
The SCREAM Approach for Efficient Distributed Scheduling with Physical
Interference in Wireless Mesh Networks∗

Gurashish Brar
Microsoft Corporation

Redmond, Washington, USA
Gurashish.Brar@microsoft.com

Douglas M. Blough
Georgia Institute of Technology

Atlanta, Georgia USA
doug.blough@ece.gatech.edu

Paolo Santi
IIT-CNR
Pisa, Italy

paolo.santi@iit.cnr.it

Abstract

It is known that CSMA/CA channel access schemes are
not well suited to meet the high traffic demand of wire-
less mesh networks. One possible way to increase traffic
carrying capacity is to use a spatial TDMA (STDMA) ap-
proach in conjunction with the physical interference model,
which allows more aggressive scheduling than the protocol
interference model on which CSMA/CA is based. While an
efficient centralized solution for STDMA with physical in-
terference has been recently proposed, no satisfactory dis-
tributed approaches have been introduced so far. In this
paper, we first prove that no localized distributed algorithm
can solve the problem of building a feasible schedule under
the physical interference model. Motivated by this, we de-
sign a global primitive, called SCREAM, which is used to
verify the feasibility of a schedule during an iterative dis-
tributed scheduling procedure. Based on this primitive, we
present two distributed protocols for efficient, distributed
scheduling under the physical interference model, and we
prove an approximation bound for one of the protocols. We
also present extensive packet-level simulation results, which
show that our protocols achieve schedule lengths very close
to those of the centralized algorithm and have running times
that are practical for mesh networks.

1 Introduction
In wireless mesh networks, wireless backbone nodes

(also calledwireless routersin the following) must convey
traffic generated by wireless clients to a few nodes that act
as gateways to the Internet. For these networks, the main
design concern is increasing the traffic carrying capacity of
the wireless backbone as much as possible. The main factor
that limits capacity in mesh networks isinterference, which
is a consequence of using a shared communication medium.
Hence, an accurate modeling of interference is fundamen-
tal in order to derive theoretical and/or simulation-based re-
sults of practical relevance. The two main interference mod-
els relevant to wireless mesh networks are theprotocoland

∗This research was supported in part by the National Science Founda-
tion under Awards ENG-0225417, INTL-0405157, and CNS-0721596.

physicalinterference models [11].
In the protocol model, a communication from nodeu to

nodev is successful if no other node within a certaininter-
ference rangefrom v is simultaneously transmitting. Due to
its simplicity, and to the fact that this model can be used to
mimic the behavior of CSMA/CA networks such as IEEE
802.11 [1], the protocol interference model has been mostly
used in the literature. In the physical interference model, a
communication between nodesu andv is successful if the
SINR (Signal to Interference and Noise Ratio) atv (the re-
ceiver) is above a certain threshold, whose value depends
on the desired channel characteristics (e.g., data rate). This
model is less restrictive than the protocol interference model
and higher network capacity can in general be achieved by
applying the physical interference model1.

Recent research indicates that CSMA/CA is not suitable
to meet the traffic demands of wireless mesh networks. One
reason is that CSMA/CA is a conservative mechanism: due
to the combination of carrier sensing and collision avoid-
ance techniques, many network nodes are silenced when a
certain communication takes place. Accordingly, existing
implementations of 802.11-based mesh networks disable
the collision avoidance mechanism (i.e., the RTS/CTS mes-
sage exchange) [3], or completely new TDMA-like MAC
protocols are proposed for mesh networks [18, 23].

The above discussion motivates use of the physical in-
terference model in investigations of the capacity of wire-
less mesh networks. A major difficulty lies in the com-
plexity of handling physical interference. In fact, most of
the related work on scheduling with physical interference
presents exponential time centralized and/or distributed pro-
tocols [7, 8, 9, 13, 21], which are clearly infeasible. Other
works dealing with the physical interference model consider
only a simplified scenario with unit traffic demand on each
link [6, 15, 16], which is not representative of real-world

1The physical interference model is representative of a scenario that
does notuse CSMA techniques; instead, transmissions must be carefully
scheduled, using TDMA-like channel access, so that only sender/receiver
pairs that do not conflict with each other transmit simultaneously.

wireless mesh network deployments. In a recent paper [4],
we published the firstcentralizedscheduling algorithm for
the physical interference model that runs in polynomial time
and has a proven approximation factor relative to the opti-
mal schedule. Currently, there is no known distributed algo-
rithm for physical interference with a proven approximation
factor. In fact, to our knowledge, the heuristic algorithm
of [10] is the only existing distributed scheduling algorithm
that accounts for physical interference.

In this paper, we take a novel approach to distributed
scheduling, which is based on a global primitive that
we refer to as a SCREAM. The SCREAM primitive re-
sembles the busy tone mechanism which has been pro-
posed to improve the performance of CSMA-CA schemes
[12, 22]. However, in contrast with the busy tone mech-
anism, SCREAM is a multi-hop, network-wide primitive,
i.e., nodes relay a detected SCREAM in order to propagate
it throughout the network.

In our approach, nodes iteratively build a feasible sched-
ule one slot at a time, and the SCREAM primitive is used
to quickly determine whether communications being at-
tempted in a particular slot are feasible. In this way, and
using ideas from our centralized scheduling algorithm [4],
we are able to design a distributed scheduler that iseffi-
cient in terms of running timeand maintains theproven
approximation boundof [4]. We also present a variant of
our scheduling algorithm that has slightly higher schedule
length, i.e. lower throughput, but runs substantially faster.
For the proposed algorithms, we present detailed simulation
results that evaluate their running times, schedule lengths,
and throughputs, and demonstrate that both algorithms are
able to outperform 802.11 in terms of throughput for sce-
narios representative of wireless mesh networks.

2 Network Model and Assumptions
We consider a wireless mesh network composed ofn

nodes (wireless routers). Links among nodes are repre-
sented by acommunication graphG = (V,E), whereV
is the set of nodes, and edgee = (u, v) ∈ E if and only
if a link between nodesu and v exists in absence of in-
terference. We do not assume any specific radio propaga-
tion model, nor that all nodes use the same transmission
power. Hence, unidirectional links can be present in the
physical communication graph. However, to provide fair
comparisons against 802.11, we assume that link-layer re-
liability (using ACKs) is employed even for STDMA [17].
We, therefore, assume that unidirectional links are not used
even if they are present and, hence, we ignore them inG.

We assume that no dynamic transmit power control tech-
nique is used, i.e. all the nodes send packets using a fixed
transmit power level (which, however, can be different for
every node). We model interference using a variation of the
physical interference model [11] introduced in [4], which
we summarize for completeness. In contrast with [11], the

model of [4] accounts for link-layer reliability. In particu-
lar, it is assumed that a packet sent by nodeu is correctly
received by nodev if and only if the packet is successfully
received byv, and the ACK sent by nodev is correctly re-
ceived by nodeu. Furthermore, for a transmission from
nodex to nodey that is concurrent with the packet on(u, v),
the model accounts for the interference both from nodex’s
data packetand from nodey’s ACK. In this paper, we con-
sider a minor variation of the model of [4], where slots are
divided into two sub-slots, one for data packet transmission
and one for ACK transmission, so that data packets and
ACKs do not overlap. Thus, a packet sent fromu to v is
correctly received if and only if:

Pv(u)
N +

∑
x∈V ′ Pv(x)

≥ β and
Pu(v)

N +
∑

y∈V ′′ Pu(y)
≥ β ,

whereV ′ contains all nodes that are transmitting data pack-
ets in the same slot asu, V ′′ contains the corresponding
nodes that send ACKs to the nodes inV ′ in that slot,Pr(t)
denotes the received power atr of the signal transmitted by
nodet, N is the background noise, andβ is a constant that
depends on the desired data rate, modulation scheme, etc.
Based on this interference model, we say that a setE′ ⊂ E
of transmissions isfeasibleif and only if all of them can be
scheduled concurrently and correctly received.

We now introduce the concept ofinterference diameter,
which is used in the definition of our protocols.

Definition 1 (Sensitivity Graph). For communication
graphG = (V,E), the sensitivity graphGS = (V,ES) is
defined on the same node setV . Directed edge(u, v) ∈ ES

if and only ifv can detect some activity on the channel when
u is transmitting, and all other nodes remain silent.

It is easy to see that the sensitivity graph is a super-graph
of the communication graphG = (V,E).

Definition 2 (Interference Diameter). The interference di-
ameter of a network represented by the sensitivity graph
GS = (V,ES) is defined as the maximum hop distance be-
tween any two nodes inGS . Formally,

ID(GS) = max
u,v∈V

dGS (u, v) ,

wheredGS (u, v) is the hop length of the minimum length
directed path connectingu to v in GS . If GS is not strongly
connected, we defineID(GS) = ∞.

Since we can assume that the communication graph of
a wireless mesh is strongly connected, and the sensitivity
graph is a super-graph of the communication graph, from
now on we assume thatGS is also strongly connected, i.e.
the interference diameter is finite.

Traffic generated at each node in the mesh is conveyed to
pre-defined gateway nodes. We assume that traffic is routed

to the gateways along reverse trees rooted at the gateways,
which thus form a routing forestRF . A node that is not
a gateway decides which tree to join using a simple crite-
rion, i.e. minimum hop distance to the root, breaking ties
randomly. Note that the set of edges formingRF must be a
subset ofE. In the following, we use the term edge to refer
to an edge inRF only. Each node has some traffic demand
associated with it. Since each nodeu is part of exactly one
tree, the aggregated demand on the link connecting nodeu
with its parent is the sum of the demands generated at the
nodes belonging to the subtree rooted atu.

We assume all nodes have their clocks synchronized
to a global time, within a reasonable degree of accuracy.
In subsequent algorithm descriptions, we use the function
SyncSlotBoundary() to wait for the next time period
which is globally synchronized. In Section 6, we investigate
the effect of clock skew on the protocols’ performance.

3 Distributed Scheduling Protocols
In this section, we present two distributed protocols

based on the centralized greedy scheduling algorithm of [4]:
(1) Partially Randomized Protocol (PRP) and (2) Fully De-
terministic Protocol (FDP).

The algorithms share a common approach, proceeding
in rounds and scheduling one slot per round. In each round,
a node with unsatisfied demand is selected as the control
node for the slot through leader election. The algorithms
guarantee that at least one link associated with the con-
troller is scheduled in the slot. This guarantees that the
algorithm will terminate and all demand will be satisfied.
The schedule is augmented in a greedy fashion, by adding
links to the slot in steps. Whenever links are added that
cause previously allocated links to lose packets due to the
additional interference that is generated, this is detected and
the SCREAM primitive is used to notify all nodes that the
last scheduled links should be removed from the slot. Full
details of the protocols are given later in this section. We
begin by presenting the SCREAM primitive and a leader
election protocol based on it.
3.1 The SCREAM Primitive

A significant advantage of the SCREAM primitive is that
it is resilient to collisions in the wireless channel, i.e., it
is guaranteed to work independently of whether collisions
occur or not. Given this property, leader election using
SCREAM has adeterministicexecution time, which pro-
vides a foundation for upper bounding execution time of the
higher-level protocols that use it. This is significant because
most wireless protocols either ignore collisions or deal with
them using probabilistic means.

Let var(i) be a Boolean variable stored at nodeui. The
SCREAM primitive provides a network-wide OR operation
on the Boolean variables stored at each node in the net-
work. That is, after the SCREAM primitive is run, each
node holdsV = var(1) ∨ var(2) ∨ · · · ∨ var(n). The

SCREAM primitive runs throughK SCREAM SLOTS,
whereK ≥ ID(GS), and returnsV as a result. The primi-
tive uses two functions:

1. Scream(): Transmits SMBytes on radio interface;
2. Listen(): Listens for activity on radio interface. Re-

turnstrue if activity detected,false otherwise.
The SCREAM primitive is built from the above two

functions as follows:
SubRoutinebool : SCREAM(var)
relay = var
for sslot = 1→ K do

SyncSlotBoundary()
if (relay = true) then Scream()
elserelay = Listen()

end for
returnrelay

It is important for each node to participate in the above
SCREAM subroutine even if it does not have a variable
value to contribute. These nodes participate passively and
simply relay the scream.

SCREAM is based on the carrier sensing mechanism to
detect activity in the medium. We rely on the basic as-
sumption that carrier sensing is resilient to collisions, i.e., a
node can successfully detect a carrier even if multiple nodes
are concurrently transmitting. In Section 5, we present re-
sults from experiments performed on Mica 2 motes, which
demonstrate the feasibility of the SCREAM primitive.
3.2 Leader Election

Our election algorithm assumes that every node has a
unique id. Letid bits be the number of bits in an id. The
following algorithm performs leader election by selecting
the node with the highest id.LeaderElect(IDi) takes as
input the id of the invoking nodeui, and returnstrue if ui is
the leader, andfalseotherwise.

SubRoutinebool : LeaderElect(IDi)
votedout = false
for j = (id bits− 1)→ 0 do

SyncSlotBoundary()
if (IDi(j) ∧ ¬votedout) then SCREAM(true)
elsevotedout = SCREAM(false) ∨ votedout

end for
return NOTvotedout

In the above algorithm,IDi(j) refers to thej-th bit of
IDi. The algorithm iterates through the bits in the id, start-
ing from the most significant bit. During each iteration,
a network wide OR is performed on the bit values of all
unique ids at the corresponding index. If the OR result does
not match the local bit value, the node is voted out and for
the rest of the iterations contributes with a 0 bit value. At
the end ofLeaderElect’s execution, only the node with
highest ID has not been voted out, and wins the election.

Due to the use of STDMA, which requires loose clock
synchronization, a SyncSlotBoundary() can be accom-
plished without communication among the nodes. A node

TERMINATE

CONTROL

COMPLETE

ALLOCATED

ACTIVE

TRIED

DORMANT
all nodes in state

COMPLETE

demand satisfied

demand satisfied

demand > 0

demand > 0

new slot
created

won leader election

successful handshake
and SCREAM

selected active
failed handshake or
SCREAM, links left

failed handshake or
SCREAM, no links left

Figure 1. PRP/FDP State Transition Diagram

only needs to wait long enough to ensure that every other
node has finished the last SCREAM and it can then proceed
with the next round. Thus, a single SyncSlotBoundary() and
SCREAM together takeO(K) time and the leader election
protocol hasO(K · log n) time complexity, assuming that
id bits = log2 n.
3.3 Partially Randomized Protocol

During PRP’s execution, each node can be in one of the
following mutually exclusive states:

1. CONTROL: controller of the current slot;

2. ALLOCATED: allocated to the current slot;

3. ACTIVE: active node, whose edge is tentatively in-
cluded in the current slot;

4. TRIED: an active node which could not join the cur-
rent slot because of failed handshake;

5. DORMANT: a node which has not been picked up yet
in any of the active subsets;

6. COMPLETE: a node whose demand has been satis-
fied;

7. TERMINATE: the algorithm has terminated

Figure 1 shows PRP’s state transition diagram. For each
slot, one node is chosen as a control node through the leader
election protocol from the previous subsection. Other nodes
that still have demand to be satisfied and do not already have
a link allocated in this slot are in the dormant state and ran-
domly choose to become active in the slot with a certain
probability. Each active, allocated, or control node tries
to transmit at the same time and receive an acknowledge-
ment back from the receiver. Any active node whose trans-
mission fails does not allocate that link in the current slot.
If any transmission fails for an allocated or control node,
the failed transmitter will initiate a SCREAM indicating the
failure. In this case, all active nodes hear the SCREAM and
either move to state TRIED if all of their links have been
tried in the slot or move back to state DORMANT if they
still have untried links. If there is no transmission failure,
all active nodes whose transmissions succeeded move to the
allocated state. In either case (transmission failure or not), a

new set of active nodes is randomly chosen and tried. This
process continues until there are no active nodes, at which
time a new slot is created and the process repeats with a new
control node. Note that the control node for a slot always
schedules a transmission in the slot, meaning there are no
empty slots in the final schedule. The pseudocode in the
remainder of the subsection describes PRP in further detail.

The following is the top level of the pseudocode in
which a leader is chosen for each slot and termination is
checked.
Input: K, upper bound on network interference diameter
Output: Slot: set of reserved slots

scheduleLength: the length of the schedule
Slot← φ
curSlot← 0
curDemand← 0
state← DORMANT
Released← true
repeat

if Released then
if state 6= COMPLETE then

if LeaderElect(IDi) = true then
SyncSlotBoundary()
state← CONTROL
SCREAM(true)

else
SyncSlotBoundary()
if SCREAM(false) = false then

state← TERMINATE
end if

end if
else

LeaderElect(0) # Passive participation
end if

end if
if state 6= TERMINATE then

GreedyScheduleSlot(curSlot, state)
Released = CheckControlRelease(curDemand, state)

end if
curSlot← curSlot + 1
if state = TRIED then

state← DORMANT
end if

until state = TERMINATE
scheduleLength← curSlot

GreedyScheduleSlot() schedules a slot once its control
node is elected.

SubRoutine: GreedyScheduleSlot(curslot, state)
repeat

if state = DORMANT then
if SelectActive() = true then

state← ACTIV E
end if

end if
SyncSlotBoundary()
{# Handshake time step}

HSfail← false
if state = ACTIV E|ALLOCATED|CONTROL
then

HSfail← DoHandShake()
end if
{# Verification time step}
if state = ALLOCATED|CONTROL then

HSfail← SCREAM(HSfail) #Veto Power
else

HSfail← SCREAM(false)
end if
stillActives← false
if state = ACTIV E then

stillActives← true
if HSfail = false then

state← ALLOCATED
assign link tocurSlot
if demand satisfiedthen

state← COMPLETE
else

state← TRIED
end if

else
if untried links leftthen

state← DORMANT
else

state← TRIED
end if

end if
end if
SyncSlotBoundary()
stillActives← SCREAM(stillActives)

until stillActives = false

TheSelectActive() function chooses the active nodes.
In PRP, we use a probabilistic approach to determine active
nodes, i.e. nodes that are in the DORMANT state become
ACTIVE with a certain probabilityp. Nodes that become
active choose one of their untried links with unsatisfied de-
mand at random and attempt to communicate on that link.

The DoHandShake() function performs a two-way
handshake on the communication linkl = (u, v) being
scheduled, which is associated with the head node. The
head node sends a data packet in the first sub-slot to the
tail node. If the tail node correctly receives the packet, it
sends back to the head an ACK packet in the next sub-slot.
Upon correct reception of the ACK, the head node declares
the two-way handshake successful, and the function returns
false. In case of unsuccessful handshake, the function re-
turnstrue. Note thatDoHandShake() is performed by all
links that are tentatively scheduled in the current slot at the
same time, so that if all handshakes succeed, this implies
that the tentative schedule for the slot is valid.

Procedure CheckControlRelease() determines
whether the demand of the control node has been satisfied
at the end of a round. To do this, a network wide OR is
performed using theSCREAM primitive with only the

control node having atrue value if its demand is satisfied.
If the demand of the control node has been satisfied, the
node makes a transition to stateCOMPLETE, otherwise
it remains in stateCONTROL. After possible state
transition, the result of the SCREAM operation is returned
to the invoking procedure. In this way, all the nodes know
whether control has been released and a new leader must
be elected for the next slot.
3.4 Fully Deterministic Protocol

FDP follows the same procedure as PRP, except for the
functioning ofSelectActive(). Instead of randomly choos-
ing whether to become active or not at a given step of a
given slot, FDP deterministically chooses a single node to
become active at each step using the leader election protocol
among all dormant nodes. Each active node successively
tries all of its links on which it has unsatisfied demand un-
til it finds a link that is successful in the slot or it runs out
of unsatisfied links. At that point, the node either moves to
state ALLOCATED (if it was successful) or state TRIED
and a new node is elected to become active. Once there are
no more dormant nodes, a new slot is initiated.

4 Analysis
4.1 Impossibility of Localized Scheduling

We first give some definitions that are used in our proof
that no localized distributed algorithm can be used to com-
pute a feasible schedule under the physical interference
model.
Definition 3 (Link hop distance). The hop distance of any
two linksl1, l2 in the network is the minimum hop distance
between their endpoints in the communication graph.

Definition 4 (Link k-neighborhood). Thek-hop neighbor-
hood of any linkl is the set of links with hop distance from
l at mostk.

Definition 5 (Locality). A distributed scheduling algorithm
is localized if and only if it computes a schedule under the
chosen interference model by taking a decision on whether
a certain linkl can be scheduled in a certain slotti based
only on the information regarding links in thek-hop neigh-
borhood ofl, wherek is an arbitrary constant (k ∈ O(1)).

Theorem 1 (Impossibility result). No localized distributed
algorithm can guarantee to compute a feasible schedule un-
der the physical interference model for the general case of
networks with arbitrary node distribution and arbitrary ra-
dio propagation model.

Sketch.AssumeA is a localized distributed algorithm for
computing a feasible scheduled under the physical interfer-
ence model. By assumption, when considering a specific
link l to be scheduled, the decision on whether linkl can be
scheduled in slotti is taken only by considering information
regarding links in thek-hop neighborhood ofl. Consider a
certain link l′ outside thek-hop neighborhood ofl. Note

that, given the assumption of arbitrary node distribution, we
can always build an example in which the hop diameter of
the network isΘ(n) (e.g., nodes along a line), and choosel
andl′ such that their hop distance isΘ(n) (e.g., links at the
opposite sides of a line). Since by assumptionk = O(1),
we have that such al, l′ link pair always exists. Given then
the link pairl, l′, and given the locality assumption on algo-
rithm A, we have that the decision on whetherl should be
scheduled in slotti is oblivious to whetherl′ is also sched-
uled in the same slot. Assume now that slotti is feasible
if link l is scheduled concurrently to the currently sched-
uled linksEi for ti, but it is infeasible if bothl and l′ are
scheduled concurrently to links inEi. Note that, given the
assumption of arbitrary node distribution and radio propa-
gation model, an example in which this situation occurs can
always be built. Due to the locality assumption, algorithm
A has no possibility to know whetherl′ is also scheduled in
ti when taking the decision about linkl, possibly leading to
the construction of an infeasible schedule.

Note that this theorem can be extended to a weaker no-
tion of locality, in which nodes can communicate up to hop-
distancef(n), with f(n) ∈ o(n). Note also the physical
distance between linksl and l′ in the proof sketch can be
quite small (an endpoint ofl′ can be as close as∆max + ε
from an endpoint ofl, where∆max is the maximum trans-
mission range). Hence, the interference ignored by local-
ized algorithms can be quite large in practice.

4.2 Interference Diameter Analysis

The SCREAM primitive is a fundamental building block
of our scheduling algorithms. For SCREAM to work prop-
erly, an upper bound on the network’s interference diameter
must be known. Recall that SCREAM is invoked with a pa-
rameterK, and we must haveK ≥ ID(GS). This leads to
the problem of estimating (an upper bound to) the interfer-
ence diameter of a certain sensitivity graph.

In the following, we assume that(u, v) ∈ ES if and only
v is within the carrier sensing rangerCS of nodeu. For
simplicity, we also assume that all the nodes in the network
have the same CS range. With these assumptions,GS can
be regarded as an undirected graph. In general the CS range
rCS is at least as large as the communication range2 rc. The
largerrCS is with respect torc, the denser is the sensitiv-
ity graphGS with respect to the communication graphG,
and the lower is the interference diameter. Since we are
interested in anupper boundon the interference diameter,
we can consider the minimum possible meaningful value
of rCS with respect torc, i.e. rCS = rc, and we denote
this common range byr. Note that, under this condition,
the sensitivity graphGS coincides with the communication

2Implicit in this discussion is the fact that we are assuming a determin-
istic radio propagation model, such as the log-distance path model.

graphG. Thus, from now on the concept of interference
diameter will be applied to the communication graphG.

We now introduce theneighbor density, which will be
used to classify the different scenarios we consider.

Definition 6. LetG = (V,E) be the communication graph
of a network composed ofn nodes with communication
range r = r(n). The neighbor densityρ(G) of G is the
average node degree inG, i.e. the average number of 1-hop
neighbors of a network node.

In the next subsection, we consider two different scenar-
ios, with increasing neighbor density: square grid deploy-
ments (ρ(G) = Θ(1)) and random uniform deployments
(ρ(G) = Θ(log n)). The analysis of these scenarios seems
to indicate (we have no formal proof of this fact, though)
that the following relation between the neighbor density and
the interference diameter occurs:

ID(G) = O

(√
n

ρ(G)

)
,

i.e. the higher the neighbor density, the lower the interfer-
ence diameter. This is quite interesting, because it indicates
that a high network density, which is often considered detri-
mental in many respects (e.g., capacity limitation), helps to
reduce the interference diameter of the network, and hence
speeds up scheduling computation.

4.2.1 Square Grid Deployments
Square grid deployments can be considered as a minimal
neighbor density scenario: by properly choosing the com-
munication range and the grid step, neighbor density can
be made as low asO(1). In particular, in the following we
assume a square grid deployment, with the communication
range exactly set to the value of the grid step. With this
configuration, each node in the networkS has exactly four
neighbors, independently of the number of network nodes,
i.e. ρ(S) = Θ(1).

Before proving the main result of this section, we need
some preliminary definitions.

Definition 7 (Square grid augmentation). Assume a
square lattice of arbitrary steps > 0 is super-imposed on
the two-dimensional Euclidean plane, and define a cell as a
single square which is part of the lattice. For any line seg-
mentl in the plane, the square grid augmentationAugm(l)
of l is defined as the region of the plane obtained as the
union of the cells which are traversed byl.

Definition 8 (Lattice paths). Let u, v be two arbitrary
points of the above defined lattice, and letl be the line
segment connectingu and v. The upper lattice path ofl
is defined by connecting all the lattice points inAugm(l)
whosey coordinate is above segmentl, and the lower lat-
tice path ofl is defined by connecting all the lattice points in
Augm(l) whosey coordinate is below segmentl. If segment

l is parallel to they axis, we arbitrarily define the upper lat-
tice path the one on the left ofl, and the lower path the one
on the right ofl.

Figure 2 shows a square grid augmentation of a line seg-
ment and the corresponding upper and lower paths.

l

y

x

upper path

lower path

Figure 2. Square grid augmentation of line
segment l

Definition 9 (Square grid interior). LetR be an arbitrary
closed region of the two-dimensional plane. The square grid
interior Int(R) of R is defined as the set of points in the
above defined lattice lying in the interior ofR.

Definition 10 (Square grid convexity). LetR be an arbi-
trary closed region of the two-dimensional plane.R is said
to be square grid convex if an only if, for any two pointsu, v
in Int(R), we have that at least one of the lattice paths of
the segmentuv is contained in the interior ofR.

Definition 11 (Diameter). LetR be any closed region of
the two-dimensional Euclidean plane. The diameter ofR is
defined as the maximum length of a line segment connecting
two points inR. Formally,

diam(R) = max
u,v∈R

d(u, v) ,

whered() is the Euclidean distance.

Figure 3 shows an example of square grid diameter. We
are now ready to prove the main result of this section.

D

u

v
y

x

Figure 3. Square grid diameter of a square
grid convex region

Theorem 2. Assumen nodes are deployed in a square grid
lattice of stepr (the communication range) inside a certain

two-dimensional closed regionR. Let us denote withG =
(V,E) the resulting communication graph. IfR is square
grid convex, thenID(G) ≤

√
2 · diam(R)

r .

Proof. Let us consider an arbitrary line segmentl whose
both endpoints are inInt(R). SinceR is square grid con-
vex, at least one of the lattice paths associated tol in en-
tirely included inInt(R). Hence, for any pair of nodesu, v
in G, an upper bound on their ‘interference distance’ can
be derived by upper bounding their hop distance in one of
the lattice paths associated to the line segmentl connecting
them. Denote withβ the angle between linel and thex axis.
Without loss of generality, assume0 ≤ β ≤ π

2 (the proof
for the other cases is the same, up to symmetries). It is easy
to see that the hop length in the square grid of both lattice
paths associated to linel of lengthl̄ equals

l̄

r
· sinβ +

l̄

r
cosβ =

l̄

r
· (sinβ + cosβ) .

The bound on interference diameter follows by observing
that l̄ ≤ diam(R) and thatsinβ + cosβ ≤

√
2.

Note that the bound stated in Theorem 2 is tight. IfR is
a square perfectly aligned with the lattice, thendiam(R) =
r
√

2n, andID(G) = 2
√
n. Hence, the interference diam-

eter of a square grid network withn nodes deployed in a

square regionR is Θ(
√
n) = Θ

(√
n

ρ(G)

)
.

4.2.2 Random Uniform Deployments
Analysis of the random uniform scenario is based on
the well-known subdivision of the deployment region into
equally sized cells, and on the use of occupancy theory.

In particular, similarly to [4], we assume the following:

– the deployment regionR is the unit square[0, 1]2.

– n nodes with communication ranger = r(n) =
√

ln n
πn

are distributed uniformly at random inR.

With the above assumption, it is known that the resulting
network is connected w.h.p.3, and the communication range
r(n) is the minimum possible value (in asymptotic terms)
of the communication range which is necessary for connec-
tivity w.h.p. It is easy to see that the neighbor degree of the
resulting network isΘ(log n) w.h.p., and this is the mini-
mum possible node degree needed for connectivity w.h.p.
in random uniform networks.

Let us subdivideR into C = 8
r2 square cells of equal

side r
2
√

2
. The cell side is set such that any two nodes in

adjacent cells (horizontal, vertical, and diagonal adjacency)
are within each other communication range. Using standard
arguments from occupancy theory (see [14]), it is known
that by settingr andC as above every cell contains at least

3In this paper, w.h.p. means probability→ 1 asn→∞.

one node w.h.p. Hence, an upper bound on the interference
diameter of the network is given by the number of cells tra-
versed by one of the diameters ofR (i.e., a diagonal con-
necting two opposite corners ofR). It is easy to see that

this number equals2
√

2πn
ln n . This bound is tight, sinceev-

ery cell contains at least one node w.h.p. when the minimal
density for connectivity is achieved. We have thus proved
the following theorem:

Theorem 3. Assumen nodes with communication range

r(n) =
√

ln n
n are distributed uniformly at random in

R = [0, 1]2. The interference diameter of the resulting com-

munication graphG is Θ(
√

n
log n) = Θ(

√
n

ρ(G)).

4.3 Approximation Bound
In this section, we prove that the length of the

schedule computed by FDP is at most a factor
O(n1− 2

ψ(α)+ε (log n)
2

ψ(α)+ε) away from the optimal
schedule, whereε > 0 is an arbitrarily small positive
constant andψ(α) is a constant which depends onα.
Similarly to [4], this result holds under the assumption that
network nodes are distributed uniformly at random in a
square of unit area, and that radio signal propagation obeys
the log-distance path model with path loss exponentα > 2.

Theorem 4 (Approximation bound). LetG be a commu-
nication graph with given demands on the nodes. LetTopt

be the minimum possible value ofT such that a schedule of
lengthT is feasible forG under the physical interference
model, and letTFDP be the length of the schedule com-

puted by FDP. Then,TFDPTopt
∈ O(n1− 2

ψ(α)+ε (log n)
2

ψ(α)+ε),
for any arbitrarily small constantε > 0, w.h.p.

Proof. We prove that the schedule computed by FDP is the
same as the one computed by the centralized GreedyPhys-
ical algorithm of [4], for which the above approximation
bound has been proved in [4]. Indeed, we consider a varia-
tion of GreedyPhysical, in which the edges to be scheduled
are ordered according to decreasing order of the IDs of their
heads. This edge ordering is different from the one used in
GreedyPhysical but, as observed in [4], the approximation
bound holds independently of the initial edge ordering.

GreedyPhysical is a simple greedy algorithm which se-
quentially considers edges in decreasing order, and greedly
allocates the new edgee to the first slot in the current sched-
ule such that includinge in the slot does not make it infea-
sible. This process is iterated until the demand one is sat-
isfied, and then a new edge is considered. GreedyPhysical
terminates when the demand on each edge is satisfied.

It is easy to see that FDP re-creates this exact greedy
procedure in a fully distributed way. Initially, the node with
highest ID, corresponding to the first edgee1 in the order-
ing, gets control of the first slot, and allocates its edge in the

first demand(e1) slots. When a certain slot is considered,
new edges are tried sequentially (i.e., selected as the unique
active node) in decreasing order of their head’s ID. If the
link associated with an active nodeu does not conflict with
currently scheduled nodes (whose ID can only be higher
thanu’s ID), it is included in the current slot. This implies
that every edgeei is included in the firstdemand(ei) slots
such thatei does not conflict with the currently scheduled
edges, where currently scheduled edgesejs precedeei in
the edge ordering. I.e., the scheduling computed by FDP is
the same scheduling as the one computed by the variation
of GreedyPhysical described above.

The approximation bounds obtained for some values of
α are reported in Table 1.

α bound

2.1 n0.714(ln n)0.286

2.5 n0.460(ln n)0.540

3 n0.333(ln n)0.666

4 n0.219(ln n)0.780

5 n0.164(ln n)0.836

6 n0.131(ln n)0.868

Table 1. Approximation bounds for various α

4.4 Computational Complexity
We now prove that FDP has polynomial time complexity.

A similar proof, which is not shown due to lack of space,
can be provided also for the PRP algorithm.

Theorem 5 (Time complexity). Algorithm FDP has
O(TD · ID(G) · n log n) time complexity, whereTD is
the total traffic demand in the network andID(G) is the
interference diameter of the communication graphG.

Proof. FDP proceeds in rounds, allocating a slot in each
round. In the worst case, all links have to be scheduled se-
quentially, and a total ofTD rounds are needed to compute
the schedule. This gives theTD term in the big-O nota-
tion. For each round, a leader election protocol (with com-
plexity O(ID(G) · log n)) is run initially to determine the
controlleru of the slot. Then, each link with some pending
demand is tried concurrently with the link governed byu
to check for feasibility. In the worst case, there areO(n)
such links (we are routing along a routing forestRF), and
for each such link we must first run the leader election algo-
rithm. This implies that the time complexity of each round
isO(ID(G) · n · log n), and the theorem follows.

Observe thatID(G) ∈ O(
√
n) in case of square grid

deployments, andID(G) ∈ O(
√

n
log n) in case of random

uniform deployments. Then, computational complexity be-
comesO(TD · n3/2 log n) andO(TD · n3/2(log n)1/2),
respectively. Furthermore, under the assumption that the

ratio between the maximum and minimum demand gener-
ated by a node is upper bounded by a constant, and observ-
ing that we are routing along a forestRF , we have that
TD ∈ O(n2), implying time complexities ofO(n7/2 log n)
andO(n7/2(log n)1/2), respectively. If the routing trees
are balanced, there areO(log n) levels in each tree, and
the aggregated traffic at each level isO(n), implying
TD ∈ O(n log n). Thus, FDP’s time complexities become
O(n5/2(log n)2) andO(n5/2(log n)3/2), respectively.

Note that the scheduling algorithms are applied only to
the backbone nodes in a wireless mesh network and this
number is expected to be in the tens to around a hundred for
most mesh network scenarios. In Section 6, we do a detailed
evaluation and show that the running times are quite feasible
for networks in this size range.

5 Mote-based SCREAM Analysis

In Section 3, we described the SCREAM primitive that is
used extensively in the algorithms. This primitive is based
on transmission of a small number of bytes (SCREAM), and
on the ability of neighboring nodes to detect activity (carrier
sensing) on the medium as a direct result of the transmis-
sion. It is imperative that the carrier sensing mechanism
employed by the radio interface be immune to failure due
to collisions. In fact, to achieve a network wide OR oper-
ation, the SCREAM subroutine tends to generate a broad-
cast flood, resulting in many collisions. In this section we
present the results from evaluation of a SCREAM imple-
mentation on Berkeley Motes.

The goal of this experiment is to show that the SCREAM
primitive works in presence of collisions provided an ade-
quate number of bytes (SMBytes) are transmitted.

5.1 Experimental Setup

We used the Crossbow Mica2 motes to implement the
SCREAM primitive. The code was written in nesC [5] and
implemented on top of TinyOS. We define three types of
nodes: anInitiator, aMonitor and rest asRelays. The
Initiator periodically (100 ms) initiates a SCREAM by
transmitting SMBytes. TheRelays continuously listens to
the channel for any activity by comparing the RSSI values
with a preconfigured threshold(-60dBm).Relays transmit
a SCREAM when they detect a SCREAM (activity). The
Monitor compares the moving average of the RSSI val-
ues received with the threshold (-60dBm). This ensures that
Monitor lags behind theRelays in detecting the signal
from theInitiator .

In the experiments, we used 8 motes (6 asRelays). To
ensure collisions, we placed theMonitor andRelays in a
clique formation andInitiator was placed two hops away
from theMonitor. Each experiment was run long enough
to allow 2000 Screams. The error in scream detection is
the percentage of measured SCREAM intervals outside of
±5% of the expected interval (100 ms).

Figure 4. Percentage Error in SCREAM detec-
tion vs SCREAM size (bytes).

Figure 5. Moving Average of RSSI values.

5.2 Results
Figure 4 shows the percentage error in detecting

SCREAM vs. SCREAM size (SMBytes). For large
SCREAM sizes (above 20 bytes), the percentage error is
negligible. However, the percentage error increases rapidly
for SCREAM sizes below 10. Figure 5 shows a snapshot
of the moving average of RSSI signal values measured for
the SCREAM size of 24 bytes. The moving average in this
case was sampled after every 3 RSSI values owing to device
and UART limitations. The figure shows the high quality of
SCREAM detection with this SCREAM size: about30ms
after a SCREAM is sent by theInitiator (at 2.5s, 2.6s,
etc.), theMonitor correctly detects the SCREAM.

6 Simulation Results
6.1 Simulation Setup

We implemented the PRP and FDP algorithms on the
Georgia Tech Network Simulator (GTNetS) [20], which is a
packet level simulator with a complete 802.11 MAC model.
The log-normal propagation model was used with a path
loss exponent of 3 andσ = 6dB. We consider two topolo-
gies, planned (grid layout) with homogeneous transmission
power and unplanned (uniform distribution) with heteroge-
neous transmission power. The results of PRP and FDP
were compared against the centralized GreedyPhysical al-
gorithm of [4]. We also introduced bounded clock skew,
where the clocks of all nodes differ from each other by a
bounded amount. The protocol implementations compen-
sate for the clock skew among the nodes.

All simulations were done with 64 nodes, with 4 nodes

0

10

20

30

40

50

60

70

0 5000 10000 15000 20000 25000

Density (nodes/sq km)

%
ag

e
im

p
ov

er
 L

in
ea

r

-

FDD
Centralized
PDD prob=0.2
PDD prob=0.8
PDD prob=0.6

Figure 6. Schedule Length Improvement, Grid

acting as gateways. The demand on each node was taken
from a uniform distribution in the interval[1, 10]. For each
node, a shortest path to a nearest gateway is computed and
the demand of the node is aggregated over the links on the
route. We compute the schedule length for various densi-
ties, where the density was changed by varying the area and
keeping the number of nodes fixed. All results are com-
puted with 95% confidence intervals. We use a SCREAM
size of 15 bytes and an interference diameter of 5.
6.2 Schedule Length Results

Figure 6 compares the schedule lengths of PRP and FDP
to the schedule length of the centralized GreedyPhysical al-
gorithm. We plot the percentage improvement of the com-
puted schedules over the worst case serialized schedule.
The results show that the FDP protocol closely follows the
centeralized GreedyPhysical algorithm results, as expected,
since the FDP algorithm mimics the GreedyPhysical Algo-
rithm in a distributed manner. In some cases, FDP pro-
vides marginal improvements with respect to GreedyPhysi-
cal. This is due to the fact that the link order used to build
the schedule is different (ID-based in FDP, according to an
interference metric in GreedyPhysical). For PRP, we plot
the results for three different probability values. The prob-
ability here refers to the probability of a node joining the
Active set in the PRP protocol. We notice that for a low
probability value of 0.2, PRP does marginally better than
with the higher probability values. On average, the PRP’s
performance is about 10 percentage points worse than the
centralized GreedyPhysical Algorithm.

Figure 7 shows the schedule lengths using the same setup
but with unplanned deployments. Again, FDP does as well
as the GreedyPhysical algorithm but, in this case, PRP
with a high probability value performs about 15 percentage
points worse on average than GreedyPhysical.
6.3 Execution Time

Figure 8 shows execution times of PRP and FDP vs.
SCREAM size and interference diameter, based on a com-
plete implementation of the protocols in GTNetS. The plots
show that the execution times are only a few seconds even
for quite large values of these parameters, indicating that the

0

10

20

30

40

50

60

70

0 5000 10000 15000 20000 25000

Density (Nodes/sqkm)

%
ag

e
im

p
ov

er
 li

ne
ar

--

FDD

PDD prob=0.8

Centralized

Figure 7. Schedule Length Improvement, Uni-
form Random Placement

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0 10 20 30 40 50 60
Size/Diameter

R
un

ni
ng

 T
im

e
(S

ec
on

ds
)

 --
--

--

FDD Scream size (bytes)
PDD Scream Size (bytes)
FDD Diameter
PDD Diameter

Figure 8. Execution Time vs. SCREAM size
and Interference Diameter

algorithms incur very little overhead for schedule computa-
tions that are on the order of once per minute. As expected,
PRP’s execution times are significantly lower than FDP’s.

Execution times of the algorithms are quite sensitive to
clock skew, however. Figure 9 shows the running time of
FDP and PRP vs the clock skew bound. Both axes are on
log scale. Assuming that the schedule must be recomputed
once per minute, PRP can compute the schedule with less
than 5% overhead for a clock skew up to 100 microseconds.
FDP is somewhat less tolerant of clock skew and should
be used with a clock skew of no more than 10 microsec-
onds for this frequency of schedule computation. Clock
skews on this order are no problem for GPS-equipped de-
vices and 100 microsecond clock skews should be achiev-
able even with distributed synchronization algorithms for

1

10

100

1000

1E-06 0.00001 0.0001 0.001 0.01 0.1 1
Clock Skew (seconds)

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

 --
-

FDD
PDD prob=0.2

Figure 9. Execution Time vs. Clock Skew

typical mesh network sizes, e.g. less than 100 nodes.

7 Discussion and Conclusions

Our simulations showed that PRP and FDP can be exe-
cuted in a few seconds in typical mesh network scenarios.
Scheduling overhead depends on the frequency of schedule
recomputation, which depends on factors such as changes
in traffic demands, network topology, environmental con-
ditions, etc. Our results indicate that PRP and FDP gener-
ate a reasonable overhead in scenarios in which the sched-
ule need not be recomputed too often (say, every few min-
utes). In cases where more frequent schedule computation
is needed, different solutions should be designed, e.g. pro-
tocols that adapt the existing schedule in response to net-
work variations, rather than recomputing it from scratch.

Concerning comparison with CSMA/CA, our results
show that the length of the schedule computed by our
protocols is comparable to Algorithm GreedyPhysical [4].
Hence, our algorithms should provide improvements with
respect to 802.11 comparable to those reported for Greedy-
Physical (up to three-fold improvements).

Our results also show that a relatively tight node syn-
chronization is needed to keep the execution times of our
protocols low. External sources, such as GPS or the NIST
atomic clock disseminated by AM radio, can be used to
achieve the desired degree of synchronization with virtu-
ally no overhead. For situations where external signals are
not available for synchronization, the overheads of synchro-
nization must be evaluated and included in the analyses.

The algorithms of this paper represent the first efficient,
distributed scheduling approach with a proven approxima-
tion bound for the physical interference model. While con-
siderable work is still to be done to realize wireless mesh
network implementations based on this approach, we be-
lieve this paper constitutes a promising step in this direc-
tion. We also believe that the SCREAM primitive, de-
scribed herein, may be applicable to other distributed prob-
lems for wireless networks. What other problems can be
efficiently solved by this network-wide OR operation is cur-
rently an open question.

References
[1] M. Alicherry, R. Bathia, L. Li, “Joint Channel Assign-

ment and Routing for Throughput Optimization in Multi-
Radio Wireless Mesh Networks”,Proc. Mobicom, pp. 58–
72, 2005.

[2] A. Bader, E. Ekici, “Throughput and Delay Optimization in
Interference-Limited Multihop Networks”,Proc. MobiHoc,
pp. 274–285, 2006.

[3] J. Bicket, D. Aguayo, S. Biswas, R. Morris, “Architecture
and Evaluation of an Unplanned 802.11b Mesh Networks”,
Proc. Mobicom, pp. 31–42, 2005.

[4] G. Brar, D. Blough, P. Santi, “Computationally Effi-
cient Scheduling with the Physical Interference Model for

Throughput Improvement in Wireless Mesh Networks”,
Proc. Mobicom, pp. 2–13, 2006.

[5] D. Gay, et al., “The nesC Language: A Holistic Approach to
Networked Embedded Systems”,Proc. PLDI, 2003.

[6] O. Goussevskaia, Y. Oswald, R. Wattenhofer, “Complexity
in Geometric SINR”,Proc. MobiHoc, pp. 100-109, 2007.

[7] J. Gronkvist and A. Hansson, “Comparison Between Graph-
Based and Interference-Based STDMA Scheduling”,Proc.
MobiHoc, pp. 255–258, 2001.

[8] J. Gronkvist, J. Nilsson, and D. Yuan, “Throughput of Opti-
mal Spatial Reuse TDMA for Wireless Ad-Hoc Networks”,
Proc. VTC,pp. 2156–2160, 2004.

[9] J. Gronkvist, “Traffic Controlled Spatial Reuse TDMA in
Multi-hop Radio Networks”,Proc. Int’l. Symp. on Personal,
Indoor, and Mobile Radio Comm., pp. 1203–1207, 1998.

[10] J. Gronkvist, “Distributed Scheduling for Mobile Ad Hoc
Networks - a Novel Approach,”Proc. Int’l. Symp. on Per-
sonal, Indoor, and Mobile Radio Communications, pp. 964–
968, 2004.

[11] P. Gupta and P.R. Kumar, “The Capacity of Wireless Net-
works,” IEEE Trans. Info. Theory, Vol. 46, No. 2, pp. 388–
404, 2000.

[12] Z. Haas, J. Deng, “Dual Busy Tone Multiple Access
DBTMA: A Multiple Access Control Scheme for Ad Hoc
Networks”, IEEE Trans. on Communications, Vol. 50, n. 6,
pp. 975–985, 2002.

[13] K. Jain, J. Padhye, V. Padmanabhan, L. Qiu, “Impact of In-
terference on Multi-Hop Wireless Network Performance”,
Proc. Mobicom, pp. 66–80, 2003.

[14] V.F. Kolchin, B.A. Sevast’yanov, V.P. Chistyakov,Random
Allocations, V.H. Winston and Sons, 1978.

[15] T. Moscibroda, R. Wattenhofer, “The Complexity of Con-
nectivity in Wireless Networks”,Proc. Infocom 2006.

[16] T. Moscibroda, R. Wattenhofer, A. Zollinger, “Topology
Control Meets SINR: The Scheduling Complexity of Arbi-
trary Topologies”,Proc. MobiHoc, pp. 310–321, 2006.

[17] R. Nelson and L. Kleinrock, “Spatial-TDMA: A Collison-
free Multihop Channel Access Protocol,”IEEE Trans. on
Communication,Vol. 33, pp. 934–944, Sept. 1985.

[18] B. Raman, K. Chebrolu, “Design and Evaluation of a new
MAC Protocol for Long-Distance 802.11 Mesh Networks”
Proc. Mobicom, pp. 156–169, 2005.

[19] I. Rhee, et al., “DRAND: Distributed Randomized TDMA
Scheduling for Wireless Ad Hoc Networks,Proc. MobiHoc,
pp. 190–201, 2006.

[20] G. Riley, “The Georgia Tech Network Simulator,”Proc.
MoMeTools Workshop,2003.

[21] O. Somarriba,Multihop Packet Radio Systems in Rough
Terrain, Tech.lic. Thesis, Radio Communication Systems,
Royal Institute of Technology, Sweden, Oct. 1995.

[22] F.A. Tobagi, L. Kleinrock, “Packet-Switching in Radio
Channels: Part II - The Hidden Terminal Problem in Carrier
Sense Multiple Access and the Busy Tone Solution”,IEEE
Trans. on Communications, Vol. 23, pp. 1417–1433, 1975.

[23] Z. Wu and D. Raychaudhuri, “D-LSMA: Distributed Link
Scheduling Multiple Access Protocol for QoS in Ad-hoc
Networks,”Proc. Globecom, pp. 1670–1675, 2004.

