
Nomad is the mobile agent

system integrated with

eAuctionHouse, our next-

generation Internet auction

server. With the Nomad system,

mobile agents travel to the

eAuctionHouse site and

participate in auctions on

the user’s behalf. Users can

create agents using Java or

can automatically generate

agents from Nomad’s

template agent library.

Nomad:
Mobile Agent System for an Internet-Based
Auction House

TUOMAS SANDHOLM AND QIANBO HUAI

Washington University

A s the Internet moves into the mainstream, electronic commerce
is becoming an important mechanism for conducting business. It
helps merchants and consumers reduce business costs and enables

customized delivery of goods and services. Among the current business
models, electronic auctions are emerging as one of the most successful e-
commerce technologies.

There are several successful commercial Internet auction sites, such as
eBay and Yahoo, as well as interesting academic Internet auction houses.1

Our motivation in developing an auction server, eAuctionHouse, was to
prototype next-generation features and test their feasibility, both compu-
tationally and in terms of consumer ease of use. eAuctionHouse is to our
knowledge the first, and currently only, Internet auction site that supports
combinatorial auctions,2–4 bidding via quantity-price graphs,5 and mobile
agents. eAuctionHouse acts as a third-party auction site, allowing users
across the Internet to buy and sell goods and to set up markets. eAuction-
House is available for testing at http://ecommerce.cs.wustl.edu.

As in conventional Internet auctions, in eAuctionHouse a user visits
the auction website to create or close an auction or to submit bids. How-
ever, eAuctionHouse supports two additional mechanisms for creating
auctions, closing auctions, and bidding: a user can send a formatted text
string directly through a TCP/IP connection, or use Nomad, the inte-
grated mobile agent system.

Another article presents a detailed view of eAuctionHouse.5 This arti-
cle focuses on the Nomad system.

MOBILE AGENT SYSTEM FOR ELECTRONIC
AUCTIONS
Nomad allows mobile agents to travel to the eAuctionHouse site and
actively participate in auctions on the user’s behalf even when the user is
disconnected from the network. This reduces network traffic and latency,
and the agents can respond to changes in the auction quicker than remote
users could. The speed of executing a computationally intensive bidding
strategy may also increase when agents execute on a powerful server.
Mobile agents need not necessarily be bidding agents. They can be used
for collecting information, learning price distributions, or setting up auc-

80 MARCH • APRIL 2000 h t tp ://computer.org/in terne t/ 1089-7801/ 00/$10.00 ©2000 IEEE IEEE INTERNET COMPUTING

A
G

EN
TS

 O
N

 T
H

E
N

ET

N O M A D

81IEEE INTERNET COMPUTING h t tp ://computer.org/in terne t/ MARCH • APRIL 2000

tions. (For the advantages of using mobile agents,
see the sidebar, “Mobile Agents in Internet-Based
Auctions”).

When multiple distributed eAuctionHouses are
installed across the network, multiple Nomads help
to form a virtual electronic auction site network.
To compare deals across different eAuctionHous-
es, however, an agent does not necessarily have to
migrate—from one agent dock it can download
and upload information from all of the eAuction-
Houses through their TCP/IP connections. The
agent can make the decision to migrate dynami-
cally based on the amount of information trans-
mitted, latency, and so on.

Also implemented in Nomad is a mobile agent
control scheme. After registering itself at the server,
a mobile agent can be seen and managed in its cre-
ator’s user portfolio. Once an agent docks on a serv-
er, it registers itself on the server. When the user
asks, the server displays all of the user’s registered
agents. If, for example, the user asks to kill an
agent, the server sends a message to the agent. The
agent then unregisters itself and the system deletes
the registry entry. If a user were to program an
agent that leaves the server without unregistering,
the registry entry would remain. If the user then
asked to kill the agent, the system would delete the
registry entry without actually killing the agent
because the system does not keep track of where
agents have migrated. In summary, in the current

implementation we do not provide automatic agent
tracking beyond a single agent dock, but leave that
to the programmer of the agent.

The high-level architecture of a Nomad is illus-
trated in Figure 1. A Nomad system consists of four
main components:

■ an interface for specifying agents
■ an agent dock
■ an agent manager
■ an agent database

The eAuctionHouse Web system provides the
HTML interface for users to navigate within eAuc-
tionHouse. When a user sends a request for auto-
matically creating a mobile agent via the Web sys-
tem, the request is directed to an agent generator.
All other requests are forwarded to the connection
manager. Figure 1 shows the connection manager
receiving input from three kinds of sources: the
Web system, TCP/IP connections, and agents.

Internally the connection manager does not dis-
tinguish between these sources. The same TCP port
is used for communication and all requests are sent
as formatted text strings. When a request is accept-
ed, the connection manager initiates a handler
thread. The handler checks the request’s validity,
takes necessary actions, synchronizes accesses to the
database, retrieves and updates the database, and
returns a result. Conceptually, each request is

Replies to usersUser's
TCP/IP
connections

User's
Web browser
connections

Connection
manager Auction

engine

Auction
database

Agent
database

Agent
manager

Create agent
from template

Communication
with user

Create
user-programmed
Java agent

Agent
generator

Interface for
specifying

agents

Web
system

Agent dock

eAuctionHouse

Nomad

H
TM

L
in

te
rf

ac
e

Request for
automatically
generated agent

Requests for bids,
setting up auctions,
and so on

User's
TCP/IP
connections

Figure 1. Nomad architecture within eAuctionHouse. The main components of the Nomad system are the interface for
specifying agents, the agent dock, the agent manager, and the agent database.

A G E N T S O N T H E N E T

82 MARCH • APRIL 2000 h t tp ://computer.org/in terne t/ IEEE INTERNET COMPUTING

mapped to a particular handler algorithm. The
modules and functionality of the auction engine
itself are presented elsewhere.2,5

Part of the Web system is dedicated to specifying
agents. Any request through that part is sent to the
agent generator, which then decodes the formatted
text string, creates mobile agents following those
instructions, and launches them onto the agent dock.
Mobile agents reside and execute on the agent dock.

We use the Concordia system (http://www.
meitca.com/HSL/Projects/Concordia) as the basis
of our agent dock. Concordia is a framework for
developing and managing mobile agent applica-

tions.6 It is a Java application and supports mobile
agents written in Java. Application interfaces are
provided in Concordia for sending agents around
the network. In Nomad these are used both for
launching automatically programmed agents and
for sending agents manually programmed by users.

Concordia agents process data at the data source.
Network transport is hidden from applications,
developers, and users. Typically, a Concordia agent
has an itinerary, which can be seen as a list of net-
work destination addresses. Associated with each
address is an action—a Java class method executed
when the agent travels to the associated site. The

Mobile Agents in Internet-Based Auctions

The use of agents in electronic auctions has several advan-
tages for the user:

■ An agent can monitor the auction events the user has
deemed relevant. When such events occur, the agent
can alert the user. This frees the user from having to poll
the auction repeatedly.

■ Compared with traditional bidding where every bid is
specified parametrically (for example, by the amount
the user bids), bidding agents give the user more
flexibility when customizing a bidding strategy. The
strategy can be a function of time, of other participants'
bids, and so on.

■ The agent can also be programmed to monitor external
events, and to condition its bidding on those events (for
example, stock prices or news). In other words, the
agent can make decisions based on all available
information that the bidder considers relevant.

■ Prototypical bidding agents can be analyzed game-
theoretically off-line so that they will bid optimally on the
user's behalf in given auction settings. This puts expert
bidders and amateurs on a more equal footing for
ecommerce: since the bidder agent will optimally bid on
the user's behalf, the user need not engage in strategic
considerations when revealing preferences to the agent.

■ Agents can be built to track bids in multiple auction
houses, looking for the best deal and/or coordinating
the user's bids in the different auctions. For example, an
agent can submit bids to multiple auction sites for the
same item, but at any time allow at most one of the bids
to be winning (highest within that auction). While this is
possible for a human user to do without an agent, an
agent saves effort, and makes such behavior viable even
in settings where the user's time is costly.

There are additional advantages that stem from agents’ exe-
cution on (or near) the auction server.

■ In many current Internet auctions, most of the bidding
activity occurs just before the auction closes. With
agents that execute on the server side, the user can
avoid the network lag of getting the most current
information from the auction to the user’s site, and of
bids traveling from the user’s site to the auction.

■ Agents that execute on the server side will continue to
operate as usual even when network connections are
down or slow.

■ The user does not need to be continually connected to
the network. For example, a user can connect a laptop
to the network via a phone link on an airplane, launch
an agent to execute on the auction server or on a home
computer, and disconnect.

■ If the information transferred between the agent and the
auction exceeds the code size of the agent, sending an
agent to execute server-side uses less bandwidth than
client-side execution. When the agent communicates
locally at its destination rather than over the network,
network traffic and latency are reduced because the
amount of data transferred around the network is reduced.

■ In simple auctions with infrequent activity, the
information downloaded from the auction to the agent
(other bids, quotes) and the information that is uploaded
from the agent to the server (mainly bids) might not
exceed the size of the agent. However, in highly active
auctions and in combinatorial auctions, the information
that is transferred can easily exceed the size of the
agent. In a combinatorial auction, bids can be
submitted on combinations of items. So, if quotes are
provided, they need to be provided on combinations of

N O M A D

83IEEE INTERNET COMPUTING h t tp ://computer.org/in terne t/ MARCH • APRIL 2000

itinerary can be altered dynamically during the
agent’s trip. Agents can also collaborate with the
help of an event-distribution mechanism and other
services.

The agent manager notifies agents when the auc-
tion information they are interested in is altered. The
agent database stores information about agents—
such as their creators and the information they want
to receive. By communicating with the agent man-
ager, agents can not only utilize the event-distribu-
tion mechanism (which triggers an agent only if
something of interest happens in the auctions, rather
than requiring the agent to poll the auctions), but

they can also be seen via the eAuctionHouse Web sys-
tem. This gives users a convenient interface for man-
aging their agents. With this mechanism, the agent
programmer does not have to write code for the agent
to handle communication with the user and act based
on that communication, although the user can do
this to implement additional functionality.

GENERATING MOBILE AGENTS
Nomad supports the creation of mobile agents by
allowing users to program their own agents or
launch parameterizable template agents that have
been designed and programmed in advance.

items and the number of combinations is exponential
(of course, one could provide quotes on select
combinations only). Furthermore, a new bid on a
combination generally changes the quote on a large
number of combinations, further increasing the amount
of quote information that an agent needs to download.

The benefits of remote execution could be captured by either
remotely executing nonmobile agents or by mobile agents.
Other advantages are specific to mobile agents.

■ Mobile agents can potentially take advantage of the
available services distributed across the network. For
example, they could travel to and execute on powerful
servers with excess CPU time and disk space. This can
be pertinent for bidder agents if, for example, their
bidding strategies include complex computations such
as statistical analysis and projection.

■ The use of mobile agents can lead to more effective load
balancing. A mobile agent can move to an agent dock
where the load is currently not too high. This leads to
faster execution of the agent’s bidding strategy.

■ Mobile agents can react to network latencies that vary
over time in different parts of the network. An agent can
move to an agent dock with a less congested connection
to the auction server.

■ Using mobile agents, the decision of local versus remote
execution can be made dynamically at run time based
on the volume of information being uploaded and down-
loaded, network latency and congestion, and the avail-
ability, speed, and cost of computation at different sites.

Naturally, there are also disadvantages to using mobile
agents. Most notably, the appropriate allocation of

resources—such as CPUs, RAM, and disk—among the mobile
agents of different users remains an open research area.1

Several auction sites have solutions other than mobile
agents. eBay has a proxy bidder “agent” that allows the
user to enter a reservation price. As long as the auction is
open and the user’s reservation price has not been reached,
the agent bids the minimum amount necessary to become
the highest bidder. However, such an agent limits the user’s
choice of bidding strategy. For example, when a user’s val-
uation of an item depends on other bids, such a simple
agent is no longer optimal; rather, the agent should update
its valuation dynamically based on the other bids so far.
This involves taking into account the effect of the winner’s
curse: if the bidder bids the perceived valuation of the item
and wins, the bidder will know that he or she paid too much
because others valued the item less.2 Furthermore, the sim-
ple proxy bidder agents offered by current Internet auctions
do not allow the user to coordinate bids across multiple auc-
tion houses automatically.

The Michigan Internet AuctionBot could be viewed as
supporting agents in the sense that it provides a TCP/IP-level
message protocol by which agents can participate in the
auction.3 However, no support is provided for mobile agents.

References
1. J. Bredin, D. Kotz, and D. Rus, “Market-based Resource Allocation for

Mobile Agents,” Proc. Second Int’l Conf. Autonomous Agents

(AGENTS), ACM Press, New York, May 1998.

2. P. Milgrom, “Auctions and Bidding: A primer,” J. Economic Perspec-

tives, Vol. 3, No. 3, 1989, pp. 3–22.

3. P.R. Wurman, M.P. Wellman, and W.E. Walsh, “The Michigan Internet

AuctionBot: A Configurable Auction Server for Human and Software

Agents,” Proc. Second Int’l Conf. Autonomous Agents (AGENTS), ACM

Press, New York, May 1998, pp. 301–308.

A G E N T S O N T H E N E T

84 MARCH • APRIL 2000 h t tp ://computer.org/in terne t/ IEEE INTERNET COMPUTING

Tailored Agents
Users can program their own mobile agents in Java,
which allows maximal flexibility in what agents can
do. The agents can use highly tailored bidding
strategies that consider input from what is tran-
spiring in the auction, other auctions, and in the
news. The agents can also use highly tailored migra-
tion schemes. The user programs the agent to com-
municate with eAuctionHouses through TCP/IP
connections using a string format that we have
specified to allow rich forms of bidding, collecting
information, and setting up auctions and markets.

Template Agents
To speed agent generation and to enable nonpro-
grammers to create mobile agents, the Nomad sys-
tem allows automated generation of agents based
on HTML forms. Using the forms, the user choos-
es from a library of preprogrammed template
agents that are recommended to the user based on
the auction type in question. Nomad currently
makes the following parameterizable mobile agents
available for automated generation:

■ The information agent monitors an auction and
sends e-mail to the user when specified events

occur. With this agent, the user does not have
to poll the auction and is notified of important
events immediately.

■ The incrementor agent implements the domi-
nant strategy on the user's behalf in single-item,
single-unit, ascending open-cry first-price pri-
vate value auctions (that is, English auctions).
It bids a small amount more than the current
highest bid, and stops if the user's reservation
price is reached. With this agent, the user does
not have to follow the auction. The user's dom-
inant strategy in these settings is to report the
valuation truthfully to the agent. Not account-
ing for the technical aspects, such as having its
own thread of execution and being able to
migrate, this agent provides the same function-
ality as current proxy bidder "agents" like those
on eBay.

■ The N-agent is for single-item, single-unit,
sealed-bid first-price auctions where the num-
ber of bidders, N, is known, and the bidders’
private valuations are independently drawn
from a uniform distribution. The goal in this
type of auction is to win the auction but to
underbid strategically so as to minimize pay-
ment. This involves guessing what others will

Figure 2. Creating a mobile agent in eAuctionHouse. Step 1 of agent creation is to choose an agent type from a set of
prototype agents that the system has determined to be appropriate for the auction type in question. Step 2 of agent cre-
ation is to set parameters for the agent.

N O M A D

85IEEE INTERNET COMPUTING h t tp ://computer.org/in terne t/ MARCH • APRIL 2000

bid. The symmetric Nash equilibrium strategy
is to bid the user’s valuation times (N – 1)/N.7

Since this is how the N-agent bids, the user is
motivated to reveal the true valuation to the
agent.

■ The control agent submits very low noncom-
petitive bids. This agent is a speculator’s tool
that artificially increases the number of bidders
so as to mislead other bidders, such as the
N-agent. For example, a seller might submit
control agents so that N-agents will bid higher.
Of course, if control agents are present, it is no
longer an N-agent’s best strategy to bid the
user’s valuation times (N - 1)/N.

■ The discover agent computes the expected gain
from bidding a small amount more than the
current highest bid according to the agent’s cur-
rent distribution of the user’s valuation. This is
intended for settings where the user has a prob-
ability distribution over the item rather than an
exact valuation. In the future, the probability
distribution could be updated by new events,
or by what others have bid in nonprivate value
auctions. Such updating is part of our current
research.

After choosing an agent type, the user customizes
the agent by setting parameter values, such as user
identification number, password, e-mail address to
be used for reporting, agent name for agent man-
agement, and the user’s reservation price for the
desired item. When the user clicks the create but-
ton, the Java agent is automatically generated
according to these parameters. It then travels to the
agent dock, docks there, and bids at eAuction-
House.

Besides ease of programming, these template
agents can help put novice bidders on an equal
footing with expert bidders. For some auction
types, the optimal bidding strategy can be game-
theoretically determined in advance. The user then
simply enters preferences for the template agent,
and the agent acts strategically on the user’s behalf.

Figure 2 shows the steps in creating a mobile
agent without programming. On the left is the first
screen that appears when the user asks to create an
agent to bid in an auction. For the given auction
type, the system recommends three of the five
agent types. Therefore, the radio buttons of the
other two agent choices are not clickable for this
particular auction type. The user in this example
chooses to create an N-agent. The screen on the
right shows the next step in creating an N-agent.

The user specifies the parameters: user identifica-
tion number, password, email address used by the
mobile agent for reporting, agent name for agent
management, and the user’s reservation price for
the item. When the user clicks the create button,
the Java agent is automatically generated based on
these parameters, travels to the agent dock (ecom-
merce.cs.wustl.edu in the example), docks there,
and bids at eAuctionHouse.

AUTOMATED COALITION
FORMATION
Our current research focuses on mobile agents for
automated coalition formation in electronic auc-
tions.8,9 Economic efficiency can sometimes be
improved if bidders form coalitions. Consider, for
instance, an auction in which one seller is selling
one item. One buyer wants part of the item and
another buyer wants the remaining part. The sum
of the amounts they are willing to pay separately
exceeds the highest price offered for the whole item
by other bidders. By forming a coalition, the two
buyers and the seller benefit.

There are two main barriers for users across the
Internet to form coalitions while bidding online.
First, finding partners can be time-consuming. Sec-
ond, bidders do not necessarily trust each other
without a binding contract. Issues arising in coali-
tion formation include who is in charge of bidding,
what happens if some bidders refuse to pay after
the coalition’s bid wins, and how much each par-
ticipant has to pay if the coalition wins.

To support automated coalition formation, we
propose using mobile agents. With an appropriate
communication mechanism, it can be easier for an
agent to locate potential partners than it is for a
person sitting at a computer to do so. For example,
the agent can search in a public place where bid-
ders or agents looking to form a coalition post par-
tial bids in the hope of being combined with oth-
ers. The search is not only focused on finding a
partner, but more generally, finding a desirable
coalition structure—that is, partitioning the agents
into coalitions. This is a computationally hard

The search is not only focused on
finding a partner, but on finding a

desirable coalition structure.

A G E N T S O N T H E N E T

86 MARCH • APRIL 2000 h t tp ://computer.org/in terne t/ IEEE INTERNET COMPUTING

search problem even if all the agents are in one loca-
tion and their characteristics are commonly
known.9–11 Agents usually search orders of magni-
tude faster than humans. Furthermore, agents’ time
is less costly.

To solve the trust problem, a third-party site
might be necessary. At the third-party site agents
could sign binding contracts and check users’ cred-
it histories and reputations.

Although collusion can improve economic effi-
ciency for buyers and sellers, it also involves spec-
ulation costs and can cause revenue loss for the auc-
tioneer. For example, bidders can coordinate to
keep their bids artificially low so as to get the item
at a lower price than they otherwise would. How-
ever, considering the number and diversity of users
in most Internet auctions, it seems unlikely that
bidders across the Internet would be able to estab-
lish such a coalition. Therefore, automated coali-
tion formation in the Internet auction setting may
contribute more to the positive aspects of coalition
formation than to the negative.

FUTURE WORK
Future research includes developing additional pro-
totype agents based on new game-theoretic analy-
ses. We are also developing learning methods for
updating the user’s valuation distribution in settings
where the user does not know the exact value of the
auctioned item. The discover agent then uses that
distribution to bid optimally on the user’s behalf.
Finally, automated coalition formation introduces
new challenging problems to electronic auctions.
These will be further studied in the continuing
development of eAuctionHouse and Nomad. ■

ACKNOWLEDGMENTS
An earlier version of this article appeared as “Mobile Agents in an

Electronic Auction House,” Proc. Third Int’l Conf. on Autonomous

Agents (AGENTS), Mobile Agents in the Context of Competition and

Cooperation (MAC3) Workshop, 1999, pp. 24–33.

This work is supported by the U.S. National Science Foun-

dation under Career Award IRI-9703122 and grants IRI-

9610122 and IIS-9800994. The authors would like to thank

Kate Larson for her comments on drafts of this article.

REFERENCES
1. J.A. Rodriguez-Aguilar et al., “A Java-Based Electronic Auc-

tion House,” Proc. Second Int’l Conf. Practical Application

of Intelligent Agents and Multi-Agent Technology (PAAM 97),

1997.

2. T.W. Sandholm, “An Algorithm for Optimal Winner Deter-

mination in Combinatorial Auctions,” Proc. 16th Int’l Joint

Conf. Artificial Intelligence (IJCAI), Morgan Kaufmann, San

Francisco, Calif., 1999, pp. 542–547.

3. S.J. Rassenti, V.L. Smith, and RL. Bulfin, “A Combinator-

ial Auction Mechanism for Airport Time Slot Allocation,”

Bell J. of Economics, Vol. 13, 1982, pp. 402–417.

4. M.H. Rothkopf, A. Pekec, and R.M. Harstad, “Computa-

tionally Manageable Combinatorial Auctions,” Manage-

ment Science, Vol. 44, No. 8, 1998, pp. 1131–1147.

5. T.W. Sandholm, “eMediator: A Next-Generation Electronic

Commerce Server,” to appear in Proc. Fourth Int’l Conf.

Autonomous Agents (AGENTS), June 2000.

6. D. Wong et al., “Concordia: An Infrastructure for Collab-

orating Mobile Agents,” First Int’l Workshop on Mobile

Agents (MA), Springer Lecture Notes in Computer Science

1219, Berlin, Apr. 1997.

7. E. Rasmusen, Games and Information, Basil Blackwell

Press, 1989.

8. T.W. Sandholm and V.R. Lesser, “Coalitions Among Com-

putationally Bounded Agents,” Artificial Intelligence, Vol. 94,

No. 1, 1997, pp. 99–137.

9. T.W. Sandholm et al., “Coalition Structure Generation

with Worst-Case Guarantees,” Artificial Intelligence, Vol.

111, Nos. 1–2, 1999, pp. 209–238.

10. O. Shehory and S. Kraus, “A Kernel-Oriented Model for

Coalition-Formation in General Environments: Imple-

mentation and Results,” Proc. Nat’l Conf. on Artificial Intel-

ligence (AAAI), AAAI Press, Menlo Park, Calif., Aug. 1996,

pp. 134–140.

11. O. Shehory and S. Kraus, “Methods for Task Allocation via

Agent Coalition Formation,” Artificial Intelligence, Vol.

101, Nos. 1–2, 1998, pp. 165–200.

Tuomas Sandholm is assistant professor of computer science at

Washington University, St. Louis. He received the PhD

and MS degrees in computer science from the University

of Massachusetts at Amherst, and an MS in Industrial Engi-

neering and Management Science from the Helsinki Uni-

versity of Technology, Finland. His research interests

include artificial intelligence, ecommerce, game theory,

multiagent systems, auctions, automated negotiation and

contracting, coalition formation, and normative models of

bounded rationality. He has published over 100 technical

papers and received several academic awards including the

NSF CAREER award. (http://www.cs.wustl.edu/~sand-

holm)

Qianbo Huai is an engineer at Microsoft. He received an MS

degree from Washington University, St. Louis, where he was

involved in Sandholm’s Multiagent Systems Research

Group.

Readers can contact Sandholm at sandholm@cs.wustl.edu and

Huai at qhuai@microsoft.com.

