arrival process
used in the analytical model. The traffic is ON/OFF and
the bitrate is constant. The actual packet inter-arrival rate
to switch (λS) is calculated based on the simulation results.
The “Validation” column of Table I lists some additional
parameters. The results are shown in Fig.2, where each data
point is obtained based on ten simulation runs using different
random seeds. The simulation results match well with the
theoretical ones indicating that our analytical model is able
to capture the trend of performance changes.

In next section, we evaluate performance for a switch with
a varying number of connections using the parameters in the
“Evaluation” column of Table I. Note that the packet inter-
arrival rate is more than 3 orders of magnitude larger than
the value used in this section. With this larger inter-arrival
rate, Python simulation would take several days, the ns-3
simulation would need almost one week, but evaluation using
our analytical model required only seconds.

IV. NETWORK PERFORMANCE EVALUATION

In this section, we use our analytical model to evaluate
switch performance with 1–3 switch-to-controller connec-

�������	
���	���������
�
��
���������	�����
	�������������������	��������������������	���� �!�����
!"�	
��#��
���

500



(a) (b) (c)
Fig. 2. Validation for analytical model: (a) packet loss rate, (b) average number of packets in switch, (c) average flow setup delay

tions. The parameter settings are from the “Evaluation”
column in Table I, and we vary λS , 1−β (probability that an
incoming packet goes to the controller), and N . Evaluations
such as these can be used to provision switches with an
appropriate number of connections based on the expected
traffic characteristics within a deployed network.

A. Varying Packet Arrival Rate

As shown in Fig.3(a), the packet loss rate of the single-
connection case increases fast when λS > 400k and reaches
around 50% when λS = 900k. On the other hand, the
loss rate does not increase until λS reaches 850k packets/s
for the multiple-connection cases. The three-connection case
outperforms the two-connection case but the improvement
(around 1%) is minimal. In this case, the capacity limitation
exists in S0, so increasing the number of connections in S1
cannot improve the performance significantly.

We use the buffer utilization level to indicate the average
number of packets stored in switch (shown in Fig.3(b)). With
a smaller packet arrival rate (λS < 400k), the switch buffer
utilization level stays at a relatively low level for all cases,
which corresponds with a zero packet loss rate. The switch
buffer becomes more utilized as λS increases, and finally
is bounded by the buffer size limitation. A high utilization
level indicates that the switch is full most of the time and
thus high loss rate is caused. When the utilization level is
greater than 10%, all the cases start to induce packet loss.

Fig.3(c) shows the average flow setup delay. Multiple
connections can improve the flow setup delay by 37-50%
with varying λS . According to the queueing theory, the
queueing delay depends on the buffer size. Thus when the
buffer utilization level is greater than 90%, the flow setup
delay of the single-connection case stays at a fixed value.

B. Varying 1− β

The value of 1 − β depends on the network traffic
characteristics. For example, if the average flow length in
the network is low, the probability that a packet is the first
packet of a flow and needs to go to the controller is high,
which means 1−β is high. In general, when the probability
of the incoming packets going to the controller increases, the
performance (as shown in Fig.4) persists a similar trend as
λS increases since they both burden S1. However, while the
value of λS impacts the overall load on the switch, including
both S0 and S1, the change of 1 − β will induce different

load to S1 specifically. Thus, a higher processing rate of S1
can improve the performance significantly. The performance
improvement induced by utilizing more connection is much
more obvious compared with the case when we vary λS .
For example, when 1− β = 12%, the three-connection case
induces a notably better performance for all the metrics than
the two-connection case.

C. Varying Switch Buffer Space
As shown in Fig.5(a), as the switch buffer size increases,

the multiple-connection cases can decrease the loss rate
by 30-45% compared with the single-connection case and
achieve a stable service. With varying buffer space available
in the switch, the loss rate with single-connection case stays
at 50%, indicating more buffer space is required to provide
a stable service. In general, with more connections in use,
the switch requires less buffer to provide a stable service.

In terms of buffer utilization level as shown in Fig.5(b), the
switch with only one connection tends to be fully occupied
all the time, and thus the packet loss rate stays high. Cases
with more connections always generate a lower utilization
level. For example, the three-connection case incurs around
10% less utilization than the two-connection case.

Fig.5(c) shows that the flow setup delay of the single-
connection case increases linearly with the switch buffer
size. This linear increase can be justified by queueing theory,
which states that a larger buffer size allows more packets
waiting in the queue and thus may cause a longer delay.
With only one connection, more buffer space does not help
with the packet loss rate, but generates a longer flow setup
delay instead. On the other hand, with multiple connections,
the switch maintains a low buffer utilization level, and thus
the flow setup delay stays at a lower level.

In summary, with different traffic characteristics, different
number of connections are recommended to improve the
network performance. Our model can serve as a tool to find
the minimum number of required connections.

V. CONCLUSION

In this paper, we propose and validate an analytical
queueing model for auxiliary-connection-enabled OpenFlow
switches. This is the first known work to analytically study
auxiliary connections in SDN. Our analysis can be used in
the network deployment phase to provision switches with
the appropriate number of auxiliary connections based on
expected traffic characteristics.

�������	
���	���������
�
��
���������	�����
	�������������������	��������������������	���� �!�����
!"�	
��#��
���

501



(a) (b) (c)
Fig. 3. Network performance with varying λS , N = 100, β = 90% (a) packet loss rate, (b) switch buffer utilization, (c) flow setup delay

(a) (b) (c)
Fig. 4. Network performance with varying 1− β, λS = 800k, N = 100 (a) packet loss rate, (b) switch buffer utilization, (c) flow setup delay

(a) (b) (c)
Fig. 5. Network performance with varying N, λS = 800k, β = 90% (a) packet loss rate, (b) switch buffer utilization, (c) flow setup delay

REFERENCES

[1] T. Benson, A. Akella, and D. A. Maltz, “Network traffic character-
istics of data centers in the wild,” in Proceedings of the 10th ACM
SIGCOMM conference on Internet measurement. ACM, 2010, pp.
267–280.

[2] A. Bianco, P. Giaccone, A. Mahmood, M. Ullio, and V. Vercellone,
“Evaluating the sdn control traffic in large isp networks,” in Communi-
cations (ICC), 2015 IEEE International Conference on. IEEE, 2015,
pp. 5248–5253.

[3] H. Huang, S. Guo, W. Liang, K. Li, B. Ye, and W. Zhuang, “Near-
optimal routing protection for in-band software-defined heterogeneous
networks,” IEEE Journal on Selected Areas in Communications,
vol. 34, no. 11, pp. 2918–2934, 2016.

[4] The Open Networking Foundation, “OpenFlow Switch Specification,”
Jun. 2012.

[5] L. F. Müller, R. R. Oliveira, M. C. Luizelli, L. P. Gaspary, and M. P.
Barcellos, “Survivor: an enhanced controller placement strategy for
improving sdn survivability,” in Global Communications Conference
(GLOBECOM), 2014 IEEE. IEEE, 2014, pp. 1909–1915.

[6] “ns-3 a discrete-event network simulator ns-3.16,”
https://www.nsnam.org/docs/release/3.16/doxygen/index.html.

[7] S. Azodolmolky, R. Nejabati, M. Pazouki, P. Wieder, R. Yahyapour,
and D. Simeonidou, “An analytical model for software defined net-
working: A network calculus-based approach,” in Global Communi-
cations Conference (GLOBECOM), 2013 IEEE. IEEE, 2013, pp.
1397–1402.

[8] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-
Gia, “Modeling and performance evaluation of an openflow architec-

ture,” in Proceedings of the 23rd international teletraffic congress.
International Teletraffic Congress, 2011, pp. 1–7.

[9] K. Sood, S. Yu, and Y. Xiang, “Performance analysis of software-
defined network switch using m/geo/1 model,” IEEE Communica-
tions Letters, vol. 20, no. 12, pp. 2522–2525, 2016.

[10] Y. Goto, H. Masuyama, B. Ng, W. K. Seah, and Y. Takahashi, “Queue-
ing analysis of software defined network with realistic openflow–based
switch model,” in Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS), 2016 IEEE 24th Inter-
national Symposium on. IEEE, 2016, pp. 301–306.

[11] B. Xiong, K. Yang, J. Zhao, W. Li, and K. Li, “Performance evalua-
tion of openflow-based software-defined networks based on queueing
model,” Computer Networks, vol. 102, pp. 172–185, 2016.

[12] K. Mahmood, A. Chilwan, O. Østerbø, and M. Jarschel, “Modelling
of openflow-based software-defined networks: the multiple node case,”
IET Networks, vol. 4, no. 5, pp. 278–284, 2015.

[13] G. Bolch, S. Greiner, H. De Meer, and K. S. Trivedi, Queueing
networks and Markov chains: modeling and performance evaluation
with computer science applications. John Wiley & Sons, 2006.

[14] P. Geraint, K. Vince, Lieke19, L. Sam, caipirginka, T. G. Badger,
Nikoleta, C. Alex, and J. Adam, “Ciw: v1.1.5,” 2018.

[15] H. Yang, C. Zhang, and G. Riley, “Support multiple auxiliary tcp/udp
connections in sdn simulations based on ns-3,” in Proceedings of the
Workshop on ns-3. ACM, 2017, pp. 24–30.

�������	
���	���������
�
��
���������	�����
	�������������������	��������������������	���� �!�����
!"�	
��#��
���

502


