
Deceptive Secret Sharing

Lei Zhang and Douglas M. Blough
School of Computer Science

School of Electrical and Computer Engineering

Georgia Institute of Technology

lz@gatech.edu, doug.blough@ece.gatech.edu

Abstract—Confidentiality is a fundamental goal in many secu-
rity contexts. Deception is another goal in which the intention is
to mislead adversaries, for example by planting false information
in a system. In this paper, we consider an approach that combines
confidentiality and deception using secret sharing, which has
traditionally been used strictly for confidentiality purposes. The
motivation for this is to protect confidentiality as far as possible
while acknowledging that no confidentiality scheme provides
perfect protection. If confidentiality is breached and information
is accessed by unauthorized individuals, our techniques will re-
veal, with high probability, only false information. This provides
deception on top of the confidentiality provided by ordinary
secret sharing. We refer to our approach as “deceptive secret
sharing” and we present techniques that work with both XOR
secret sharing and Shamir’s polynomial-based threshold secret
sharing. We provide extensive evaluations of both overhead and
security of our techniques and we also show how they provide
tunable security that can trade off security and overhead by
varying a single parameter of the schemes.

I. INTRODUCTION

Confidentiality has long been one of the most important

system security goals. Access control, encryption, secret shar-

ing, and data obfuscation are common techniques that attempt

to prevent individuals from unauthorized access and/or use

of information. Unfortunately, none of these techniques is

perfect and so, despite designers’ best efforts, confidentiality is

often compromised in today’s systems. Confidentiality can be

breached even when encryption is deployed, because of errors

in integrating crypto protocols with broader security protocols,

when encryption keys are protected with weak techniques such

as passwords, or a variety of other design weaknesses.

Deception is a less common goal, in which the intention is to

mislead adversaries. This can help to detect or monitor attacks

and interfere with unauthorized access/use of information.

In this paper, we use deception to mean the planting of

false information in a system to mislead adversaries. False

information might primarily be intended to mislead but it

can also serve to detect or track adversaries based on their

attempts to use the false information after it has been ac-

cessed. A prominent example of the use of false information

involved the recent email hack of the policital campaign

staff of Emmanuel Macron, now the president of France.

Macron’s campaign reported that, in their email accounts, they

planted “numerous false documents intended to sow doubt and

disinformation” [7]. Pointing to definitively false information

among leaked emails casts doubt upon the veracity of any

potentially damaging emails in the collection.

In this paper, we consider ways in which secret sharing,

which has traditionally been used strictly for confidentiality

purposes can be used to efficiently provide confidentiality and
deception. The motivation is to protect confidentiality as far

as possible while acknowledging that confidentiality protection

cannot be guaranteed. With high probability, if confidentiality

is breached, only false information will be revealed with our

techniques, thus providing a layer of deception on top of the

confidentiality. Efficiency of such an approach is a critical

issue since secret sharing and deception, by themselves, can

incur high overheads so that naive combinations of the tech-

niques can cause overheads to explode.
Our main contributions are:

• novel and efficient schemes for deception within both

XOR-based and polynomial-based secret sharing,

• quantitative security analyses for these schemes and other

baseline approaches,

• demonstration that our schemes provide tunable security,

which allows overhead vs. security trade-offs, and

• evaluation and comparison of the performance and avail-

ability of the proposed schemes through a prototype

implementation on CloudLab [4].

II. BACKGROUND

We use XOR-based secret sharing to illustrate some fun-

damental ideas underlying our techniques. XOR-based secret

sharing is an (n, n) secret sharing scheme, which encodes a

secret of length b bits as follows. First, generate n−1 random

b-bit sequences to form the first n− 1 shares. Then, make the

nth share the XOR of the first n − 1 shares and the secret.

The secret can be reconstructed simply by taking the XOR of

all shares. Possession of even n − 1 shares does not reveal

any information about the secret, because any secret value is

still possible since any b-bit value can be produced from the

known shares with an appropriate choice of the final share.
Suppose we want to plant m − 1 fake secrets in a system

with one real secret using (n, n) XOR-based secret sharing.

One approach, which we call NAIVE, would be to simply

encode each secret separately, which would result in mn total

shares. Since, with XOR-based secret sharing, each share is

the same size as the secret, this results in a storage blowup

of mn, which is most likely unacceptably large if we want to

deceptively share a large number of secrets. If m = 50 and

n = 10, then the storage requirements for NAIVE are 500

times what is needed without secret sharing and deception.

442

2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

2158-3927/18/$31.00 Â©2018 IEEE
DOI 10.1109/DSN.2018.00053

��� ��� ���

��	�

��
�

���

���

Fig. 1. Different Images XOR Secret Shared with Shares in Common

XOR-based secret sharing allows for a more efficient way

to plant fake secrets. If the real secret is encoded with n− 1
random shares and the nth share to allow it to be reconstructed

from all n shares, different nth shares can be generated to

produce different (fake) secrets. Figure 1 shows an example

with B/W images. This figure shows two images, three random

shares R1, R2, R3, and two 4th shares S4a and S4b, such that

the XOR of R1, R2, R3, and S4a yields the first image and

the XOR of R1, R2, R3, and S4b yields the second image.

With this approach, which we call SIMPLE, m secrets are

encoded using n + m− 1 shares. Thus, the storage blowup of

SIMPLE is reduced to approximately m + n (a factor of 60

for m = 50, n = 10 instead of 500 with NAIVE).

SIMPLE reduces the storage blowup by a large factor but

we will show later that it is vulnerable to an attack that

reduces significantly the computational burden on an adversary

to break confidentiality. This discussion illuminates the goals

of a deceptive secret sharing scheme:

1) Overhead: use as few shares as possible to construct a

given number of secrets (one real and the rest fake)

2) Security: enforce a very high computational bound on

adversaries attempting to recover a secret after compro-

mising some or all of the secret shares

These are competing goals, i.e. reducing overhead by reusing

shares can reveal information that reduces the adversary’s

computational burden. In Sections IV and V, we present two

deceptive secret sharing schemes, one using XOR-based secret

sharing and the other using Shamir’s threshold scheme [18],

which allow trade-offs between these competing objectives. It

would also be interesting to explore deception within other

more efficient secret sharing schemes, e.g. Krawczyk’s [13].

In this paper, we lay the foundations for combining secret

sharing and deception by exploring the two most commonly

used secret sharing schemes and we leave extensions to other

schemes for future work.

�

��

��
���

��

�
��

��������������
���

�
������
�������

���
������
��
��

��������
�������

����������
���

	����

����
��
�����

Fig. 2. “Sea of Shares” Approach

III. SYSTEM AND THREAT MODELS

A. System Model

We primarily target distributed storage systems such as the

cloud, where a large number of storage servers are distributed

across one or more data centers. Prior works have suggested

using secret sharing to scatter information about a data object

across multiple storage servers, e.g. [20], [21]. With (k, n)
secret sharing, it is assumed that fewer than k storage servers

among the n storing one data object leak data at any time. This

might be difficult to achieve, in practice, for several reasons:

• a vulnerability that is common to most or all of the

storage servers could lead to a high percentage of the

servers being compromised simultaneously,

• given enough time, an adversary could compromise more

than the threshold number of servers, or

• a cloud administrator could bypass access control mech-

anisms and read data from all storage servers.

To address these problems, other work has suggested distribut-

ing shares across multiple cloud providers [2]. While this

can partially deal with these issues, the user must manage

relationships with multiple providers and do cross-domain

accesses on each operation. It also does not deter a powerful

adversary, such as a nation state, that has the ability to gain

access to the systems of multiple providers.

Our approach is equally effective within one cloud

provider’s domain or across multiple providers. For any object,

many shares are written to different servers and only a small

number of those shares represent the actual object, whereas the

remaining ones serve to confuse even an adversary that can

access all shares. The high-level approach, which we refer to

as the “sea of shares” approach, is depicted in Figure 2. Here,

many shares are generated when an object is written. Those

shares are spread across a large number of storage servers. A

legitimate user must then be able to identify the correct shares

out of the “sea of shares” when accessing the object.

Our approach has a deceptive feature, which is not shown

in the figure. The shares are generated such that putting some

combinations of shares together yields fake but correct-looking

443

information. This serves to mislead the adversary, because

they cannot be sure even if they are able to assemble a valid

secret, that it reveals the correct information. We assume

correct-looking secrets are easily recognizable, either by a

human or an algorithm. This assumption holds for images,

natural language text, and many other types of data. This

approach provides an extra layer of protection in case the

threshold assumption of secret sharing is violated. Even if the

adversary compromises enough servers to reconstruct a secret,

the probability that the secret is real data is small.

An important question with our approach is how legitimate

users can identify the correct shares for an object. While there

are different ways to address this, for brevity, we describe

just one method here. This method uses shared knowledge by

legitimate users in combination with a deterministic mapping

method, similar to the approach of [5] for a different problem:

users have a shared key, there is a set of random salts for each

object, and the hash of the key concatenated with the ith salt

gives the location of the ith correct share. The salts are stored

as metadata within a separate metadata service. This forms

a tripartite security approach, wherein information from three

separate entities is required to access (and decode) data: 1)

shares from the data storage service, 2) salts from the metadata

service, and 3) the shared key from the local device. The

need to compromise all of these entities significantly raises

the bar for an attacker. In this paper, we focus primarily on

data server compromises. Although space limitations prevent

a full discussion, this tripartite approach also defeats phishing

attacks and limits damage from user device compromises,

which are difficult to deal with in secure storage systems.

B. Threat Model and Security Goals

We assume that the adversary can potentially access data

from all servers in a distributed storage system and that it has

a way to match shares on different servers to detect that they

belong to the same object.1 We will show that our approach

is effective even against this extremely powerful adversary. If

it is difficult for the adversary to match shares across servers,

then our approach will be even more effective.

Assuming that an adversary has access to all shares of an

object, both real and fake, our security goals are several:

1) to maximize the computation time required by the ad-

versary to reconstruct one secret,

2) to maximize the computation time required by the ad-

versary to reconstruct all secrets given that they have

already reconstructed one secret, and

3) to minimize the probability that any given secret recon-

structed by an adversary is the correct secret.

We do not assume perfect security and thus, we allow for the

possibility that a determined and resource-powerful adversary

might be able to reconstruct a secret or a few secrets. The goal

of 1) is to make the reconstruction of any secrets as hard as

1This can occur if the adversary is able to eavesdrop network traffic to
capture shares as they are written or is present on the servers and performs
timing analysis to determine which shares belong together.

��������������������
	�
���
������

��������������������
	�
���
����������

���

���

���

���

���

���

��� ���

���

���

Fig. 3. Examples of Cyclic XOR-Based DSS

possible. The goal of 2) is to not provide information from

one or a few secrets’ reconstructions that can make it easy to

reveal the remaining secrets. The goal of 3) is to make the

probability that an adversary learns the true secret small, even

if a few secrets are reconstructed.

IV. CYCLIC XOR-BASED DSS

A major problem with the SIMPLE scheme described in

Section II is that some shares are present in many secrets while

other shares are present in only one secret. This imbalance can

be exploited by an attacker to learn information about which

shares are part of the true secret. In this section, we present

and analyze a family of schemes, which we call Cyclic XOR-

Based Deceptive Secret Sharing (or CYCLIC for short). With

CYCLIC, the number of secrets that a share is part of is nearly

identical for every share in the system. Furthermore, CYCLIC

has a parameter, which controls the amount of overlap between

different secrets that have common shares. Later analysis will

show that this parameter can be used to tune the storage

overhead and security of CYCLIC. At one extreme when

overlap is small, CYCLIC is similar to NAIVE with high

storage overhead but strong security.2 At the other extreme,

i.e. large overlap, CYCLIC is similar to SIMPLE with much

lower storage overhead but weaker security. In between the

extremes, CYCLIC provides a range of options that provide

both storage savings, as compared to NAIVE, and security

improvements relative to SIMPLE.

A. Description of CYCLIC Scheme

CYCLIC is based on (n, n) XOR secret sharing. Suppose

we need m secrets, where one is the real secret and m − 1
are fake secrets planted for deception purposes. The scheme is

illustrated with examples in Figure 3. We draw all shares on a

circle. A set of neighboring shares make up the shares of one

secret, as indicated by the oblong groupings. Note that some

shares belong to more than one grouping meaning those shares

are part of more than one secret. Note also that the number of

secrets which each share is a part of is nearly identical for all

shares. In the example on the left, each share is part of either

one or two different secrets. In the example on the right, most

shares are part of exactly two different secrets.

2How we measure security will be described later.

444

We now present CYCLIC in a more general fashion. We

denote the overlap between two neighboring groups on the

circle by r. In Figure 3, r = 1 for the example on the left and

r = 2 for the example on the right. Most secrets have exactly

r shares in common with the previous secret on the circle.

For certain values of m, n, and r, there are some secrets that

share fewer than r shares with the previous secret, as happens

in the example on the right-hand side of Figure 3.

The following describes a method to generate share values

in the CYCLIC scheme. For the first secret, we generate n−1
random shares and one final share to produce the proper secret.

Other secrets contain some shares that belong to the previous

secret on the circle and some new shares. For example, the

second secret uses the last r shares from the first secret,

generates n − r − 1 shares randomly, and generates its nth

share so as to produce its secret value. This continues until

the generated number of secrets is approaching m. As can be

seen in the figure, some secrets on the end of the circle wrap

around and overlap with the first secret. As long as these wrap-

around secrets have at least one share that is not in common

with any other secret, their wrap-around parts use the existing

shares from Secret 1 (see the example on the left of Figure 3).

In some cases, e.g. the example on the right of Figure 3, the

secrets that wrap around use some of the shares from the first

secret, but generate one additional share at the same position

on the circle as one of the first secret’s shares. In the example

on the right in Figure 3, note that Secret 6 has one share

outside the circle in the same position as one of Secret 1’s

shares. This new share takes the same position on the circle

as the corresponding share of Secret 1 and can be thought as a

second version of the original share. This share is necessary,

because all other shares of Secret 6 are pre-determined by

either Secret 5 or Secret 1. The new share is unique to Secret

6 and can be generated so as to produce the proper secret

value, despite all other shares being pre-determined.

Since the total number of shares is an important overhead

measure of a secret sharing scheme, we now analyze the

number of additional shares that are needed when wrapping

around. Since a “wrap-around secret” has r shares in common

with the previous secret and r shares in common with Secret

1, a new share at an existing position is needed if r + r ≥ n,

meaning that the existing shares would cover all the shares

of the wrap-around secret. So, the situation on the right of

Figure 3 occurs if and only if r ≥ n/2 (note that r < n/2
in the example on the left of Figure 3 while r = n/2 in the

example on the right). We denote the number of additional

shares by p. When r ≥ n/2, p is the number of secrets that

wrap around on the circle since one additional share is needed

for each such secret. Thus, in this case, p is equal to the

number of secrets that have their last n−r positions contained

in the positions of the first secret, i.e. p = � n
n−r � − 1.

B. Overhead of CYCLIC Scheme

The overhead of a deceptive secret sharing scheme is

determined by the total number of shares that are used to secret

share a single object, including shares created for deception

purposes. The number of shares corresponds to the storage

blow-up, as compared to storing an object without secret

sharing and deception. The number of shares also indicates

the communication overhead of reading or writing an object.

This can be seen from Figure 2 since all shares are written

(read) each time an object is written (read). Here, we evaluate

the number of shares required by CYCLIC and we compare it

against the NAIVE and SIMPLE schemes mentioned earlier.

Given the number of shares making up each secret n, and

the overlap r, we can derive the total number of shares,

Nshare, used by the CYCLIC scheme. We start by counting

the number of share positions around the circle. Note that

each secret has r positions in common with both the secret

that follows it and the secret that precedes it. Thus, the total

number of share positions is m(n − r). There is one share

for each position on the circle and, when r ≥ n/2, there are

p additional shares, one for each wrap-around secret. Thus,

Nshare = m(n− r) + p = (n− r)m + � n
n−r � − 1. Note that

this formula is valid even when no additional shares are used,

because from the equation for p, we see that if r < n/2 and

no additional shares are needed, then p = 0.

We assume that m, which is the total number of secrets

(real and fake) for one object, is given as a parameter. This

parameter measures how deceptive the approach is, i.e. how

many fake secrets the true secret is hidden among. With a

given m, to reduce the number of shares with CYCLIC we

should increase the overlap r, since a larger overlap produces

a higher share re-use.

When r = 0, the formula for Nshare given above for

CYCLIC simplifies to mn, which is the number of shares for

NAIVE (m secrets independently secret shared with n shares).

With r = n−1, the formula simplifies to m+n−1, which is

the number of shares for SIMPLE (see Section II). Thus, the

number of shares with the two extreme overlaps, r = 0 and

r = n − 1 for CYCLIC, produce the same number of shares

as the NAIVE and SIMPLE schemes, respectively.

Figure 4 shows how the overhead of the CYCLIC scheme

varies with r, for different values of n and m. In Figure 4a,

we fix n = 15 and vary m from 50 to 200. In Figure 4b, we

fix m = 50 and vary n from 15 to 30. In both figures, r is

varied across its full range, i.e. from 0 to n−1. From the two

figures, we see that when the overlap increases, the number

of shares decreases linearly. More importantly, depending on

the choice of r, the overhead of the CYCLIC scheme varies

from the highest possible, which is the same as NAIVE, to

the lowest, which is the same as SIMPLE. This provides the

flexibility to vary the deceptive secret sharing scheme across

a wide range of overheads. In the next subsection, we will see

how this flexibility can be used to produce tunable security.

C. Security of CYCLIC Scheme

As mentioned in Section III-B, we are interested both in

the amount of work an adversary must do to reconstruct one

secret and the amount of work required to reconstruct all

secrets given one secret has already been reconstructed. Next,

445

Fig. 4. Number of shares for CYCLIC scheme. We fix n = 15 in (a), and
m = 50 in (b).

we evaluate these quantities for CYCLIC and compare them

against SIMPLE and NAIVE.

1) Reconstructing a first secret: As mentioned earlier, we

make a worst-case assumption that an adversary has access to

all shares of an object (both real and fake). We also do not

rely on security by obscurity, in that we assume an adversary

knows the parameters of the CYCLIC scheme, i.e. m, n, and

r. If Ncomb all is the number of possible share combinations

that could make up a secret, Nshare is the total number of

shares, and n is the number of shares in one secret, then

Ncomb all =
(
Nshare

n

)
. When constructing the first secret, there

is no previous information to use, so the adversary can only try

different combinations of shares until one produces a correct

reconstruction. If an adversary picks combinations at random

to try in this manner, then the number of attempts required

to reconstruct the first secret is a random variable. Thus, we

quantify the security of this step as the probability that an

adversary can reconstruct at least one secret within t attempts.

Note that, when an adversary tries a particular combination

of shares and fails to reconstruct a valid secret, they get very

little information that can help guide future attempts. This is

because it is still possible for any of the other combinations to

produce a valid secret and the probability of any combination

being correct is affected very little by a single incorrect

attempt. Given this, we assume that the adversary’s strategy

before it has reconstructed any valid secret is to choose a

combination at random from all unattempted combinations.

Under this strategy, the probability of reconstructing at least

one secret in t attempts can be calculated as:

P (t) = P (at least one secret reconstructed within t attempts)

= 1−
tY

i=1

P (no secret reconstructed on ith attempt |

no secret reconstructed on all previous attempts)

= 1− N −m

N
× . . .× N −m− t + 1

N − t + 1
(1)

Fig. 5. Number of attempts to reconstruct one secret with probability 0.1.
We fix n = 15 in (a), and fix m = 50 in (b). (log scale on y axes)

In the above analysis, N is used as a shorthand for Ncomb all.

A secure secret sharing scheme should guarantee that the

adversary has to make a large number of attempts to retrieve

one secret with even a small probability. We define Np
comb as

the minimum number of attempts an adversary has to make

to have a probability of at least p of reconstructing at least

one secret. In other words, Np
comb is the minimum t such that

P (t) ≥ p. A higher Np
comb means an adversary must work

harder to achieve a given probability of secret reconstruction.

Note that a larger Ncomb all will reduce the probability

to retrieve one secret and will, therefore, increase Np
comb.

Np
comb should be large enough to make the reconstruction

process impractical for the adversary. We compare the security

levels, quantified by Np
comb, of the three different schemes in

Figure 5. Figure 5a and 5b show the number of combinations

when p = 0.1 and m and n are varied, respectively. We can

see that NAIVE and CYCLIC always provide security levels

that are significantly higher than SIMPLE.

From the results above, we can see that CYCLIC, with the

chosen overlaps, always provides better security than SIMPLE

and we know from Section IV-B that it has lower overhead

than NAIVE when the overlap is less than n−1. This illustrates

the trade-off between overhead and security possible with

CYCLIC. While SIMPLE has the lowest overhead, in some

cases, its security level can simply be too low. We give a

concrete example next to illustrate this.

Assume a powerful adversary has a thousand computational

nodes, each with a 5 GHz processor. Total computational

cycles for the adversary are 1.6 ∗ 1020 per year. We ignore

memory and disk I/O time, and just consider the XOR

operation, where each operation takes one clock cycle. For

a 256*256 B/W bitmap image and n = 15, reconstructing a

446

SIMPLE NAIVE CYCLIC 9 CYCLIC 13

attempts 1013 1030 1024 1017

time 1 month 1016years 108years 1000 years
no. shares 64 750 301 106

TABLE I
COMPARISON OF DIFFERENT SECRET SHARING SCHEMES

secret requires 256∗256∗ (15−1) ≈ 9∗105 XOR operations.

Then to guarantee that an adversary cannot reconstruct one

secret within one year with a probability of at least 0.1,

the scheme needs to provide at least 1.61023

9∗105 = 1.8 ∗ 1014

possible combinations. For m = 50, the computation times

for SIMPLE, NAIVE, and CYCLIC under these assumptions

are shown in Table I (r = 9 and r = 13 for CYCLIC). For

SIMPLE, an adversary has a 1 in 10 chance to retrieve the

first secret within a month, but an adversary would need many

years to reconstruct at least one secret with probability 0.1 for

both NAIVE and CYCLIC.

Table I also shows the numbers of shares generated by

these schemes for the same scenario. As expected, SIMPLE

produces the fewest shares (less than 1/10 of NAIVE) but this

comes at the expense of security. CYCLIC with an overlap of

13 increases the number of shares by about 65% over SIMPLE.

However, CYCLIC 13 uses less than 1/7 the number of shares

of NAIVE, while providing far greater security than SIMPLE.

2) Reconstructing all secrets with one secret reconstructed:
A major weakness of SIMPLE is that if the adversary is able to

to reconstruct one secret, even a fake one, they know that n−1
of those shares must appear in all other secrets of the same

object. This dramatically reduces the number of combinations

the adversary must try to reveal all remaining secrets. Even

if this happens, we note that the adversary will not be able

to tell which is the correct secret but they will know that the

correct secret is among the ones that they have found. In some

scenarios, this could be highly undesirable. Next, we will show

that CYCLIC, with a reasonable choice of overlap, is far more

secure in terms of this second security measure.

For both CYCLIC and SIMPLE, once one secret is recon-

structed, some information is revealed so that the adversary

can reconstruct more secrets in a more efficient way than

simply attempting random combinations. Since secrets have

overlap of shares, the adversary can focus on secrets that

are neighbors of the reconstructed secret in the schemes to

more efficiently reconstruct additional secrets. Note, however,

that the security of remaining secrets in NAIVE is affected

very little by reconstruction of other secrets. This is because

there is no share overlap between secrets in NAIVE and

so the adversary can still only try random combinations of

the remaining shares. Since NAIVE is affected very little by

the first secret reconstruction, in this section, we focus on a

comparison between CYCLIC and SIMPLE.

We first calculate how many attempts an adversary needs

to guarantee they can reconstruct all remaining secrets in the

SIMPLE scheme, given one secret. Since the number of shares

in SIMPLE is m + n − 1, if one secret is known, there are

������������

������������

������������

���	�
��
	�	�
��	
���	���
�	��������������	������	��	��

����
	�	�
��	
���
��		
���������	� �
��	���	��������������	������	��	��

������	�������	

���	�
��
	�	�
��	
���	���
�	��������������	������	��	��

Fig. 6. Different cases for reconstructing all secrets with one leaked secret
for the CYCLIC scheme

m− 1 shares left. We know that n− 1 of the n shares of the

first secret are also part of every other secret. To find those

n − 1 shares only takes n attempts, since the adversary can

pick one share from all remaining shares, and use it to replace

each share in the reconstructed secret to see if a new secret

is revealed. After that, the adversary can easily use the n− 1
identified common shares to reconstruct the remaining secrets

with the last m − 2 shares. The overall process takes only

n + m− 2 attempts, which is highly insecure.

In the CYCLIC scheme, some information is also leaked

from the first secret, but we will show that the adversary

still needs a lot of attempts to guarantee reconstruction of the

remaining secrets as long as the overlap between secrets is

not too high. Since in CYCLIC, a secret shares r shares with

its neighboring secret, with one reconstructed secret, the best

choice is to try to reconstruct the neighboring secret next, to

maximize the information from the first secret.

Let the secret that is known be Sc and let the next secret

to be reconstructed be Sn, where Sc and Sn are neighbors in

the CYCLIC scheme. The number of remaining shares that

are not part of the known secret is Nshare − n. The idea

to reconstruct Sn with information from Sc is to find the

overlapping shares from Sc, to reduce the number of attempts.

Based on the specific parameters for CYCLIC, we divide the

process into three cases, as shown in Figure 6.

The first case, e.g. Figure 6a, is r < n
2 , where the

overlapping shares cannot be precisely determined from Sc.

For example, 2 out of the 5 non-overlapping shares in the right

circled secret will be part of the next secret but the adversary

has no way to know which of the 5 are the correct ones.

The adversary needs to pick the r overlapping shares from all

shares of Sc other than the ones that Sc had in common with

the previous secret, which means choosing r shares out of

n−r shares (2 out of 5 in the figure). The adversary must put

those r shares together with n− r shares from all remaining

shares that are not part of any reconstructed secret. Summing

these two expressions over all the remaining secrets gives the

number of combinations for this case as:

Nshare−n

n−r −1∑

k=0

(
n−r

r

)× (
Nshare−n−k(n−r)

n−r

)

447

The second case, e.g. Figure 6b, is r ≥ n
2 , and n

mod n − r = 0. In this case, there is an initial period where

the adversary does not know exactly which shares from the

previous secret will be reused in the next secret. However,

after a small number of consecutive secrets are reconstructed,

the common shares can be exactly identified, which reduces

the number of combinations that must be attempted. In the

Figure 6b example, when reconstructing the 2nd secret, the

adversary knows there are 6 shares that overlap with the 1st

secret, but he has no idea which 6 of the 7 shares in the 1st

secret those are, which means he needs to consider up to
(
7
6

)

combinations to find the correct common shares and, for each

of those, he needs to combine them with combinations of the

remaining unused shares. However, after the first 6 secrets

are revealed, the 6 overlapping shares between the 6th and

7th secrets can be definitively identified since the other share

was already known to be part of the 5th and 6th secrets. So,

from this point forward, the adversary only needs to consider

the combinations of the remaining unused shares each time.

Generalizing this logic yields the number of combinations as:

� r
n−r �∑

k=0

(
n−k(n−r)
r−k(n−r)

)× (
Nshare−n−k(n−r)

n−r

)
+

Nshare−n

n−r −1∑

k=� r
n−r �+1

(
Nshare−n−k(n−r)

n−r

)

The third case, e.g. Figure 6c, is r ≥ n
2 , and n

mod n− r �= 0. Similar to the previous case, some shares are

determined from Sc, while some shares cannot be determined

from Sc. In the figure’s example, when reconstructing the

2nd secret, the adversary knows that 5 of 7 shares from the

first secret are included. However, when reconstructing the 5th

secret, 4 shares are predetermined from the 4th secret, while

1 share cannot be determined (1 of the 2 orange shares should

be included and the other should not). Generalizing this yields

the following number of combinations:

� r
n−r �∑

k=0

(
n−k(n−r)
r−k(n−r)

)× (
Nshare−n−k(n−r)

n−r

)
+

(
n−r

r mod n−r

)×
Nshare−n

n−r −1∑

k=� r
n−r �+1

(
Nshare−n−k(n−r)

n−r

)

We again give an example to make the number of combina-

tions concrete. As before, assume there are 50 secrets, each has

15 shares, and the overlap is varied from 0 to n−1. The results

are shown in Figure 7. We can see that when we choose an

overlap of 13 as in the previous subsection, the adversary needs

about 106 attempts to retrieve all secrets. When we choose an

overlap of 9, the number of combinations reaches 1015, which

is 10 years using the computational numbers from the earlier

example. This is another example of the overhead/security

trade-off. If we only consider retrieving the first secret, r = 13
provides very strong security as shown in Table I by the

Fig. 7. Number of attempts needed to reconstruct all secrets given one secret
in CYCLIC scheme (m = 50, n = 15, log scale on y-axis)

huge number of attempts an adversary needs. However, if

we also are concerned about the security after one secret is

reconstructed, we need to further reduce the overlap, which

again increases the number of shares. Recall that, with the

SIMPLE scheme, the adversary only needs n + m− 2 = 113
attempts with these parameter values to reconstruct all secrets

given the first secret. We can conclude that, after one secret is

retrieved by an adversary, SIMPLE provides almost no security

for the remaining secrets, while CYCLIC can still provide very

strong security with a properly chosen overlap, at the expense

of an additional increase in the number of shares.

D. Discussion

As we showed in Subsection IV-C1, reconstructing the first

secret is hard for any of the three schemes. The computation

time depends on many factors including not only the param-

eters of the schemes but also the computational power of the

adversary and the size of the secret. In some scenarios, it

might be that the computational difficulty yielded by SIMPLE

for reconstruction of the first secret with a small probability is

high enough. However, in other scenarios, the system designer

might not be satisfied that the SIMPLE’s computational dif-

ficulty is high enough or they might not be comfortable with

the probabilistic nature of the computational effort required.

In these situations, CYCLIC allows the designer to, with a

modest increase of overhead, significantly increase the overall

security in the event that one secret is revealed.

V. NOTCHED CYCLIC POLYNOMIAL-BASED DSS

In this section, we investigate a deception scheme that works

with Shamir’s secret sharing scheme [18], which is a (k, n)
threshold-based scheme, where k < n and any k of the n
shares allow the secret to be reconstructed, while any k − 1
shares do not reveal any information about the secret. (k, n) se-

cret sharing can offer better fault tolerance than (n, n) schemes

such as XOR, because the secret can still be reconstructed

even if some shares are not available. We present and analyze

a scheme, which we call Notched Cyclic Polynomial-Based

Deceptive Secret Sharing (or NCP for short) that performs

deceptive secret sharing using Shamir’s scheme.

448

A. Deception and Shamir’s Scheme

In Shamir’s scheme, each secret corresponds to a degree

k − 1 polynomial q(x) = a0 + a1 · x + a2 · x2 + . . . + ak−1 ·
xk−1, where a0 is the value of the secret. The n shares that

make up the secret are n points (i, Di), i = 1, 2, ..., n, on the

polynomial, i.e.

D1 = q(1), D2 = q(2), . . . , Dn = q(n)

Share i is represented by the pair (i, Di) and we call i the

share’s index. The secret can be expressed as D0. Any k shares

with k different indexes from 1, 2, ..., n determine the secret’s

polynomial and can therefore be used to recover the secret’s

value, and any k− 1 shares reveal no information since there

are an infinite number of degree k − 1 polynomials that go

through the k − 1 points corresponding to the share values.

Analogous to NAIVE for XOR secret sharing, with Shamir’s

scheme, we could simply choose independent polynomials for

each secret. We call this scheme P NAIVE and it requires mn
shares, just as NAIVE did. An analogous scheme to SIMPLE,

with Shamir’s scheme, is to choose k − 1 polynomial points

to be the same for all secrets. Each of the m secrets is then

defined by a distinct kth point, which is the secret value. To

complete the (k, n) scheme, we would then generate n−k+1
additional points on the corresponding polynomial for each

secret. We refer to this scheme as P SIMPLE.

We assume throughout this section that an adversary who

compromises a share knows its index. This comports with

our assumption of a powerful adversary and also reduces the

amount of information that we assume a valid user is able to

determine but is not available to the adversary. This would

also simplify implementation of the approach considerably

since a share’s index can simply be stored with the share

as is the case in many implementations of Shamir’s scheme.

Unfortunately, under this assumption, the P SIMPLE scheme

is highly insecure. This is because the k − 1 shares that are

common to all secrets can be immediately identified since they

are the only ones that have their particular index. Suppose

those indexes are 1, 2, . . . , k − 1. Then, the adversary can

simply put those shares together with each share that has

index k, in turn, and recover all m secrets with only m
reconstructions. Thus, with Shamir’s scheme and with this

assumption, P SIMPLE is not a viable approach.3 For this

reason, we primarily compare our proposed NCP scheme

against P NAIVE in the remainder of this section.

B. Description of NCP scheme

The NCP scheme is similar to the CYCLIC scheme in the

way that it reuses shares across multiple secrets and attempts

to balance the number of secrets of which each share is a

part. Because of their similarity, we will mainly describe how

NCP is different from CYCLIC in this section. We still denote

the number of secrets by m and the overlap between two

neighboring secrets by r. A significant difference of NCP,

3If we instead assume that indexes are available to valid users but not to the
adversary, the security of P SIMPLE would be similar to that of SIMPLE.

as compared to CYCLIC, is that the overlap r between two

consecutive secrets has to be less than k. If this were not

true, then two consecutive secrets would have the same value

since they would share at least k points on their degree k− 1
polynomials, meaning the polynomials (and hence the secret

values) would actually be the same.

Next, we describe two aspects in which the NCP scheme

is different from CYCLIC, namely the process of generating

shares and the structure of the circle.

Since two secrets may have common shares, two polyno-

mials may share some points. To simplify the scheme, we

give each share the same index in all secrets it belongs to,

so there is a bijection between the shares and the points. The

generating process is similar to the CYCLIC scheme, but here

each share needs to be given an index. Again drawing the

shares and secrets around a circle, the indexes are generated in

a round-robin fashion around the circle from 1 to n, wrapping

back around to 1, and repeating until all shares are assigned

an index. Figure 8 shows the indexes generated for m = 3,

n = 6, k = 4, and two different values of r < k.

Once share indexes are assigned, shares can be generated.

For the first secret, the first k − 1 shares are generated

randomly. With a0 as the secret, once the first k − 1 shares

are determined, the polynomial q(x) is determined and the

remaining n − k + 1 shares are also determined and are

generated as q(k), q(k+1), . . . , q(n). The second secret shares

r < k shares with the first secret, which have indexes

n − r + 1, n − r + 2, . . . , n. These same share values are

re-used by the second secret and an additional k − r − 1
shares with indexes starting from 1 are generated at random.

At this point, k−1 shares of the second secret are known and,

along with its secret value, this determines its polynomial. The

remaining n−k+1 shares can then be generated according to

the polynomial’s formula. The process is similar for each new

secret around the circle. The first r < k shares are in common

with the previous secret, an additional r − k − 1 shares are

generated randomly, and the final n − k + 1 shares are then

generated from the chosen polynomial.

We would like to keep a share’s index the same in every

secret it belongs to, and so we choose not to have the circle

wrap around as in the CYCLIC scheme, because choosing

shares for the wrapped-around portions can be quite complex.

In Figure 8, we see that if the example on the right-hand

side wrapped around, we could simply select the shares with

indexes 1 and 2 from Secret 1. However, if the example on

the left-hand side wrapped around, the final share should have

index 4 and so it would need to use the 4th share from Secret

1 instead of wrapping around in the normal way. While it

would be possible to define the scheme to wrap around and

this might reduce the overall number of shares in some cases,

we have chosen not to include the wrap-around feature in order

to simply specification and analysis of the scheme.

There are several things to emphasize about the scheme.

First, each share has only one index, no matter how many

secrets it belongs to. This helps simplify implementation of

the scheme, since we don’t need to store (or be able to

449

������������������	�

��������
��
�������

������������������	�

��������
��
�����	�

� �

�

�

�

�

�

	

�

�

�

			

�	�

���
���

�	�

���

���

��

��

��

	�

����
��

��

��

	�

��

��

��

��

��

��

��

	�

	�

��

��

��

Fig. 8. Examples of NCP scheme

dynamically generate) multiple indexes for the same share.

Second, two consecutive secrets on the circle have r shares in

common, where r < k as discussed earlier.

C. Overhead of NCP scheme

We follow a similar analysis to that done for CYCLIC in

the previous section. To derive the total number of shares,

Nshare, we see that the first secret generates n shares and

each additional secret generates n − r new shares. Thus,

Nshare = n + (m − 1) × (n − r) = m(n − r) + r =
mn−r(m−1). Compared with Nshare for CYCLIC, here it is

obvious that, with fixed m and n, a higher overlap r reduces

Nshare. Therefore, to minimize the overhead of NCP, we

should maximize r, subject to constraints on security, which

we analyze in the next two subsections.

It is clear from the above expression that, for a given m
and n, Nshare decreases linearly with r. Thus, the shape of

the Nshare curves is very similar to those shown in Figure 4,

except that r cannot be increased beyond k − 1. Note that,

just as with NAIVE in Figure 4, the number of shares used

by P NAIVE would be the left-most point on the NCP curves

(corresponding with r = 0).

D. Security of NCP scheme

In this section, we discuss the security of NCP. Recon-

structing secrets is very different from CYCLIC because, as

mentioned earlier, we assume that an adversary knows the

index for any share that it is able to retrieve. Knowledge of

the index provides more information about where the share

fits and this makes the reconstruction process simpler. Despite

this, we will show that NCP can still provide high security

with a reasonable overhead. Due to page limitations, we omit

some details of the security analyses.

1) Reconstructing a first secret: The number of combina-

tions an adversary must try to reconstruct a secret, Ncomb all

for NCP with (k, n) secret sharing can be shown to be lower

bounded by wk, where w = �m(n−r)+r
n �. With this new value

of Ncomb all, we can use Equation 1 to get the probability of

reconstructing at least one secret in t attempts with the same

definition of Np
comb. We show Np

comb for p = 0.1 and varying

k and r, with the y-axis on a log scale in Figure 9. We fix

m = 50 and n = 15 in the example. We choose k as 14, 12,

10, and 8 and vary r from 0 to k − 1 in each case. We note

Fig. 9. Number of attempts needed to reconstruct first secret with probability
0.1 for NCP scheme (m = 50, n = 15, log scale on y-axis)

that r = 0 gives the number of combinations for P NAIVE.

We can see that a higher k increases the security level, since

wk will be larger and there are more overall combinations for

the adversary to consider.

Note that the calculations for decoding a secret using

Shamir’s scheme involve polynomial interpolation and, there-

fore, the process is more complex than for (n, n) secret

sharing, which uses only XOR operations. Thus, one secret

reconstruction will take considerably longer for NCP than

for CYCLIC. Despite this added complexity for NCP, for

illustration, we will assume the same security goal from the

previous section, where 1016 attempts was considered a good

security threshold. To reach 1016 attempts in Figure 9, k must

be at least 12. We can see that there are many choices of r
with both k = 12 and k = 14 that yield at least 1016 attempts.

It is also interesting to consider the overhead of NCP

configured to achieve the required security level and compare

it to P NAIVE. With n = 15 and m = 50 as used in Figure 9,

the number of shares required by P NAIVE is 750. If we

choose k = 14 and r = 10, then Nshare for NCP is 260 and

the desired security level is achieved with only about 1/3 the

number of shares required by P NAIVE.

2) Reconstructing all secrets with one secret reconstructed:
We still assume that, once a secret is reconstructed, the adver-

sary will next try a neighboring secret in the circle, because

the first secret reconstruction reveals some information about

the neighboring secrets. As in the analysis of CYCLIC, there

are again three cases depending on the overlap. We omit

the analysis details due to page limitations and simply state

the results for these cases. When r < k/2, the number of

combinations is:

n× wk−r +

wn
k−r∑

t=1

(�w − t× k − r

n
�)

k−r

When k/2 ≤ r < n/2, the number of combinations is:

n× wk−r +

2wn
k∑

t=1

(�w − t× k

2n
�)
� k

2 �

Finally, when k/2 ≤ r < n/2, the number of combinations

is:

n× wk−r +

wn
k(n−r)∑

t=1

(�w − t× k(n− r)
n ∗ n

�)
� k(n−r)

n �

450

Fig. 10. Number of attempts needed to reconstruct remaining secrets given
one secret in NCP scheme (m = 50, n = 15, log scale on y-axis)

We use the above expressions to generate Figure 10, which

shows the number of combinations to guarantee that all

remaining secrets can be reconstructed given the first secret.

With the example from the previous subsection with k = 14
and r = 10, which was sufficient to ensure the desired security

level for the first secret, an adversary can reconstruct all

remaining secrets with only about 106 attempts. However, if

we reduce r to 5, the number of attempts increases to about

1016, which was our target. This decrease in r causes the

number of shares to increase to 505, which is still about 2/3

of the number needed in P NAIVE but is significantly higher

than when only considering the security of the first secret.

E. Discussion
It is interesting to consider the relationship of the parameters

m and k in NCP relative to the parameter k in Shamir’s secret

sharing scheme (without deception). In Shamir’s scheme, k
is thought of as a fault threshold, i.e. it is the minimum

number of servers that must be compromised by an adversary

to reveal a secret. Such threshold schemes have been criticized

for security if they are deployed on a set of identical servers,

where a vulnerability on one server is likely to be present on

all other servers as well. A major benefit of deceptive secret

sharing is that k is no longer a strict fault threshold. Even

if an adversary is lucky enough to compromise k servers that

contain a set of shares that allow a correct-looking secret to be

assembled, it is unlikely to actually be a correct secret. Even if

all servers, and therefore all shares, are compromised, we have

shown that the adversary would still have to do a practically

infeasible amount of computation to reconstruct all secrets and,

therefore, be guaranteed to know at least one correct secret.

In other words, using deceptive secret sharing with a large

enough value of m, even with a small k, can provide much

stronger security than simply increasing k without deception.

VI. PROTOTYPE EVALUATION

Here, we evaluate our techniques using a CloudLab [4]

prototype. Since security was extensively evaluated in previous

sections, we focus on performance and data availability in the

experimental evaluation.

A. Overview of Prototype Implementation
The implementation follows the architecture of Figure 2.

The storage servers shown in Figure 2 are implemented on

servers in CloudLab. The metadata server is deployed on a

separate CloudLab server. Each server has eight ARMv8 cores

running at 2.4GHz. The client is deployed at the CloudLab site

in South Carolina while the servers reside in Utah. The client

contacts the metadata server on writes, to determine on which

storage servers to write shares, and on reads, to determine from

which storage servers to read shares and which shares make

up the real secret. All shares (real and fake) are read so as not

to reveal to an adversary eavesdropping on the storage servers’

network which are the real shares. We were able to maintain

up to 150 servers reliably in CloudLab for the durations of

our experiments. Since the number of shares in our schemes

often exceeds 150, we store multiple shares on each server

and the metadata server chooses a server at random for each

individual share (random share assignment).

We have implemented both CYCLIC and NCP in the

prototype. Since availability is an important issue in cloud

storage and CYCLIC cannot tolerate a single crashed server,

we also implemented CYCLIC with triple-modular replication,

where each primary storage server is matched with two other

storage servers that maintain exact replicas.

B. Evaluation

Metrics: We evaluated the performance of the schemes by

measuring the latency of reads and writes for different object

sizes and different secret sharing parameters. The latency of

read and write operations includes the time to communicate

with the metadata server and all relevant storage servers, to

generate shares for the write, and to reconstruct the secret for a

read. We also evaluated the data availability of the approaches.

Data availability was measured as follows: we wrote 1000

objects to the prototype using the random share assignment

scheme, emulated crashes of some storage servers, and then

attempted to read back the 1,000 objects. The fraction of reads

that were successful is our data availability metric.

Latency: Figure 11 shows the latency of the three schemes

for different object sizes and secret sharing parameters. As can

be seen, most of the latencies are between 1.5 and 3.5 seconds

to read or write a 256KB file to/from the cloud, which is an

acceptable value. The exception is the higher write latency for

CYCLIC with replication where, with synchronous replication,

each individual share write must occur at 3 different servers.

This latency could be reduced to be similar to the read latency

using lazy replication techniques, which would on the other

hand loosen consistency and reduce availability. It can also

be seen that latency increases as overlap decreases (n − r
increases), because smaller overlap increases the total number

of shares that must be read or written. The bottom left of

the figure shows the impact of object size. Performance is

reasonable up to 1 MB files but increases significantly for 4

MB files. The bottom right compares all 3 schemes and shows

that their latencies are similar except for the replicated write

latency as already discussed. Latency is most sensitive to the

overlap in our techniques while n and k have much less impact

since the number of shares is primarily determined by n− r.

451

Fig. 11. Latency. The top shows the three schemes with 256KB objects and m = 50. The bottom left focuses on impact of object size using CYCLIC
without replication for illustration. The bottom right compares the three schemes on one graph.

file size (KB)
no encoding deceptive secret sharing

write read write read
64 1.108s 1.078s 1.256s 1.274s

256 1.205s 1.312s 1.415s 1.624s
1024 1.693s 1.762s 1.905s 2.772s
4096 2.983s 3.207s 4.191s 6.099s

TABLE II
COMPARISON BETWEEN DECEPTIVE SECRET SHARING AND A

SYSTEM WITH NO SECRET SHARING AND NO DECEPTION.

We also wanted to understand how the performance of secret

sharing and deception compares to a system with no protection

at all, i.e. one where there is no secret sharing and no deception

deployed. The latter situation is equivalent to reading or

writing a single share, instead of the N shares required for

deceptive secret sharing, where N depends on the parameters

of the DSS scheme. Table II compares the cyclic DSS scheme

without replication and with m = 50, n = 15, and r = 14, in

which each file is encoded with 64 shares, compared with a

single share for no secret sharing and no deception. Despite

reading or writing 64 times the number of shares, the latency

of DSS is always less than twice that of reading a single share.

For the smaller file sizes, the DSS latency is actually only

10–20% higher than reading a single share. This is because,

with these file sizes, performance is not bandwidth-limited

and multiple share reads/writes can overlap substantially. With

much larger file sizes, the latency degradation would definitely

increase. However, for applications where file sizes are in the

range we evaluated such as email, photo sharing, etc., latencies

should definitely be in a range that is tolerable for users.

Availability: Figure 12 depicts the data availability of the

three schemes. Note that the availability of CYCLIC without

replication drops very quickly as the number of crashed servers

increases. Each server stores shares of some real secrets and

CYCLIC needs all shares to reconstruct the secret, therefore

even one crashed server causes some data objects to be

unavailable. Notice also that availability decreases with the

number of servers since, with fewer servers, more shares need

Fig. 12. Availability of CYCLIC and NCP. s is number of storage nodes.
(m = 50, n = 15, r = 9)

to be stored on each server. CYCLIC with three replicas im-

proves fault tolerance significantly, having availability near one

even with up to 10 crashed servers, except when the number of

servers is quite small (50). Triplication comes with very high

cost, however, as the storage overhead is tripled and write

latency is also increased substantially unless lazy replication

is employed. Note, however, that NCP with appropriate values

of k and a large enough number of servers can also achieve

availabilities near one for a relatively large number of crashed

servers. Since NCP has similar overheads to CYCLIC without

replication, in those scenarios it provides an ideal solution

when considering security, performance, and availability. As

an example, with n = 15, k = 12, r = 9, m = 50, and 150

servers of which 8 are crashed, NCP requires 309 shares and

has an availability of 0.9995, while CYCLIC with triplication

requires 903 shares and has an availability of 0.9999.

VII. RELATED WORK

Fake resources are often used to detect and/or track attacks.

This was first done with honeypots [16], [19], [24], which

capture attack traffic. An additional deception is used in

honey patches [1], in which an attempt to exploit a patched

vulnerability on a system causes the attack to be redirected to

a honeypot where the attack is monitored and the attacker is

led to believe that the attack succeeded. Deception has also

been used inside legitimate systems to detect attacks using

fake credentials [3], [10] or fake documents [3], [22]. Access

452

to fake resources causes alerts to be generated and, in [3], also

generates information about where an exfiltrated document

was opened. In [12], the authors discuss information deception

generally. These works deploy fake resources openly, because

they want adversaries to access them. The issue of confiden-

tiality of sensitive information that might exist on the same

systems is considered to be orthogonal and not addressed.

Our work combines the protection of the real information with

provision of fake information to provide two layers of security.

One aspect of our work involves hiding true information

among a sea of true and fake information. The earliest use of

this idea is Rivest’s chaffing and winnowing concept, which he

applied in the context of confidential exchange of messages

across a network [17]. This idea has also been proposed to

protect stored information [5], [6], [23]. The chaffing and

winnowing concept was extended to distributed storage in [23].

This work provides a novel encoding to produce wheat and

chaff pieces for storage and uses an inverse decoding process

to eliminate the chaff when reading the data. In [5], the authors

secret share sensitive information and hide the shares within

a very large file, which increases the difficulty for an attacker

to exfiltrate the information for off-line analysis. In [6], large

shares that are hard to exfiltrate are also used together with an

interactive secret reconstruction scheme, which is resilient to

attackers that can compromise a limited number of rounds

of reconstruction. None of these approaches addresses the

additional deception aspect that we consider herein.

Secret sharing has been used in various ways in distributed

storage systems [2], [8], [14], [15], [20], [21]. One approach

is to encrypt data and secret share the key among multiple

servers [8]. In [14], secret sharing and replication are com-

bined to reduce write cost compared to (k, n) secret sharing.

In [21], secret sharing and XOR replication are combined

to provide equivalent guarantees to (k, n) secret sharing but

with better performance. Another approach is to secret share

data across multiple cloud providers [2], which can protect

against insider attacks within a single provider. In [20], the

authors propose combining secret sharing with RAID to pro-

vide confidentiality and reliability of archival data. In [15],

Shamir’s secret sharing scheme was extended with Byzantine

fault tolerance. All of these works are only concerned with

confidentiality and do not address the issue of deception.

The only work of which we are aware that combines

confidentiality and deception as is done in our approach is

honey encryption [9], [11]. In honey encryption, decryption

with the proper key yields the correct plaintext but decryption

with other keys yields correct-looking but fake plaintext. The

approach relies on distribution-transforming encoders (DTEs),

which transform messages into seeds that are then encrypted.

To date, DTEs have been given for only a few message types,

e.g. RSA keys and credit card numbers in [11] and genomic

data in [9]. Since our approach is built upon basic secret

sharing schemes, it can be applied to any type of data.

VIII. CONCLUSION

We presented new deceptive secret sharing techniques that

work with both XOR secret sharing and Shamir’s polynomial-

based threshold secret sharing. We evaluated both the overhead

and security of the proposed techniques and showed that they

permit tunable security, i.e. a tradeoff between security and

overhead, by varying one parameter of the techniques. A

Cloudlab prototype was used to show that our techniques have

acceptable latency and very high availability.

REFERENCES

[1] Araujo F, Hamlen K W, Biedermann S, et al, “From patches to honey-
patches: Lightweight attacker misdirection, deception, and disinforma-
tion,” Proc. ACM SIGSAC Conference on Computer and Communica-
tions Security, 2014: 942-953.

[2] Bessani A, Correia M, Quaresma B, et al, “DepSky: Dependable and
secure storage in a cloud-of-clouds,” ACM Transactions on Storage
(TOS), 2013, 9(4): 12.

[3] Bowen B M, Hershkop S, Keromytis A D, et al, “Baiting inside
attackers using decoy documents,” Int’l Conf. on Security and Privacy
in Communication Systems. Springer Berlin Heidelberg, 2009: 51-70.

[4] CloudLab Team, “The CloudLab Manual,” http://docs.cloudlab.us/.
[5] Dagon D, Lee W, Lipton R, “Protecting secret data from insider attacks,”

Int’l Conf. on Financial Cryptography and Data Security, 2005: 16-30.
[6] Dziembowski S, Pietrzak K, “Intrusion-resilient secret sharing,” Proc.

Symposium on Foundations of Computer Science, 2007: 227-237.
[7] Greenberg, A., “Hackers hit macron with huge email

leak ahead of French election,” Wired Security blog,
https://www.wired.com/2017/05/macron-email-hack-french-election.
(URL checked on 4/12/2018)

[8] Herlihy, M., and Tygar, J., “How to make replicated data secure,” Proc.
of Advances in Cryptology, pp. 379–391, 1987.

[9] Huang, Z., Ayday, E., Fellay, J., et al., “GenoGuard: Protecting genomic
data against brute-force attacks,” Security and Privacy (SP), 2015 IEEE
Symposium on. IEEE, 2015: 447-462.

[10] Juels A., Rivest R., “ Honeywords: Making password-cracking de-
tectable,” Proc. ACM SIGSAC Conference on Computer & Comm.
Security, 2013: 145-160.

[11] Juels A, Ristenpart T, “Honey encryption: Security beyond the brute-
force bound,” Int’l Conf. Theory & Appl. Crypto. Tech., 2014: 293-310.

[12] Kott, A., Swami, A., and West, B., “The fog of war in cyberspace,”
IEEE Computer, pp. 84–87, Nov. 2016.

[13] Krawczyk, H., “Secret sharing made short,” Proc. of the Annual Inter-
national Cryptology Conference, pp. 136–146, 1993.

[14] Lakshmanan, S., Ahamad, M., and Venkateswaran, H., “Responsive
security for stored data,” IEEE Transactions on Parallel and Distributed
Systems, Vol. 14, pp. 818-828, 2003.

[15] Padilha, R., Pedone, F., “Belisarius: BFT storage with confidentiality,”
Proc. Int’l Symp. on Network Computing and Appl., pp. 9–16, 2011.

[16] Provos, N., “Honeyd: A virtual honeypot daemon,” Proc. of 10th DFN-
CERT Workshop, pp. 4–9, 2003.

[17] Rivest, R.L., “ Chaffing and winnowing: Confidentiality without encryp-
tion,” CryptoBytes (RSA laboratories), 1998, 4(1): 12-17.

[18] Shamir, A., “How to share a secret,” Communications of the ACM, Vol.
22, pp. 612–613, Nov. 1979.

[19] Spitzner L, “Honeypots: Catching the insider threat,” Proc. Computer
Security Applications Conference, 2003: 170-179.

[20] Storer, M., Greenan, K., Miller E., et al., “POTSHARDS: Secure
long-term storage without encryption,” 2007 USENIX Annual Technical
Conference. USENIX Association, 2008.

[21] Subbiah, A. and Blough, D.M., “An approach for fault tolerant and
secure data storage in collaborative work environments,” Proc. of the
ACM Workshop on Storage Security and Survivability, pp. 84–93, 2005.

[22] Yuill J, Zappe M, Denning D, et al, “Honeyfiles: Deceptive files for in-
trusion detection,” Information Assurance Workshop, 2004. Proceedings
from the Fifth Annual IEEE SMC. IEEE, 2004: 116-122.

[23] Zage, D., Obert, J., “Utilizing linear subspaces to improve cloud
security,” Dependable Systems and Networks Workshops (DSN-W), 2012
IEEE/IFIP 42nd International Conference on. IEEE, 2012: 1-6.

[24] Zhang, F., Zhou, S., Qin, Z., and Liu, J., “Honeypot: A supplemented
active defense system for network security,” Proc. Int’l. Conf. on Parallel
& Dist. Computing, Applications and Technologies, pp. 231–235, 2003.

453

