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Abstract—Distributed micro-batch streaming systems, such as
Spark Streaming, employ backpressure mechanisms to maintain
a stable, high throughput stream of results that is robust to
runtime dynamics. Checkpointing in stream processing systems is
a process that creates periodic snapshots of the data flow for fault
tolerance. These checkpoints can be expensive to produce and
add significant delay to the data processing. The checkpointing
latencies are also variable at runtime, which in turn compounds
the challenges for the backpressure mechanism to maintain
stable performance. Consequently, the interferences caused by
the checkpointing may degrade system performance significantly,
even leading to exhaustion of resources or system crash.

This paper describes GOVERNOR, a controller that factors
the checkpointing costs into the backpressure mechanism. It not
only guarantees a smooth execution of the stream processing
but also reduces the throughput loss caused by interferences
of the checkpointing. Our experimental results on four stateful
streaming operators with real-world data sources demonstrate
that Governor implemented in Spark Streaming can achieve 26%
throughput improvement, and lower the risk of system crash,
with negligible overhead.

I. INTRODUCTION

Big data systems have evolved beyond scalable storage and

rudimentary processing to supporting complex data analytics

in near real-time, such as Apache Spark Streaming [31],

Comet [14], Incremental Hadoop [17], MapReduce Online [7],

Apache Storm [28], StreamScope [19], and IBM Streams [1].

These systems are particularly challenging to build owing to

two requirements: low latency and fault tolerance. Many of

the above systems evolved from a batch processing design

and are thus architected to break down a steady stream of

input events into a series of micro-batches and then perform

batch-like computations on each successive micro-batch as a

micro-batch job. In terms of latency, the systems are expected

to respond to each micro-batch in seconds with an output

The constant operation further entails that the systems must

be robust to hardware, software and network-level failures.

To incorporate fault-tolerance, the common approach is to

use checkpointing and rollback recovery, whereby a streaming

application periodically saves its in-memory state to persistent

storage.

These two primary requirements, however, can interfere

with one another and consequently harm the system per-

formance. Specifically, note that many real-world streaming

applications maintain large state in memory, such as sliding

windows. The large in-memory state in turn produces large

checkpoints, which leads to long checkpointing time owing to
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Fig. 1: Motivating scenario. Large checkpoint (3) slows down
processing (4), causing throughput degradation (5).

greater data serialization/deserialization times and other I/O.

The protracted checkpointing time delays the blocking time

for processing, which affects and potentially violates the low

latency and throughput requirements. Figure 1 illustrates how

a checkpointing delay of one job cascades to subsequent jobs,

causing the streaming system to slash throughput to prevent

enduring delays.

One natural approach to overcome the problem of system

slowdown due to checkpointing is to reduce the cost of taking

checkpoints [2, 13, 18? , 21, 22]. However, checkpoints tend to

touch disk and do other I/O-bound operations for persistence

and thus complicate such an approach. Another alternative is to

perform checkpointing asynchronously with data processing.

This, however, complicates the scheduling of checkpointing

and normal execution and may cause resource contention.

Besides, it is difficult to guarantee the consistency of the global

snapshot, which requires management of the separation of

dirty state and state consolidation [11] that need to modify

low-level state structure. As a result, most current streaming

systems only implement synchronous checkpointing, such as

Spark Streaming [31], Naiad[20], Flink [12] , and Storm [28].

These micro-batch systems, such as Apache Spark Stream-

ing [9], deploy backpressure mechanisms to dynamically ad-

just the input rate of topics. For example, in Spark Stream-

ing, the mechanism follows the classic Proportional-Integral-

Derivative (PID) controller model in which the PID controller

responds to delays introduced by checkpointing reactively, and

then passively adjusts the input ingestion rate in the same way

as when delays are caused by slow processing. Consequently,

the backpressure controller causes the input size of jobs to

fluctuate, which can degrade the system stability, lower the

throughput, and in some cases even cause resource exhaustion

or a system crash.

In this paper, we propose GOVERNOR: a smarter con-
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troller that can achieve high stability and high throughput

simultaneously, rather than sacrificing throughput for stabil-

ity as PID controller does. It estimates future checkpoint-

ing costs and then factors these costs into a backpressure

mechanism to minimize checkpointing interference on the

system performance. In contrast to approaches that focus on

how checkpointing costs can be reduced, GOVERNOR is a

complementary approach that can achieve a stable execution

and a high throughput. Under the hood, GOVERNOR exposes

a new channel between the controller and receiver that can

configure the input size of a specific job, allowing granular

adjustment of job processing times to quickly mitigate delays

due to checkpointing. For instance, if the predictions foresee

that a large snapshot will need to be taken, GOVERNOR would

give a small input size to mitigate the checkpointing effects

and help the follow-up jobs to experience shorter delays, thus

improving the throughput as well as lowering the risk of a

system crash.

Note that GOVERNOR is a set of backpressure techniques

that can be applied to general micro-batch streaming systems

with little code changes. GOVERNOR is expected to work in all

other micro-batch streaming systems, since our backpressure

controller is completely transparent to any specifics of the

processing component and checkpointing data structure in

streaming systems.

Contributions. Our paper has the following contributions.

• We empirically study and demonstrate the impact of

checkpointing and backpressure mechanisms on through-

put and delays in streaming systems.

• We design and implement GOVERNOR: a backpressure

controller which predicts the future cost of checkpoint-

ing and dynamically adjusts the flow rate to accurately

control the input sizes.

• We experimentally evaluate our implementation of GOV-

ERNOR within Apache Spark Streaming using representa-

tive streaming window operators. Our results on a realistic

financial workload [26] using different kinds of operators

demonstrate that compared to a standard PID controller,

GOVERNOR can improve the throughput of the system

for some continuous queries by up to 26%. Moreover,

GOVERNOR can reduce delays which further improves

the stability of the streaming system.

Roadmap. The rest of the paper is organized as fol-

lows. We next present background and an empirical study

to demonstrate the need to coordinate checkpointing and

backpressure handling. Section 3 presents a naïve approach

that predicts the checkpointing. Section 4 presents the design

of our GOVERNOR backpressure algorithm, and discusses both

important implementation specifics of our algorithm within

Spark Streaming and surveys our experimental results. Finally,

Section 6 summarizes related work before we conclude the

paper in Section 7.

II. BACKGROUND AND MOTIVATION

Although backpressure mechanisms are critical to finding

the optimal flow rate in feedback controllers, they can cause
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Fig. 2: Typical back pressure in streaming systems.

performance degradation or even lead to system crash if

handled inappropriately. Before elaborating on this point, we

begin with background on back pressure mechanisms and

checkpointing processes in streaming systems.

A. Backpressure Mechanisms

Backpressure is a feedback mechanism for rate limiting

input based on characteristics of the output that allows a

dynamic system to gracefully respond to variations in its input

workload in order to achieve smoother execution and better

performance. On one hand, when a system is heavily loaded,

the backpressure mechanism signals that the input sizes of

future jobs should be reduced. Without such provision, a

system under stress may begin to drop messages in an uncon-

trolled way or fail catastrophically, which is unacceptable in

practice. On the other hand, when system is lightly loaded, the

backpressure mechanism lets the input sizes grow accordingly

to prevent resources to be needlessly wasted.

As with all dynamical systems based on control theory, the

responsibility of the backpressure is to maintain the system in a

stable state: neither heavily loaded nor lightly loaded. To make

this precise, we introduce some quantifiable metrics. High

loads are reflected by a high delayTime, whereas light loads

are reflected by a short processingTime. Streaming applications

require that streaming systems should return results to users in

a specified interval, also called a deadline. Rate is the number

of tuples per second. For instance, every 1 second users

expect to receive a result, so the interval is 1 second. A high

delayTime implies that processingTime of micro-batch jobs is

larger than the interval, indicating that the user is not receiving

the results by the set deadlines. Note that the delayTime is

cumulative metric as presented in equation 1. If the delayTime
increases to a certain extent, system would trigger some signal

to indicate data loss, possibly leading to the exhaustion of

resources or system crash. A short processingTime means the

system could have ingested more tuples for processing, while

also meeting the required deadlines. If we think of these

metrics as equations over jobs 1, 2, . . . , j, j + 1, . . . , they are

related as follows.

delayTime(j+1) = delayTime(j) + (processingTime(j+1)− interval) (1)

The underlying architecture of a back pressure mechanism is

illustrated in Figure 2. The processing component is normally

considered a black box which receives tuples from a buffer

and sends the feedback signal to adjust future input size. The

buffer component takes in the tuples from the external world

and emits tuples for the processing based on the feedback
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(a) The delayT ime on the win-
dow size 40.

(b) The processingT ime on
the window size 40.

(c) The delayT ime on the win-
dow size 120.

(d) The processingT ime on
the window size 120.

Fig. 3: Demonstration of Checkpointing Interference. Here, jobs arrive at 1 second intervals in succession on a financial workload (Section
V-C) and checkpointing is done every 10 seconds. The red lines denote averages.

signal. A key component of the backpressure mechanism is

the controller that can adjust the size of the buffer in terms of

rate according to runtime dynamics.

The Proportional-Integral-Derivative (PID) controller is a

well-known and one of the most-used feedback design in

control theory [3, 4]. The idea of how PID controllers

work in streaming systems can be related back to the two

metrics mentioned earlier: processingRate and delayTime.

When the processingRate increases or decreases, the rate

output increases or decreases proportionally based on the

processingRate of the previous job. Upon detecting delayTime
to have grown, the controller also needs to cut the rate

proportionally. PID controllers do not seek to make control

decisions based on swift or sudden transitions, which is an

appropriate choice for checkpointing interference due to their

periodicity. This gradual effect stems from PID controllers

maintaining a continuous function that estimates the state of

the world, and the model makes minimal adjustments to the

model based on changes from the previous state. We use

PID controllers as the underlying backpressure mechanism

throughout this paper.

B. Checkpointing in Stream Processing

Following a normal execution, checkpointing may produce

delayTime that can cause jobs to miss their deadlines. Due

to the cumulative characteristics of delayTime 1, system per-

formance may in turn degrade significantly if the delayTime
component is not handled carefully. To quantify the impact of

the checkpointing on delays, we conducted an empirical study

within Apache Spark Streaming[31], using PID controller for

backpressure. Spark Streaming is a streaming system built on

top of Spark engine. A Spark streaming application receives

input data streams from external sources, partitions the streams

into batches based on a time interval, and submits the batches

to a processing engine.

In our experiments, the streaming application is computing

the average of numbers across a window, where the size

of the window is therefore a proxy for the cost of doing

checkpointing: a large window size indicates that a large

volume of data needs to be written from memory to storage.

The interval after which users expect the results to be complete

is 1 second, and the checkpointing interval is set to 10 seconds,

meaning that a checkpointing job should be launched on

average once between every 10 regular jobs. In the following

we report the stable executions of 150 seconds, on both a small

window size 40 and a large window size 120. Window size is

the number of tuples stored in window.

We study the delayTime under the configuration of window

size 40 and window size 120, shown in figure 3a and figure

3c. We can see that the pattern of the delayTime matches

the interval of the checkpointing very well in 10 seconds.

Although the delayTime emerges once every checkpointing

interval, the system is stable at low latency throughout the

run since the built-up delay can be eliminated before the

next checkpoint. However, in figure 3c, delayTime increases

constantly out of control: the system is unable to keep up

with an increasing number of jobs, which are being delayed

and being buffered in memory. The situation is likely to trigger

an exception due to a buffer overrun or possible crash due to

exhaustion of memory if the delayTime keeps on increasing.

Another way to investigate the causes of delayTime is to

study the processingTime. Figure 3b and figure 3d shows the

processingTime of the window size 40 and 120. In the case

of size 40, all of the following normal jobs have a shorter

processing time than 1 second to counteract the delayTime,

whereas in the case of size 120 most normal jobs reach the

deadline 1 second on the processingTime, without giving much

time to reduce the delayTime, resulting in an ever-increasing

built-up delay.

From these tests, we can see that the backpressure would

reduce the input size of jobs whenever signaled with a delay-
Time, resulting in the degradation of overall performance. The

backpressure behavior directly determines the performance

and even influences the system stability. It is evident from

these observations that the backpressure mechanism plays a

critical role in the health and efficiency of a stream processing

system.

Our challenge lies in how we can reduce the delayTime
accrued by the checkpointing in the backpressure, thus mitigat-

ing the interference of the checkpointing, to improve stability

and increase throughput. GOVERNOR is a new backpressure

mechanism aiming to address this problem. To the best of our

147



lower rate 
signal

raise rate 
signal

i+1i-1 time

rate

high rate

low rate

i

(a) The area is the input size determined by
both rate and time.

(b) The signal for rate reduction arrives
before deadline.

(c) The signal for rate increase arrives after
deadline.

Fig. 4: Naïve approach using a small rate signal in backpressure to configure the input size of job i.

knowledge, this is the first paper that considers the influences

of the checkpointing in backpressure for streaming systems.

III. A NAÏVE APPROACH TO PREDICT CHECKPOINTING

Since the checkpointing jobs in stream processing are

periodic, it is easy to accurately predict which job is the

checkpointing job. Instead of doing the PID estimation, we

can proactively cut the input size of checkpointing job in an

attempt to reduce the delayTime accrued by the checkpointing

mechanisms. A basic algorithm is to modify the rate signal

to configure a small input size for the checkpointing job.

Specifically, the key logic is to seek to reduce the input size

of the checkpointing job before its execution using the rate

signal, and then raise the rate signal after its completion.

In our experience, we discovered that controlling the input

size of a specific job using the rate signal is difficult to do as

the parameters depend on precise prediction for when a new

rate arrives. Note that new signals being received is determined

by the time of completion of a job, since rate signals are

always sent out after the jobs have executed. However, the start

of generating input tuples for a job is in a constant interval

regardless of the arrival of the rate signal.

Figure 4a presents how the rate and the time work to

determine the input size of job. The horizontal axis represents

the time and the vertical axis represents the rate; the area is

the number of tuples collected during 1 second. Job i is a job

for which we are trying to set to a small input size with a low

rate signal. However, the input size of job i is larger than what

is expected , because the high rate signal arrives earlier than

the deadline. Similarly, because the lower rate signal arrives

before the deadline, the input size of job i− 1 is smaller than

the high rate.

We ran experiments to determine whether we can configure

a specific job with a small input size using the rate signal

without influencing other jobs. We expect to be able to set

the input size of a job i to a small number, by sending a low

rate signal. In the following two experiments, the low rate we

configure are 60 tuples/sec for one job i and 60,000 tuples/sec

for the others. The checkpointing interval is 10 seconds. We

report the measured numbers of tuples received by the jobs

over the 100 seconds in Figures 4b and 4c.

As Figure 4b shows, although the rate is constant on 60,

the number of the tuples of job i is highly variable, denoted

with the middle red rectangle. The input size of job i − 1
also fluctuates because the low rate signal arrives before the

deadline presented in yellow area in Figure 4a. In the next

experiment, shown in the Figure 4c, the number of tuples for

job i is more stable than in the previous experiment. However,

we observed that the number of tuples for both jobs i− 1 and

i become unstable due to the influences from the small rate

signal.

In summary, this approach does not work as the input size

is uncontrollable. The input size of the jobs is determined

not only by the rate signal, but also by when jobs finish,

which has proven to be difficult to predict precisely owing to

various complex dynamic factors. Nevertheless, the rate is still

an essential signal in the backpressure controller of streaming

systems. Using the rate signal indicates that the systems keep

digesting the data streams at the previous rate if not adjusted,

which plays an important role for streaming applications that

require results to be returned to users at an specified interval

in a smooth and predictable fashion despite any uncertainty.

This only poses a higher requirement for the management of

the rate signal.

IV. DESIGN OF GOVERNOR

Instead of relying only on a rate signal for feedback,

GOVERNOR introduces a new signal: (timestamp,#tuples),
which offers the fine-grain control over the input sizes of jobs.

We now describe the architecture and the main algorithm of

GOVERNOR.

A. System Architecture

Figure 5 shows the high-level architecture of GOVERNOR

within a streaming system. There are two key components: the

feedback calculation component (controller), and the Fetcher.

The feedback calculation component implements the main

logic of our algorithm, such as how to calculate the rate and

how many tuples are contained in a specific job. The Fetcher
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Fig. 5: GOVERNOR Architecture.

is mainly responsible for retrieving the tuples from the queue

buffer as the input, generating a job, and then submitting it to

the processing engine.

There are two signals: the rate and (timestamp, #tuples). The

first signal, rate, is sent by GOVERNOR to notify the receiver

of the number of tuples per second ingested from the external

input sources. The second signal tells the Fetcher the input

size for a specific job. Overall, rate represents the maximal

achieveable throughput of the system that it could obtain.

The extended signal provides a fine-grained control over the

input size of jobs, which aims to reduce the delayTime by

configuring a small input size. We believe that GOVERNOR can

achieve a high rate for the throughput improvement through

fine-grained adjustment of input sizes of certain jobs using

(timestamp, #tuples).
Example. We illustrate the idea of our algorithm with an

example. Normally, there is a minimum input size provided by

streaming application, indicating that every interval at least

the minimum input size should be processed regardless of

anything. In this example, the checkpointing interval is 10 sec-

onds, and every 1 second there is a micro-batch job submitted

for processing. The checkpointing job takes 2 seconds with a

large input size, and takes 1.3 seconds with the minimum size.

Normal jobs take 1 second to process the large size, and take

0.6 second to process the minimum size. One sudden normal

job consumes 1.5 seconds. The main logic of our algorithm

contains three parts: Region Partition, Reducing Delay and

Estimation of region rate.

B. Region Partition

To capture the dynamic nature of the execution, we use

the checkpointing as a marker to partition the job flows into

regions. Here, a region is defined as a sequence of jobs that

always begins with a checkpointing job, and ends before the

next checkpointing job. This is feasible because we can predict

accurately when the checkpointing happens since the check-

pointing is assumed to be explicit and periodic. Following the

completion of the normal jobs, the checkpointing has a wide

variability on its time cost, and thus our approach considers

the delayTime caused by the checkpointing explicitly for the

purpose of minimizing the interferences. The duration of the

region is supposed to equal the interval of checkpointing. In

the simple example, the region contains 10 jobs, including 1

checkpointing job and 9 normal jobs.

C. Collection of historical records

Our approach collects the historical records to predict the

future executions. Given an estimated execution time, we

need to determine an input size to let the job finish on time

roughly, so an expected processingTime can be converted to a

reasonable input size.

There are several types of jobs our approach maintains with

the historical information: the checkpointing jobs, the normal

jobs specified with the minimum input size, called as the

small job and the normal jobs with the full interval time.

The checkpointing job is the main source that produces the

delayTime, so we can know the delayTime for the next region

in advance. The jobs specified with the minimal input size are

the jobs following the checkpointing jobs, used to reduce the

delayTime by proactively configuring the minimum input size.

With the collection of this information, we can predict how

much delay can be reduced for each small job. Collecting the

information of the normal jobs with full time is used to predict

the input size for the normal jobs, in order to further estimate

the overall rate of one region.

As the streaming application runs for a long time, runtime

and the workload may vary widely over time. Our online

algorithm maintains timeliness by only storing the records

within certain past duration. For example, the duration is

1 minute, which means that the historical information only

includes the records of the past 1 minute. Any records older

than 1 minute would be popped out when the latest record

gets memorized.

Note that we are not guaranteeing any precise accuracy of

the prediction on specific jobs, because there are too many fac-

tors that might influence the results, or even some executions

are virtually unpredictable because of content-dependence.

However, we believe that for most streaming applications,

the cost of the executions may not vary dramatically during

a certain amount of time. Thus the prediction is simply

implemented as doing an average on the collected records.

In the simple example, 1.3 second of the checkpointing job

and 0.6 second of the normal job with the minimum input

size are predicted based on the collected historical records.

D. Reducing Delay

The backpressure mechanism needs to entail that the delay-
Time does not constantly increase. It is crucial to make sure the

delayTime is controllable, otherwise the system would suffer

from data loss, exhaustion of resources, or system crash. Our

approach tends to reduce the delayTime by configuring the

minimum input size.

For each region, the delayTime we need to predict for the

next region is of two types: the delay inherited from the current

region and the delay produced by the checkpointing job in

the next region. Both checkpointing jobs and normal jobs can

produce delayTime. The first delay is the time the whole region

gets delayed. The sum of the two delays would be converted
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Fig. 6: GOVERNOR Design.

into the first delay of the next region if not eliminated before

the arrival of the next checkpointing. Both delays are equally

important due to the characteristic of accumulation 1.

The two types of delays have different characteristics:

the checkpointing delay is more predictable than the delay

accumulated from the current region. Thus we deal with the

two types of delay differently: The checkpointing delay is

predicted based on the historical records. The accumulated

delay from current region is calculated as the following. At

the point of issuing the signal (timestamp,#tuples), all

small jobs used to reduce delayTime in current region have

completed and all other jobs in the current region should have

a processingTime roughly equal to or larger than interval. If

any of the other jobs produces delay, this delayTime would

remain for the rest of current region until the reduction of

delayTime in next region. We use the actual delayTime of the

current job in current region as the accumulated delay of the

next region.

After the value of two delays are predicted, we propose to

specify a small input size for a fast reduction of the delayTime.

Although the two types of delays are predicted differently, the

sum of the two delays is calculated as the delayTime to be

reduced without difference. This approach could not guarantee

that the delayTime would disappear immediately after one

small job with the small input size. This may take a series

of the small jobs to reduce. In short, our approach does not

reduce the time of the checkpointing, but to reduce the delay

time caused by the checkpointing faster, compared to PID.

As the simple example resented in the figure 6a, the

checkpointing job configured with the minimum input size is

predicted to produce 0.3 second delay. There is one sudden

normal job that has a processingTime of 1.5 second, causing

0.5 delay. At the point of the completion of the sudden job,

the delayTime is the sum of the two delays, 0.8 second, which

takes the following 2 small jobs to clear the delayTime, as

each small job can reduce 0.4 (1 − 0.6) second. Therefore,

GOVERNOR needs to send 3 signals (timestamp,miniSize)
to reduce the delayTime.

E. Estimation of Region Rate

The rate is the average input size of all jobs for one

region. All jobs within one region share one rate, whereas

the jobs actually have different input sizes. As shown in

the figure 6b, there are three factors that determine the rate
of a region: smallJobTime, regionDelay, and CPTime. where

smallJobTime is the total time consumed by the jobs specified

with the minimum input size in the procedure of the delay

reduction, regionDelay is the delayTime of the checkpointing

job in the region, and CPTime is the predicted time of the

checkpointing. The regionDelay actually can be calculated

after the completion of the last job in the current region. The

jobs with the minimum input size can only process the minimal

tuples, and the regionDelay is intended to be reduced to

overcome the delayTime from increasing. The rate is updated

when a region ends and next region starts. In the simple

example, the sum of the 3 types of delay is 3 seconds, so

the rate is updated as (10− 3)/10 of the full input size.

F. Design Comparison

The key difference between GOVERNOR and Spark Stream-

ing’s PID controller lies in that GOVERNOR can achieve low

delayTime and high throughput simultaneously through fine-

grain adjustment of batch sizes, whereas PID controller sac-

rifices throughput for the reduction of delayTime. Therefore,

GOVERNOR has the following benefits.

Lowering the risk of instability (Low latency). GOVER-

NOR proactively copes with the delayTime so as to avoid future

job delay, rather than passively considering how to handle

the delayTime after it has grown, like the PID controller.

Therefore, GOVERNOR can always maintain a low latency,

mitigate interferences from the checkpointing and enhance

system stability. Another different point is the rapid reduction

of the delayTime by giving a small batch size to certain jobs,

leaving other jobs uninfluenced by delayTime in contrast with

what PID controller does to reduce the delayTime proportion-

ally with the delayTime amortized on multiple jobs, leaving

system a high risk of accumulating delayTime.
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Fig. 7: Streaming applications: A. Count-based Sliding Window (CSW); B. Count-based Tumbling Window (CTW); C. Time-based Sliding
Window (TSW); D. Time-based Sliding Window of Top-k (TSWT).

Improving throughput. After the delayTime is cleared,

job can utilize the full interval for processing, leading to

the throughput improvement. We can see that the throughput

improvement of GOVERNOR comes from the uninfluenced

jobs. The high efficiency of micro-batch processing with a

relative long duration is also the main reason why the micro-

batch model was introduced into stream processing. However,

in PID controller, the processingTime of jobs always goes up

and down, and thus wastes the efficiency of batch processing.

V. EVALUATION

We now evaluate the efficacy of GOVERNOR experimentally

and compare the results against a standard PID controller

as well as the naïve approach described in Section III. Our

evaluation seeks to answer the following questions:

• Throughput. How does GOVERNOR perform on various

real-world streaming applications?

• Overhead. How large is the overhead of using GOVER-

NOR?

• Dynamics. How does GOVERNOR handle the delay time,

improve the throughput, and enhance the system stability?

• Versatility. How does GOVERNOR behave under various

configurations?

A. Implementation

We have implemented GOVERNOR algorithm within

Apache Spark Streaming. The changes to connect GOVERNOR

to the underlying codebase were minimal, requiring modifica-

tion of about 20 Scala classes of the over 1000 implemented

by the system. These mainly include the BlockGenerator,

ReceivedBlockTracker, RateController classes to allow for

blocks of a specific size. The GOVERNOR controller is imple-

mented in about 500 LOC of Scala. For a clear comparison,

the GOVERNOR and the baseline approach are implemented

independently. We note that GOVERNOR is expected to work

in all other micro-batch streaming systems as well, since

our backpressure controller is completely transparent to any

specifics of the processing component in streaming systems.

B. Experimental setup
In our experiments, we use 6 nodes, each with 8 cores

Intel(R) Xeon(R) and 8GiB of DRAM. The version of Spark

Streaming we use in our experiments is 1.5, released at

the end of 2015. The latest version (Spark Streaming 2.0)

released during the preparation of this paper uses the same

implementation of the PID controller and so the same changes

should apply seamlessly.
The Hadoop version is 2.6 which we use as the storage

for the checkpointing on HDFS. We make each run last

approximately 10 minutes to ensure a meaningful result. The

data we report in our results are the average value across 10

runs. The throughput is calculated as a fixed number of tuples

divided by the corresponding processing time.

C. Streaming workloads
To assess GOVERNOR comprehensively, we choose several

representative streaming applications, described in Figure 7a.

The first one is the count-based sliding window (CSW). Every

time the window advances by one tuple, with one tuple

dequeued and another tuple enqueued, and then aggregation is

performed on the tuples that remain in the window. The second

one is count-based tumbling window (CTW), which differs

from CSW only in that no overlap can exist between windows.

The third one is a time-based sliding window (TSW), which

is defined by those tuples collected during one time interval.

The last one, time-based sliding window of top-k (TSWT),

uses the same window as TSW, but where the aggregation is

done for top-k. We implemented these applications in Apache

Spark Streaming using stateful operators.
The input is real-world data collected from VWAP(Volume-

Weighted Average Price) application at IBM Streams group

[26]. They are from a trace recorded during a trading day and

there are 46 million trade and quote messages for 3032 stock

symbols.

D. Overall performance of GOVERNOR

We now study the overall performance impact of GOV-

ERNOR with the 4 streaming applications described above.
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(a) processingTime and delayTime of PID con-
troller.

(b) processingTime and delayTime of Gover-
nor.

(c) delayTime on window size 120.

Fig. 8: Handling delay. delayTime analysis of PID and GOVERNOR.

Given the same size of tuples, the sliding window is more

computationally intensive than the tumbling window, and the

count-based window is more computationally intensive than

the time-based window, because the number of aggregations of

the former is larger than the latter. Figure 7b shows the overall

throughput on the 4 streaming applications, using the three

approaches: the baseline PID controller, naïve approach and

GOVERNOR. We can see that GOVERNOR always performs

better than PID with up to 26% improvement in throughput

on CSW.

The variance of the improvement on GOVERNOR is caused

by the intensity of the computation involved. If the application

is more computationally intensive, the processing consumes

more time per tuple, making the result more sensitive to the

delayTime. By adapting the input size in a fine-grained fashion,

GOVERNOR improves the performance of this class of of

streaming applications. The flexible control is also why the

count-based sliding window obtains the highest improvement.

In contrast, the performance of the baseline approach is

less predictable and unstable. On some workload the naïve

approach gains 11% improvement; on others it performs worse

than the standard PID controller (-2.3%). As discussed in

Section III, the input size is difficult to control when only

the rate signal is used as feedback.

E. Analysis of delay time

We repeat the previous experiment of count-based sliding

window and collect the delayTime and processingTime for a

comparison between PID controller and GOVERNOR.

Figure 8a shows a gap between the processingTime and the

interval on PID controller, which implies the system could

potentially process more tuples and boost the throughput. The

discrepancy occurs because the rate is forced to decrease

dramatically due to the checkpointing delay. Subsequently,

the adjustment from a low rate to a normal rate requires

many steps because the step-wise updates are conservative

and always based on the previous rate. Figure 8b shows that

our GOVERNOR makes full use of the interval, leaving no

separation between the processingTime and the interval. This

demonstrates how GOVERNOR achieves throughput improve-

ment over the standard PID controller.

Figure 8c presents the delayTime on a large window size

120. We can see that delayTime keeps increasing at the PID

controller. Conceivably, this results in an ever-increasing set

of jobs is buffered in memory, whereas GOVERNOR maintains

a controllable delayTime. For an apples-to-apples comparison,

we configure the minimum input sizes for the two controllers

to be the same: 10 tuples. The PID controller constantly

maintains the minimum input size after a duration of high

delayTime, yet the delayTime still keeps increasing. The reason

is not because the input size is insufficiently small, but

rather because the accumulated delayTime is too large. This

point also motivates our design point for handling delayTime
proactively, rather than considering the metric only after it

has snowballed above a threshold. The throughput of the PID

controller is the minimum input size, 10 tuples/sec on average,

while GOVERNOR processes about 4000 tuples/sec.

Note that the delayTime is, as would be expected at full

utilization, always consistent with the throughput: a high

delayTime implies a low throughput and a low delay implies

a high throughput. Both the PID controller and GOVERNOR

force a low processingTime when detecting looming increases

of delayTime by reducing the input size of their jobs – an

essential task of the backpressure controller. Consequently,

for the remainder of the evaluation section, we focus the

discussion around throughput.

F. Robustness to various configurations

In this part, we evaluate the impact of two configuration

parameters: the window size and the degree of parallelism.

These two attributes are important in streaming applications

since the window size indicates the cost of the checkpointing,

and the degree of parallelism represents the resources avail-

able to computation. We use the count-based sliding window

(CSW) to study the impact of the two attributes.

Figure 9a depicts the throughput of the three controllers.

We can see that the throughput always decreases as the

window size grows for each controller. The explanation is

that a large window size means a large workload for the
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(a) Throughput with various window sizes. (b) Throughput at various levels of paral-
lelism.

(c) Time overhead of GOVERNOR.

Fig. 9: Robustness. Throughput under two configurations and overhead analysis of GOVERNOR.

checkpointing, which leads to less remaining capacity for the

real computation, thus resulting in throughput degradation. As

the window size grows, the improvement that GOVERNOR

can achieve increases until window size of 70. The reason

behind the improvement is that a greater interference from

the checkpointing processes provides more opportunity for

GOVERNOR. At 70, the improvement stops since the cost the

checkpointing is now high enough that GOVERNOR practically

reaches its limit. For the naïve approach, the performance

is still unstable and unpredictable: sometimes it provides a

modest improvement, sometimes it performs worse than PID.
In the next experiment, we study the impact of the resources

in terms of the parallelism. The window size is fixed to 60

in this test, so the checkpointing overhead is predictable.

We can see in Figure 9b that as the parallelism increases,

the throughput also increases for all three controllers. The

throughput improvement of GOVERNOR compared to PID

keeps growing as parallelism increases since more resources

yield more potential for the computation and GOVERNOR

exploits those opportunities for optimization.

G. Overhead analysis
Because the backpressure controller is invoked after each

job completes, it is important to ensure the cost of GOVERNOR

is low. We repeat the previous experiments and collect the time

cost of GOVERNOR by adding two timers to measure the start

and the end times of the algorithm execution. We vary the

historical window size to see how it influences the results,

with the outcomes presented in Figure 9c. Note that for most

streaming applications, GOVERNOR unnecessarily maintains

a large window size as the workload fluctuates over time.

The vertical axis represents the average ratio of GOVERNOR

time to the interval time – as the window size increases from

10 to 320, the ratio increases (less than 0.12%.) We deduce

that the overhead of GOVERNOR is negligible. Note that all

experimental results above have already included the overhead.

VI. RELATED WORK

In this section, we compare and contrast Governor with

related work in the literature.

A. Backpressure algorithms

In network area, backpressure mechanisms [29] [10] [27]

have been used as a scheduling policy that maximizes the

throughput of multi-hop networks. In systems area, backpres-

sure is also an important technique used to indicate perfor-

mance bottleneck to better balance load. Flexible Filter [6]

aims to improve the system throughput by efficient mapping

of the stream tasks and dynamic load balance. Sanchez et
al. [25] present a scheduler for pipeline-parallel programs

that performs fine-grain dynamic load balancing efficiently

based on backpressure. Unlike these backpressure techniques

above, GOVERNOR focuses on the adjustment of ingestion rate

to improve the throughput, and sustain a high stability for

streaming systems.

B. Reducing the cost of checkpointing

Checkpointing optimizations have been an active area of re-

search for several decades. Among the many techniques being

exploited are efficient writing of the checkpointed data, fast

recovery, configuration tuning [13, 22] and to apply various

compression techniques to checkpointing. Incremental check-

pointing is a canonical way to optimize the checkpointing by

only operating on the checkpoint difference [2] [21] [18]. Fast

recovery [5] [18] mechanisms focus on the performance of

reading checkpoints to speed up the recovery. Configuration

tuning includes the checkpoint time interval [30] – the size

of incremental checkpoint [18] [? ]. Our approach coordinates

backpressure with checkpointing, which is complementary to

the reduction of checkpointing costs. GOVERNOR can work

synergistically with these techniques.

C. Streaming Systems and extensible backpressure

Dynamic batch sizing [8] achieves a high stability and a

good throughput through the adjustment of batch interval,

which may result in a high user-perceived latency. Instead,

GOVERNOR focuses on the adjustment of input size of jobs

to guarantee a constant latency. Many streaming systems,

including StreamScope [19], Naiad [20], TimeStream [23], S4

[24], IBM Streams [15], Apache Flink [12], Apache Storm
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[28], and Twitter Heron [16], employ a topology backpressure

mechanism relying on the TCP windowing mechanism to

detect any slowing down. While piggybacking on TCP is

straightforward and simple, it leaves most of the complexity

of backpressure configuration to the users, such as buffer size

of the buffer and the “watermark”. These parameters directly

determine the number of messages that the system maintains

in flight during the runtime, which are tricky for the users to

tune as they are application-dependent. GOVERNOR controller

frees the users from manually tweaking these parameters.

VII. CONCLUSION

Stream processing systems have become the backbone

of big data analytics. Here, we described how the need

for persistence drives periodic checkpointing, and how this

checkpointing process can affect performance of the stream

processing systems.

To overcome the performance degradation, we sketched our

design for GOVERNOR: a backpressure controller for stream

processing systems that can cope with the dynamically varying

checkpointing overheads. By collecting historical information

of the checkpointing jobs and the normal micro-batch jobs,

GOVERNOR predicts and reduces the processing delay caused

by checkpointing proactively. The feedback from the smarter

controller in turn lowers the risk of system instability and

improves overall throughput. Experiments with an imple-

mentation of GOVERNOR in Apache Spark Streaming have

shown an overall performance improvement of up to 26% for

representative streaming operators and real-world workloads,

with negligible overhead. In our future work, we plan to extend

GOVERNOR to the backpressure mechanism of streaming

systems using continuous operator model.
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