2015 IEEE 17th International Conference on High Performance Computing and Communications (HPCC), 2015 IEEE 7th

International Symposium on Cyberspace Safety and Security (CSS), and 2015 IEEE 12th International Conf on Embedded Software

and Systems (ICESS)

Distributed Enforcement of Sticky Policies with
Flexible Trust

Jordan Brown and Douglas M. Blough
School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, GA 30332-0765

I. ABSTRACT

In this paper, we describe an approach to distributed
enforcement of sticky policies in heterogeneous hardware
and software environments. These heterogeneous environments
might have differing mechanisms for attesting to their se-
curity capabilities and data sources might specify different
levels of trust for different data items. Such an environment
requires highly flexible policy specification and enforcement
mechanisms. We employ sticky policies that travel with data
wherever it travels, and we separate them into two components,
a hosting policy and a usage policy. Hosting policies are used
to ensure that data are transferred only to entities that are prov-
ably capable of providing local enforcement and only further
transferring data under the same policies. Usage policies confer
access, viewing, and update capabilities on users based on their
attributes. The approach is supported by attribute-based certifi-
cates and policies, which include what authorities are trusted
to certify attributes. In addition to presenting a full description
of the approach, we report on a prototype implementation
that includes all of the aforementioned components and also
makes use of a modified version of Excel we developed to
track security labels as data move through spreadsheets that
are being shared by multiple users across different systems.

II. INTRODUCTION

In the information age in which we live, organizations
maintain large amounts of data, much of it sensitive. In many
situations, there could be great value in sharing these data
with individuals or partners outside of an organization’s con-
trolled hardware/software infrastructure. For example, in the
domain of medicine, health professionals would like to safely
access patient information on their laptops or even mobile
devices, and controlled sharing of such data for both health
care and research purposes has obvious scientific and social
benefits. Clearly, inadvertent disclosure of health information
could have severe consequences for patients with sensitive
conditions. Thus, although the benefits of information sharing
are great, the risks of data breaches if the information is
not properly handled after it is shared are often greater. A
similar analysis can be made concerning sensitive customer
information held by commercial organizations, information
maintained in databases by law enforcement organizations, etc.

Organizations that allow sensitive data to be disseminated
need assurances that the systems receiving the data will control
access so that users only see the information appropriate
to their level of authorization, maintain sensitivity labels on

978-1-4799-8937-9/15 $31.00 © 2015 IEEE
DOI 10.1109/HPCC-CSS-ICESS.2015.235

1202

information as data are propagated within the system, and only
further disseminate the data to other systems if those systems
meet the requirements of the data owner. Enabling concepts
for this vision are sticky policies, wherein policies on data
usage are propagated along with data as they move within and
between systems, and information flow control (IFC), where
sensitive information is tagged, tags propagate with data as
they move around within a system, and access is restricted to
authorized individuals based on the tags.

In this paper, we address the problem of controlled in-
formation dissemination in heterogeneous distributed environ-
ments where hosts might have very different hardware and
software architectures and do not have necessarily have pre-
arranged trust relationships. Data are disseminated together
with policies that are specified by the data source and can
be added to by intermediaries that insert new information. A
policy is cryptographically tied to its corresponding data to
prevent it from being undetectably altered. In our approach,
policies have two distinct components. The hosting policy
specifies the hardware and software requirements in order for
some entity to host the data. The usage policy specifies the
rights that users have on the included data types.

Our approach permits information sharing in a flexible way.
This means that hosts do not all need to use the same local
IFC mechanism nor have the same infrastructure. Some hosts
might have hardware support for IFC, others might have a
trusted IFC-aware operating system, and still others might have
application-aware IFC as long as the application is certified by
a trusted software company or trusted third-party auditor. This
allows different combinations of trusted components to meet
requirements for managing sensitive information. Given the
diverse heterogeneous nature of systems in operation today,
we believe this flexibility will remove a significant barrier to
wide-spread deployment and use of technologies for controlled
information dissemination. This approach is enabled by cer-
tified attributes that systems can present when they request
sensitive information to be shared with them. The key point
is that the data source decides what attributes are required for
data hosting and use, as well as how those attributes can be
certified, which enables flexible information sharing.

We have built, demonstrated, and evaluated a proof-of-
concept prototype implementation of our approach. The pro-
totype includes a management component to perform remote
attestation and secure document exchange, an Excel add-in
that performs local information management and flow control
of data in spreadsheets, and a policy decision point to make
hosting and access decisions based on data owners’ policies.

IEEE
computer
psouety

The add-in enables Excel users to tag cells or groups of cells
with sensitivity labels, it controls access to tagged cells, and
it propagates tags across cells as necessary.

The contributions of this paper can be summarized as
follows. Our work explores a novel approach to robust, dis-
tributed enforcement of sticky policies across heterogeneous
systems. Our solution provides data owners with a suite of op-
tions for maintaining flexible data privacy and integrity while
minimizing the overhead for enforcing the desired policies
and allowing separation between data hosting privileges and
data usage rights. To facilitate the distinction between hosting
and usage, our system provides the capability of verifiable
redaction of data, which enables less sensitive data to be shared
with verifiable links to policies while maintaining security
requirements on highly sensitive data.

III. BACKGROUND

A. Example Use Case

An example use case comes in the form of client interaction
with a cloud service provider. Consider a sample interaction
with the well known service provider Google. Users may have
a large variety of data that are passed through this provider
when accessing its diverse set of services. It is reasonable to
expect that users have the ability to define access rights to
their data within and beyond the provider’s boundaries. For
example, when using Google Wallet, the user could specify that
the credit card information provided may only be handled by
trusted billing companies and banks. Data generated on mobile
devices could pre-specify data usage policies and limit the use
of location data by Google Maps to only intended purposes.
When sending a sensitive email, the user could specify that
the contents should only be visible to the specified recipients.
If properly enforced, this policy should prevent recipients
from forwarding the message to non-recipients. Additionally,
collaborative efforts on shared documents could be equipped
with viewing and distribution policies in a distributed manner
which allows for the contributors to decide the privacy lev-
els appropriate for their own content. Our distributed policy
enforcement system lays the foundation for each of these
scenarios as well as many others.

B. Related Work

Trusted platform computing provides one mechanism for
certifying attributes of remote systems. Implementations such
as Nizza [14] and Flicker [17] deal with the trusted computing
base, while others such as Terra [11] and CloudVisor [27] deal
with issues at the virtualization level and trust in the cloud.
Excalibur [24] uses remote attestation and trusted platform
module (TPM) sealing mechanisms to ensure proper execution
environments of Virtual Machines (VMs) as they migrate
within a datacenter. Trusted virtual domains [9], [10] extend
trusted platform technology using virtualization to provide iso-
lated execution environments that span multiple physical plat-
forms. In [12], the authors consider information flow control
across virtual domains within a single enterprise infrastructure.
This work includes two levels of usage policies, the top level of
which specifies constraints across different workflows (virtual
domains) and the lower level of which covers rights of different
users within a single workflow. This work does not include our

1203

concept of a hosting policy, which is separate from the usage
policy, because there is inherent trust in the platform provided
by the common enterprise infrastructure.

Another supporting technology for our approach is
property-based (or attributed-based) attestation. Prior work on
property-based attestation spans various computing environ-
ments, ranging from mobile [5], [16] to client-server [1] to
cloud [22], [26]. To our knowledge, Sadeghi and Stiible [23]
were the first to suggest the use of trusted third parties to
provide attribute attestation.

Our research looks to expand on sticky policy approaches
considered to date. The work in [21] focuses on logging policy
consent to facilitate auditing in the event of breaches. In [4],
the authors focus on mechanisms for attaching policies to
data. The work developing a Data Distribution Infrastructure
(DDI) [15] works to ensure distributed policy enforcement
by integrating services into local enforcement infrastructures
but simply assumes remote trust capabilities are present.
Various other contributions to the area rely on homogeneous
components [25], expect policy breaches to be prosecuted
via review audits [7], work under assumptions that leave
trust establishment as out of scope [13] [20] [19], or simply
acknowledge that trusted attestation services could strengthen
the system without considering how to incorporate them [6].
Our work looks to facilitate verifiable attribute collection,
which allows informed policy decisions without strict com-
ponent knowledge prior to policy authoring. This empowers
heterogeneous systems support through focus on system and
component attribute attestation rather than restricting system
composition or assuming trusted behaviors.

Finally, the work described herein builds on our earlier
work with redactable signatures [2], [3], [8]. That work uses
a Merkle hash tree structure to allow selective disclosure of
attributes in certificates [2], [3] and provides strong crypto-
graphic verification of selectable subsets of data in the context
of health information exchange [8].

IV. APPROACH OVERVIEW

The objective of our approach is to ensure that sensitive
data are never accessed in an insecure manner. Obviously,
the definition of insecure is different for different people and
might even differ for one person when considering different
types of data. Through attribute verification, our approach
ensures that sensitive data is treated with the security mea-
sures specified by the data source to maintain an expected
level of privacy and integrity. We refer to the distributed
software system that governs data security and authorizes
data transfers as the management service and it is comprised
of various heterogeneous management components. Figure 1
depicts management components residing at various levels
on heterogeneous systems. This service facilitates distributed
policy enforcement and is described in Section V-B.

The management components operate under the policies
attached to the data, which are described in Section V-C. These
policies outline the features that must be in place to securely
host sensitive data and which types of software and users may
access the data. Each type of sensitive data has its own hosting
and usage rules, which allow for flexible trust specification.

2
v

i)

APP

MOBILEQ

X,
X
i
APP
o SERVER
PC I%’ 4(/ VM VM 5
g! & Management

Fig. 1. High-Level Diagram of Approach

Once data are secured by a management component, it is
the responsibility of that component to ensure that any new
system or component requesting hosting or usage privileges
meets the policy specifications. This requires attribute col-
lection to facilitate a policy decision, which in turn requires
secure communication and trusted verification of the attributes.
Examples of this process are discussed in Section V-E.

Data transfer is represented by the encrypted policy-data
package and accompanying key in Figure 1. The system is
capable of transferring subsets of data to match the security
on the receiving end of the transfer. The collected attributes
of the remote management component are used by the policy
to direct the redaction of data that cannot be included in the
transaction to the new host. Further redactions may take place
during user and application data access as defined in the usage
policy attached to the data.

In a basic implementation of our approach, there is only
one encryption key per data set. The management component
on the sending end of a transfer first redacts all data that the
receiving component is not authorized to receive (see Sec-
tion V-A for redaction details), then encrypts the redacted data
set using its encryption key, and then forwards the redacted
data set and accompanying key to the receiving component.
The receiving component thus obtains only the portion of
the data for which it is authorized. It can then pass along
a subset of that data to further components in keeping with
the document’s policy. A more complex implementation could
make use of a multiple-key approach, wherein an entire data set
with different portions encrypted with different keys is passed
to any component but only the keys to the authorized portions
are released to the component.

Note that, in the basic implementation, the process of
redaction and dissemination could result in multiple versions
of a data set if a component is allowed to transfer the data set
multiple times to different recipients. We have also developed
a mechanism for version tracking and control within this
process, but due to space limitations, we omit its details.
The redaction/dissemination process could also result in a
component receiving a version of a data set in which some data
that the component is authorized to receive have been redacted
at an earlier point. The receiving component will be able to
detect this situation and is free to request a more complete
version of the data set from another source. The process of
merging different data set versions into one is also handled by

1204

Sign (Output)
Output = Hash (Child1 | Child2 | DATA)
DATA

Output = Hash { Child1 | Child2 | DATA)

Output = Hash(DATA)

Fig. 2. Sample Hash Tree Structure

our version tracking and control mechanism.

V. DESIGN

This section details the expected behavior and functionality
of the components of our approach.

A. Data Format

To maintain data integrity in the presence of redactions, we
store data using a hash tree structure. The exact layout of data
items within the structure depends on the application and the
desired granularity of the data items but the general concept
can be described. The basic structure of the tree is shown
in Figure 2. The output hash value of a node is calculated as
follows: HN = HG,Sh(HNl |I’IN2 |...‘HN,”/ DataN), where HN
is the hash of a node N, Hpy, is the output hash of the ith
child of node N, Datan represents the data stored in node
N, and | represents data concatenation. If there is no data
in a node, the output is calculated without the final element
of the concatenation. Note that this differs from the classic
Merkle hash tree structure [18], which stores data only at the
leaves but not in internal nodes. Among other potential uses,
our variation facilitates storage of metadata that covers subsets
of data items by including metadata at the root of a subtree
containing all of the appropriate data items.

When a data owner stores the data in such a hash tree
structure, the owner signs the hash value at the root of the
tree to enable the data to be verified later. Any subset of
data in the hash tree can be redacted while still permitting the
root signature to be verified. A redacted data item is simply
replaced by its hash value in the tree. While this removes the
data value, the remaining hashes up to the root hash can still be
verified since the hash of the data is all that is used to compute
hashes moving up the tree. Note that, in this way, data can only
be removed (redacted) but cannot be modified. Modification
of the data item would result in a different hash value, which
when propagated up the tree, would result in an incorrect root
hash that does not match the root signature. The final result is
a signed redactable data structure, which we can use to transfer
only allowed subsets of data to new systems/components,
while still providing verifiability and integrity of the remaining
data and associated policies.

To add new data into an existing hash tree, we create a
hash tree for the new data and include the prior hash tree as

— New Tree
=== Old Tree

Fig. 3. Adding a New Sub-tree to a Hash Tree Structure

a child of the root of the newly created tree. This operation
is depicted in Figure 3. The output hash of the new tree is
signed by the author of the new data to provide overall data
integrity. The signature of the prior hash tree is maintained
to allow stand-alone verification of the data in that tree if a
recipient is only concerned with that data and not interested
in the newly added data. This way of combining new and old
data results in non-binary tree structures, which also differs
from the classical Merkle hash tree.

B. Management Service

The management service provides enforcement of both the
hosting and usage policies through a set of distributed man-
agement components. Enforcement includes the identification
and attestation of remote components to determine suitability
for passing along hosting privileges on subsets of data which
is described in Section V-E. Management components can
take many forms and provide a variety of enforcement mecha-
nisms. Our approach does not require that every management
component provide every enforcement mechanism, but rather
that components are able to reliably present their enforcement
capabilities during attestation so that decisions may be made
regarding access and hosting suitability. In the event that
a requesting host is unable to provide the security features
required to host an entire data set, the subset of data which
the requester is qualified to host is transferred. This is handled
by redaction prior to transmission. Redaction also takes place,
based on the usage policy, when a user or application accesses
data so that they are only presented with the data that they are
authorized to access.

Sample enforcement mechanisms include secure key stor-
age and management, legacy application sandboxing, IFC
integration, and next hop attestation. Services like secure
key storage may come in many flavors and use combina-
tions of hardware and software approaches that would need
to be presented when determining enforcement capabilities.
Legacy application sandboxing may serve to open older un-
managed applications to data access by retrofitting them with
required policy enforcement services. IFC integration may
provide data owners with assurances that data derived from
sensitive data also maintain the same level of sensitivity and
policy expectations. Next hop attestation ensures that any
recipient of sensitive information has been found to exhibit
the expected attributes of the data owner before sharing the
sensitive data. These mechanisms are neither exhaustive nor
mandatory within the system, but they provide examples of
the types of characteristics one might expect for sensitive data
management.

1205

Enforcement within a single system may either be consoli-
dated or distributed. For example, Microsoft could produce an
operating system that offers its services to ensure data privacy
is maintained and enforces policy wishes on all data accesses
on the device. Alternatively, or in addition to, a version of Open
Office Calc may be developed that runs its own enforcement
irrespective of the operating system. There are benefits to
both approaches as centralized stand-alone enforcement can
focus on hosting requirements while embedded application
enforcement can bring application-specific knowledge to usage
policy enforcement.

C. Policies

Any implementation that is widely used will need well-
defined definitions of attributes to ensure each security request
listed in a policy is equally represented across as many systems
as possible. However, this work does not attempt to list or
standardize attributes that maintain data privacy. This section
looks to elaborate on some of the general aspects of both
hosting and usage policies.

Existing works on sticky policies consider various methods
for attaching policies to data in verifiable ways. However, by
incorporating the policy into the hash tree structure of a data
file, new methods for policy linkage are viable. A first method
treats the policy as a separate but linked sub-tree similar to
Figure 3. This allows for the policy to be verified and also
remain redactable independently of the data for instances in
which data need to be publicly released. Alternatively, the
policy may be added as meta-data to the root of the sub-tree,
which requires the policy to be released any time the data are
released. Our approach allows inclusion of policies for newly
added data that are linked into the tree but does not currently
allow policies for existing data to be updated. Policy updates
are a topic for future research.

To facilitate secure attribute definition and collection,
policies may specify suitable certifiers of various attributes.
For example a data owner may only trust operating systems
certified by Microsoft to handle legacy application sandboxing,
researchers employed by Georgia Institute of Technology,
or TPM devices certified by Atmel. Additionally, there may
be many different combinations of attributes trusted by a
data owner that can be specified within the policy to denote
expected levels of security. Each data set should have a policy
specifying hosting attributes as well as a data usage policy.

Usage policies specify standard read/write privileges on
data but also must include sensitivity label privileges such as
adding and removing labels. One additional capability we have
added in our approach is data viewing. With sensitive data and
under certain workflows, it may be useful to give users the right
to operate on the data without having access to view the data on
the screen. Therefore, we propose a distinction between data
access and data viewing capabilities, and we have implemented
these as separate capabilities in our Excel add-in described in
Section VI-B.

D. Certificates

Our approach emphasizes attribute-based policies as an
efficient way of handling a variety of run-time scenarios for
which exact details are not known at policy definition time.

However, we do believe that identity-based policies will still
be meaningful in some cases. Standard identity certificates are
widely deployed and we do not need to detail them here except
to state that they serve as a linkage between a public key and
the entity’s identity, as verified by the certificate authority.

Attribute-based certificates maintain the ability to link a
name with a public key but they also provide a way to
dynamically disclose attributes in a verifiable, efficient manner.
By treating attributes as data granules relating to the public key
we may form a hash tree structure that contains the various
characteristics attributed to a given entity. This structure allows
control over the disclosure of attributes limiting the informa-
tion that must be shared about oneself with an unknown remote
system to establish trust [2].

E. Facilitating Trust

The work provided here primarily operates on the assump-
tion that in some form or another, one device is able to detect
characteristics of a remote system in a trusted manner. A com-
mon component that provides this functionality is a Trusted
Platform Module (TPM), but other components such as Trusted
Execution Environments (TEE) on mobile devices also provide
similar functionality. These components are able to identify
themselves and provide verifiable information regarding other
components that are currently operating on the system.

An alternative approach to trusting the hardware and soft-
ware components directly may come in the form of domain
trust. Given that a software component may validate a domain
through secure DNS services, it may follow that some data
owners may willingly share data with those domains under
the expectation that they have the security measures in place to
support an expected level of data privacy and policy adherence.
This might well be the case in the cloud service provider use
case discussed earlier, wherein a user might trust the cloud
provider to maintain the data securely and enforce her policies
on data sharing without performing a full remote attestation.
Our approach is not intended to restrict data transactions but
rather to allow policy enforcement on data flows by identifying
remote entities to some level and thereby ensure accepted data
access.

The point to be emphasized is that our approach leaves
the decision up to the data source as to what capabilities
a remote system must have and how those capabilities are
certified. This is done via the hosting policy for a data set.
While the above examples are common scenarios we envision,
many other possibilities exist and can all be accommodated
within our policy-based approach.

VI. PROTOTYPE IMPLEMENTATION

In this section, we describe a proof of concept prototype,
which demonstrates a use case in which collaboration is done
via the sharing of data in spreadsheets.

A. Implementation Overview

For this prototype, we modified Microsoft Excel using
the add-in functionality provided to support application level
policy enforcement in the form of IFC. Remote trust is
established using the TPM 2.0 simulator provided with the

1206

Data Source Data Requester

Excel Stand- 4.a Stand- | S.a,c Excel
‘ = Alone » | Alone | €4 & =
| X & ¥
1 i 4 2
/ ‘%
6
PDP ™M TPM PDP
° m 2 1 °
o 3 E H B o
mni i
File System o 4 Policy Certs 1 Certs File System
4
— A 4.b qpE
>

Fig. 4. Opening a file on a remote system

TSS.NET library for Windows. We emphasize again that
TPM functionality is only one possible method for providing
certifiable verification of a remote system. We employed it
in our prototype because it was the most direct route to the
required functionality.

The majority of the development was done using C# with
a Java-based XACML decision point deployed as a local Web
service. When needed, libraries and classes were developed
in C# and Java to facilitate communication. Hash trees were
used to store data to allow for redactions to take place. To
manage data storage on the system, a stand alone management
component was implemented that uses the TPM simulator to
store an application key. This key is used to encrypt a list
of document keys. Figure 4 demonstrates the encryption key
transfer process for our system.

The setup in Figure 4 shows an existing document-policy
pair located on a source machine. The requesting system sends
credentials and public keys for verification (Step 1). This
process may happen via offline communication. These cre-
dentials are taken by the stand-alone management component
(Step 2) and verified before they are passed to the decision
point (Step 3). Once the attributes have been confirmed to
satisfy the policy, the source’s stand-alone component uses the
certified public key to send the encryption key to the remote
management component (Step 4.a). The encrypted file is also
sent to the remote host (Step 4.b). Once the file and key
are received by the new host, the Excel application requests
access from the host’s management component (Step 5.a). This
triggers a local attestation and check with the policy decision
point (5.b). Finally, the key is passed to the Excel application
(Step 5.c) and the file is accessed (Step 6). Not shown in this
figure, the Excel application then runs a policy check against
the user to determine the subset of data that she is allowed to
access.

B. Excel Add-In

Our prototype uses a Microsoft Excel add-in to demonstrate
application level enforcement of policies. Once users have
logged in, they may create data within the application, group
cells into data granules, and add sensitivity labels for IFC
using the interface shown in Figure 5. In the background,
the application manages user identities when generating saved
files, sensitive label propagation when referencing data in
formulas, and policy enforcement based on user attributes.

The provided flow control add-in does not support the
native save and load features provided within Excel. Instead,

* MNew Label Grain
Create New Grain

UnTag Add To Grain

Fig. 5. Control ribbon for IFC functionality in Excel

import and export options were provided to allow for data
restructuring and the inclusion of tags in the saved files. This
functionality focuses on cell contents and labels rather than
formatting and other various features Excel provides. Policy
enforcement manages read, write, and view capabilities per
user. These capabilities allow users to load data even if some
data may not be presentable to them on the screen. Hidden
cells are used to accomplish this.

One issue that arises from data redaction is that the
placement of empty spaces might leak information. As such,
it would be beneficial to have the ability to specify the
importance or lack thereof of cell placement. This may include
the ability to say row order is not important but data need to
remain consistent across a row. Capabilities such as this are a
topic for future research.

A gap in our current implementation is lack of IFC support
for cut and paste operations. Excel provides the capability
to disallow pasting and moving data, which prevents tagged
data from being moved away from the tags. However, in the
current implementation, we cannot prevent data from being
copied to the clipboard and pasted elsewhere. This is a similar
leak potential to writing data down or taking a screen-shot
from information that appears on the screen, but a full featured
solution would support tagged copy-paste operations or prevent
movement of sensitive data to the clipboard.

VII. EVALUATION

Our evaluation covers expected overheads of the use case
depicted in Figure 4. All experiments in this section were
conducted on an Intel Core i7 CPU with a 3.5 GHz clock
frequency and 32 GB of RAM.

A. Evaluation of Policy-Based Data Transfer

The first step in this process is gathering certificates and
verifying attributes. If we are relying on TPM functionality
for attribute attestation, this requires transfer of public identity
keys and certificates, PCR event logs, PCR event certificates,
binding key public information, TPM provided certificate
of the binding key, and the binding key policy. Using this
information, we are able to reconstruct the PCR values to link
attributes to the system as well as the binding key. The process
varies primarily on the number of steps required to reconstruct
PCR values. TPMs provide the capability to combine hashes
from multiple software components in each PCR using a hash
chain. Each software component included in a PCR value
requires one step in PCR reconstruction.

To demonstrate a basic range of overheads we ran tests
of reconstruction and validation for fifteen registers across
a range of one to ten steps per register. At the upper end,
this corresponds to verification of 10 software components in

~ Remove From Grain

1207

Import Highlight Grain Users

Export Display Grain Log In Log Out

300

260

Aftestation Time (m's)

0 2 4 6 8
Number of Steps

Fig. 6. Attestation Overheads

each PCR for a total of 150 verified software components
on the system being attested, which is clearly an extreme
case. Figure 6 shows an estimate of the overheads seen in
the verification process, which are quite low, in the range of
50-250 milliseconds of wall clock time. Since the wall clock
time represents an upper bound on the computation time, actual
overheads are expected to be even lower than this in practice.
This demonstrates the expected overheads for the processing
between steps 2 and 3, and 4 and 5 in Figure 4.

After the certificates have been validated, the attributes and
request must be passed to the policy decision engine. Using the
attached policy and attributes found in the verified certificates,
the engine is able to decide the suitability of the remote host
for hosting the requested data. To better represent the overhead
of a deployed system, we evaluated the decision engine as a
stand alone process rather than as a Web service. The Web
service was used to ease prototype development but is not the
expected deployment method in practice.

The process for this test involved requesting three forms of
access for a given user for each resource. The reason for this is
that, for each resource, a user may have viewable access, which
means they may view it on the screen; they may have write
access, which allows them to edit and write new data with a
given tag; and they may also have read privileges which allow
them to use the data in computational processes so long as the
data is not shared back with them. The tests, detailed in Figure
7, measured the complete time for decisions on all resources
for a user with no access rights to prevent early decisions on
any particular case. In the usage policy, each resource access
mode was allowed for ten different specific users.

Figure 7 shows a time of just over twenty seconds to
make full decisions on 1000 resources (labels). This includes
decisions on the computer readable, screen readable, and
writable permissions on each label. It should be noted that

256000

20000

/

16000

10000 4

Decision Tim e {m s)

5000

T T T
800 800 1000

Number Of Resources

400

Fig. 7.
the File

Full Policy Decision Time for a File vs. the Number of Labels in

this data point represents a very extreme case. In this situation,
each label is assumed to have its own rules in the policy and
the three access modes mean that there are 3000 rules in the
policy. Also, as mentioned earlier, there is no early decision
meaning that all 3000 rules are evaluated. Policies for most of
the use cases we envision should have at most a few hundred
rules. The data point for 100 resources in Figure 7 represents
a rule size of 300 and, in this more representative case, the
policy evaluation time was only 261 milliseconds, which is
quite reasonable. It should also be noted that this evaluation
time is only incurred once, at file opening time, to correctly
issue access permissions on data and labels. These overheads
are applicable to the steps 3 and 5.b in Figure 4.

B. Evaluation of Application-Level Overheads

Finally we analyze the overheads seen in our Excel add-in
in the process of save and load functionality seen in step 6
in Figure 4. To support data redaction and sensitivity labels,
our add-in required proprietary save and load functions. Our
implementation has an internal representation of the label
mapping that attempts to form large rectangles of similarly
labeled cells. To account for this, we compare save and
load functionality across a spreadsheet with no same-label
neighbors (ungrouped) and one with all cells of the same label
(grouped). The data in Figure 8 show that similar overheads are
seen between these two cases. This implies that the majority of
the overhead comes from the common process of extracting the
cell information from Excel, storing the information within the
hash tree for saving, and generating the final XML structure.
We currently see times of approximately 1 second to perform
a save with 2000 cells in a workbook.

The overhead for loads, while also being significant, is
lower than the save overhead (less than 1 second for up to
2500 cells). The overhead is again mostly due to the XML
processing, extraction of data from the stored hash tree, and
repopulation of the data within Excel and our background tag
map. These results may be seen in Figure 9.

For a more complete picture of the overhead of our
implementation, a few items should be mentioned. First, our
experiments did not include file encryption and decryption
time. However, if the standard method of encrypting the file
using symmetric key encryption and encrypting the symmetric

1208

1400

1200

1000

—+—Ungrouped

Save Time (ms)

—8—Grouped

Excel

200

1500
Number of Cells

2000 2500 3000

Fig. 8. Save Overheads using Excel Add-in

——Ungrouped

Load Time (ms)

—#—Grouped

Excel

1500 2000 2500 3000

Number of Cells

Fig. 9. Load Overheads using Excel Add-in

key using public key encryption is performed, the encryp-
tion/decryption times for the file sizes in our experiments and
an average current CPU would be less than one millisecond
and would, therefore, not impact the results. Second, we did
not attempt to address CPU overheads of run-time operations
within the modified Excel such as creating labels, tagging
data, etc. During extensive testing of the modified Excel, these
overheads were imperceptible to us.

While the reported save and load overheads are admittedly
high, our Excel implementation was designed primarily for
functionality and not optimized for performance. We expect
the overheads would be substantially reduced if the IFC func-
tionality was integrated directly into the worksheet application
instead of being implemented as an add-in. Furthermore, we
used basic XML library functions to parse the XML input on
a load and to generate the XML output on a save. Since XML
processing is notoriously slow, we are currently investigating
optimizations, such as serialization, that could serve to reduce
these overheads to reasonable levels.

VIII. CONCLUSION

We have presented a distributed enforcement approach for
sticky policies that permits data to be disseminated safely
across heterogeneous software and hardware components that
provide differing levels of security and without pre-existing
trust relationships. In addition to supplemental changes to

the current implementation to address known limitations, our
future work will explore potential solutions to data subset
distribution. Our aim in this exploration will be to address
possible solutions for data re-integration when a transaction
occurs from a lower security component to one with a greater
level of protection. Methods for managing verifiable updates
to policies on existing data will also be considered in future
work.

IX. ACKNOWLEDGMENTS

This work was supported in part by the National Science

Foundation under Grant 1IP-1230740.

(51

(6]

(71

91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

C. Ardagna and et al. A privacy-aware access control system. Journal
of Computer Security, 16(4):369-397, 2008.

D. Bauer, D.M. Blough, and D. Cash. Minimal information disclosure
with efficiently verifiable credentials. In Proceedings of the 4th
Workshop on Digital Identity Management, pages 15-24, 2008.

D. Bauer, D.M. Blough, and A. Mohan. Redactable signatures on data
with dependencies and their application to personal health records. In
Proc. Workshop on Privacy in Electronic Society, pages 91-100, 2009.

M. Beiter and et al. End-to-end policy based encryption techniques
for multi-party data management. Computer Standards & Interfaces,
36(4):689-703, 2014.

I Bente and et al. Towards permission-based attestation for the
Android platform. In Trust and Trustworthy Computing, pages 108—
115. Springer, 2011.

S. Betgé-Brezetz and et al. End-to-end privacy policy enforcement in
cloud infrastructure. In Proc. 2nd Int’l Conf. on Cloud Networking,
pages 25-32, 2013.

E. Birrell and F. Schneider. Fine-grained user privacy from avenance
tags. Technical Report http://hdl.handle.net/1813/36285, Cornell Uni-
versity Department of Computer Science, 2014.

J. Brown and D.M. Blough. Verifiable and redactable medical docu-
ments. In Proc. AMIA Annual Symposium, pages 1148-1157, 2012.

S. Cabuk and et al. Towards automated provisioning of secure virtual-
ized networks. In Proc. 14th Conf. on Computer and Communications
Security, pages 235-245, 2007.

L. Catuogno and et al. Trusted virtual domains: Design, implementation,
and lessons learned. In Proc. Int’l Conf. on Trusted Systems, pages 156—
179, 2009.

T. Garfinkel and et al. Terra: A virtual machine-based platform for
trusted computing. SIGOPS Operating Systems Review, 37(5):193-206,
2003.

Y. Gasmi and et al. Flexible and secure enterprise rights management
based on trusted virtual domains. In Proc. 3rd Workshop on Scalable
Trusted Computing, pages 71-80, 2008.

M. Ghorbel and et al. Privacy data envelope: Concept and implemen-
tation. In Proc. 9th Int’l Conference on Privacy, Security and Trust,
pages 55-62, 2011.

H. Hirtig and et al. The Nizza secure-system architecture. In Proc. Int’l
Conference on Collaborative Computing: Networking, Applications and
Worksharing, 2005.

F. Kelbert and A. Pretschner. Data usage control enforcement in
distributed systems. In Proc. of the Conference on Data and Application
Security and Privacy, pages 71-82, 2013.

K. Kostiainen, N. Asokan, and J.-E. Ekberg. Practical property-based
attestation on mobile devices. In Trust and Trustworthy Computing,
pages 78-92. Springer, 2011.

J. McCune and et al. Flicker: An execution infrastructure for TCB
minimization. SIGOPS Operating Sys. Review, 42(4):315-328, 2008.

R. Merkle. A certified digital signature. In Proceedings of Advances in
Cryptology, pages 218-238, 1989.

1209

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

M. Migliavacca and et al. Distributed middleware enforcement of event
flow security policy. In Proc. 11th Int’l Conference on Middleware,
pages 334-354, 2010.

1. Papagiannis and P. Pietzuch. Cloudfilter: Practical control of sensitive
data propagation to the cloud. In Proc. of the Workshop on Cloud
Computing Security, pages 97-102, 2012.

S. Pearson and M. Mont. Sticky policies: an approach for managing
privacy across multiple parties. JEEE Computer, 44(9):60-68, 2011.
A. Ruan and A. Martin. Repcloud: Achieving fine-grained cloud TCB
attestation with reputation systems. In Proc. 6th Workshop On Scalable
Trusted Computing, pages 3—14, 2011.

A.-R. Sadeghi and C. Stiible. Property-based attestation for computing
platforms: Caring about properties, not mechanisms. In Proc. of the
Workshop on New Security Paradigms, pages 67-77, 2004.

N. Santos and et al. Policy-sealed data: A new abstraction for building
trusted cloud services. In Proc. USENIX Security Symposium, pages
175-188, 2012.

X. Wang and et al. Protecting outsourced data privacy with lifelong
policy carrying. In Proc. Int’l Conferences on High Performance Comp.
and Comm. & Embedded and Ubiquitous Comp., pages 896-905, 2013.

S. Xin, Y. Zhao, and Y. Li. Property-based remote attestation oriented
to cloud computing. In Proc. 7th Int’l Conference on Computational
Intelligence and Security, pages 1028-1032, 2011.

F. Zhang and et al. Cloudvisor: Retrofitting protection of virtual ma-

chines in multi-tenant cloud with nested virtualization. In Proceedings
of SOSP, pages 203-216, 2011.

