
Distributed Storage Systems:
Data Replication using Quorums

Background

l  Software replication focuses on dependability of
computations

l  What if we are primarily concerned with integrity and
availability (and perhaps confidentiality) of data?

l  Data replication has several advantages
–  Simpler protocols (atomic ordering not necessarily required,

no determinism assumptions)
–  Variety of consistency models provides efficiency/consistency

tradeoffs
–  Performance better than software replication: simpler

protocols can be implemented efficiently; caching and hashing

Distributed Storage Model

Clients

Distributed data store

Read/Write

LAN or WAN

Basic Quorum Systems

l  Gifford, “Weighted Voting for Replicated Data,” SOSP
Proceedings, 1979

l  each client reads from r servers and writes to w servers
l  if r+w>n, then the intersection of every pair of read/write sets is

non-empty ⇒ every read will see at least one copy of the
latest value written

l  r=1 and w=n ⇒ full replication (write-all, read-one): undesirable
when servers can be unavailable because writes are not
guaranteed to complete

l  best performance (throughput/availability) when 1 < r < w < n,
because reads are more frequent than writes in most applications

l  generalization: r, w vary across clients but non-empty intersection
between all read/write sets is maintained

Basic Quorum Systems: Protocols

l  time stamps are maintained for each object in store
l  read protocol for a data object V:

–  read <v, t> from all servers in some read set
–  select v with latest time stamp t

l  write protocol for a data object V:
–  read value according to above protocol to determine current time

stamp t
–  write <v, t’> to all servers in some write set with time stamp t’ > t

l  guarantees serial consistency (sometimes called safe
semantics): a read operation that is not concurrent with any write
operation on the same object returns the last value written in
some serialization of the preceding writes to that object

Serial Consistency

W1 W2 W3 W4
R1

R2

(R1, R2 both read value written by W3)

Serial Consistency, cont.

W1 W2
W3

W4
R1 R2

(R1, R2 both read same value, could be either the result of W3 or W4,
i.e. serialization could be W1, W2, W3, W4 or W1, W2, W4, W3 but it must
be seen the same way by R1 and R2)

–  how can this be achieved?

–  how are timestamps for W3 and W4 set?

Serial Consistency, cont.

W1 W2 W3
W4

R1

(R1 can return either the value written by W4 or the value written by W3 - serial
consistency does not cover the case of a read that overlaps with a write)

Data Replication: Performance Optimizations

l  Data objects can be large, e.g. files, and many copies are
transmitted during quorum protocol operation ⇒ extremely high
bandwidth usage

l  Hashing
–  Store hash of data at every server along with data
–  Return hash values and meta data (not data) during read operations
–  Do voting based on hash values
–  Once correct hash is determined, query a single server for data object

and calculate its hash to verify data integrity
l  Caching

–  Store data objects in client caches
–  Execute hashing protocol for a read
–  If object is in cache, calculate hash of cached object and do not query

any server for object if cached copy is up to date

Quorum Systems: Formalization

l  assume a set U of servers, where |U| = n

l  An asymmetric quorum system Q1, Q2 ⊆ 2U is a pair
of non-empty sets of subsets of U, where ∀Qr ∈ Q1,
Qw ∈ Q2, Qr ∩ Qw ≠ Ø

l  A symmetric quorum system Q ⊆ 2U is a non-empty
set of subsets of U, where ∀Q1, Q2 ∈ Q, Q1 ∩ Q2 ≠ Ø
(read sets and write sets are identical)

l  each Q ∈ Q is called a quorum (for asymmetric
system, there are read quorums and write quorums)

Efficiency of Quorums: Grid Quorums

√n

√n

Qr

Qw
Grid Quorums

are
Asymmetric

Quorum
Systems!!

System Load

l  load = avg. fraction of servers that must be
contacted per read/write operation

l  for grid quorum systems:
–  load = √n / n = 1 / √n
–  load → 0 as n → ∞

l  compare to basic quorum systems:
–  load = (cr + (1-c) w) / n ≥ b, where c is fraction of

ops that are reads, b is a constant, and r+w > n

Byzantine Quorum Systems

l  Malkhi and Reiter, Distributed Computing
l  uses asynchronous system model and assumes

servers can fail or be compromised, i.e. servers can
experience Byzantine faults

l  increase the size of the quorums’ intersection to mask
responses from faulty servers

l  if intersection is at least 2fmax+1, where fmax is max.
number of faulty servers, then fmax+1 correct servers
will match in any Q

l  problem: with asynchronous system model, can not
distinguish slow servers from faulty servers

Masking Quorum Systems

l  |(Qw∩Qr)\F| = fmax+1 (correct, up-
to-date)

l  Qr\Qw can be out of date and F
can be arbitrary

l  if fmax faulty servers match out-of-
date values in Qr\Qw, then fmax+1
or more matching old values can
exist

l  not sufficient to accept the first fmax
+1 values that match

Qw\Qr

F

Qw∩Qr\F

Qr\Qw

Qw Qr

Masking Quorum Systems (cont.)

l  suppose a read operation has returned fmax+1 values that match
but some values have not yet been returned

l  if the servers that have not responded are correct but slow, the
result might change after more values arrive; if the non-
responding servers are faulty, they might never respond

l  if all responses arrive from a quorum, pick the newest value that
has at least fmax+1 representatives (in some cases, correct result
can be determined without waiting for all responses)

l  approach needs additional constraint: a quorum consisting solely
of correct servers must exist at all times to ensure progress

l  can contact all servers initially to guarantee a quorum of
responses, or can contact different quorums sequentially until a
full quorum responds

f-Masking Quorum Systems

l  read protocol for a data object V:
–  read <v,t> from any |Qr| + fmax servers in U
–  wait until |Qr| responses have been received from some

quorum Qr
–  select value with latest time stamp that has at least fmax +1

representatives
l  write protocol for a data object V:

–  read value according to above protocol to determine current
time stamp t

–  write <v,t’> to all servers in some quorum Qw with time stamp
t’>t

l  guarantees serial consistency as long as a “fully-
correct” quorum exists at all times

f-Masking Quorums: Sufficient Condition

l  if n > 4 fmax and a symmetric quorum system is
used with |Qr| = |Qw| = ⎡(n+2 fmax +1)/2⎤, then the
preceding read/write protocols are correct and
guarantee progress

l  |Qw ∩ Qr| ≥ 2 fmax +1

l  n > 4 fmax ⇒ ⎡(n+2 fmax +1)/2⎤ ≤ n- fmax ⇒ at least
one “fully correct” quorum exists at all time

Grid Masking Quorum Systems

l  quorum is any 2 fmax + 1 rows and 1 column of servers
⇒ intersection between any 2 quorums ≥ 2 fmax + 1

2 fmax + 1

1

Grid Masking
Quorums are
Symmetric

Quorum
Systems!!

System Load

l  load = avg. fraction of servers that must be contacted per read/
write operation

l  for symmetric quorum systems, load = |Q| / n
–  threshold masking load ≈ (n+2 fmax+1) / 2n ∈ (0.5, 0.75)
–  grid masking load ≈ (2 fmax+2) n1/2 / n ∈ O(fmax / n1/2) → 0 as n → ∞

(for small fmax)
l  for asymmetric quorum systems, load depends on frequency of

reads vs. writes,
 load = [c |Qr| + (1-c) |Qw|] / n,
 where c = fraction of accesses that are reads

–  write-all, read-one load = 1-c + c/n > 1-c

Byzantine Quorum System Variations

l  dissemination quorum systems
–  work with self-verifying data, e.g. signed data
–  sufficient that quorums’ intersection contains at least one non-faulty

server, i.e intersection size ≥ fmax+1
–  quorum size = ⎡(n+fmax+1)/2⎤, n > 3 fmax

l  opaque masking quorum systems
–  clients don’t need to know fmax (harder for adversary to attack system)
–  read protocol simply does a majority vote among responses
–  n > 5 fmax (need to outvote faulty + out-of-date servers)
–  load for any opaque masking quorum system > 1/2

l  dealing with faulty/malicious clients
–  can not prevent faulty but authorized clients from writing bad data of

which they have write permission
–  have servers execute agreement protocol before installing write

values to avoid faulty clients from leaving servers in inconsistent state

