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Abstract

Quorum systems are well-known tools for ensuring the consistency and availability of repli-
cated data despite the benign failure of data repositories. In this paper we consider the arbitrary
(Byzantine) failure of data repositories and present the first study of quorum system require-
ments and constructions that ensure data availability and consistency despite these failures. We
also consider the load associated with our quorum systems, i.e., the minimal access probability
of the busiest server. For services subject to arbitrary failures, we demonstrate quorum systems
over n servers with a load of O(\/LE), thus meeting the lower bound on load for benignly fault-
tolerant quorum systems. We explore several variations of our quorum systems and extend our
constructions to cope with arbitrary client failures.

1 Introduction

A well known way to enhance the availability and efficiency of replicated data is by using quorums.
A quorum system for a universe of data servers is a collection of subsets of servers, each pair of
which intersect. Intuitively, each quorum can operate on behalf of the system, thus increasing its
availability and performance, while the intersection property guarantees that operations done on
distinct quorums preserve consistency.

In this paper we consider the arbitrary (Byzantine) failure of clients and servers, and initiate the
study of quorum systems in this model. Intuitively, a quorum system tolerant of Byzantine failures
is a collection of subsets of servers, each pair of which intersect in a set containing sufficiently many
correct servers to guarantee consistency of the replicated data as seen by clients. We provide the
following contributions.

1. We define the class of masking quorum systems, with which data can be consistently replicated in
a way that is resilient to the arbitrary failure of data repositories. We show necessary and suffi-
cient conditions for the existence of masking quorum systems under different failure assumptions,
and present several example constructions of such systems.

2. We explore two variations of masking quorum systems. The first, called dissemination quorum
systems, is suited for services that receive and distribute self-verifying information from cor-
rect clients (e.g., digitally signed values) that faulty servers can fail to redistribute but cannot
undetectably alter. The second variation, called opaque masking quorum systems, is similar to
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regular masking quorums in that it makes no assumption of self-verifying data, but it differs in
that clients do not need to know the failure scenarios for which the service was designed. This
somewhat simplifies the protocol by which clients access the replicated data and, in the case that
failures are maliciously induced, reveals less information to clients that could guide an attack
attempting to compromise the system.

3. We explore the load of each type of quorum system, where the load of a quorum system is
the minimal access probability of the busiest server, minimizing over all strategies for picking
quorums. We present a masking quorum system with the property that its load over a total
of n servers is O(ﬁ), thereby meeting the lower bound for the load of benignly-fault-tolerant

quorum systems. For opaque masking quorum systems, we prove a lower bound of % on the load,
and present a construction that meets this lower bound and proves it tight.

4. For services that use masking quorums (opaque or not), we show how to deal with faulty clients
in addition to faulty servers. The primary challenge raised by client failures is that there is no
guarantee that clients will update quorums according to any specified protocol. Thus, a faulty
client could leave the replicated data in an inconsistent and irrecoverable state. We develop an
update protocol, by which clients update the replicated data, that prevents clients from leaving
the data in an inconsistent state. The protocol has the desirable property that it involves only
the quorum at which an access is attempted, while providing system-wide consistency properties.

Our quorum systems, if used in conjunction with appropriate protocols and synchronization
mechanisms, can be used to implement a wide range of data semantics. In this paper, however,
we choose to demonstrate a variable supporting read and write operations with relatively weak
semantics, in order to maintain focus on our quorum constructions. These semantics imply a safe
variable [24], which a set of correct clients can use to build other abstractions, e.g., atomic, multi-
writer multi-reader registers [24, 21, 25], concurrent timestamp systems [12, 19], [-exclusion [11, 2],
and atomic snapshot scan [1, 5].

Our quorum systems can be used for building other protocols in addition to shared read/write
register emulation. For example, in an ongoing effort [30], we use Byzantine quorum systems
in constructing a large-scale, survivable service supporting persistent data abstractions such as
consensus objects [29], locks and files. In addition, in Section 6, we demonstrate how masking
quorum systems can be used to guarantee consistency and completion of updates, even those
executed by faulty clients.

The rest of this paper is structured as follows. We begin in Section 2 with a description of related
work. In Section 3 we present our system model and definitions. We present quorum systems for
the replication of arbitrary data subject to arbitrary server failures in Section 4, and in Section 5
we present two variations of these systems. We then detail an access protocol for replicated services
that tolerate faulty clients in addition to faulty servers in Section 6. We conclude in Section 7.

2 Related work

Our work was influenced by the substantial body of literature on quorum systems for benign failures
and applications that make use of them, e.g., [15, 42, 26, 14, 17, 13, 9, 4, 35]. In particular, our grid
construction of Section 4 was influenced by grid-like constructions for benign failures (e.g., [9]), and
we borrow our definition of load from [35].

Quorum systems have been previously employed in the implementation of security mechanisms.
Naor and Wool [36] described methods to construct an access-control service using quorums. Their



constructions use cryptographic techniques to ensure that out-of-date (but correct) servers cannot
grant access to unauthorized users. Agrawal and El Abbadi [3] and Mukkamala [34] considered
the confidentiality of replicated data despite the disclosure of the contents of a threshold of the
(otherwise correct) repositories. Their constructions used quorums with increased intersection,
combined with Rabin’s dispersal scheme [37], to enhance the confidentiality and availability of the
data despite some servers crashing or their contents being observed. Our work differs from all of
the above by considering arbitrarily faulty servers, and accommodating failure scenarios beyond a
simple threshold of servers.

Herlihy and Tygar [18] applied quorums with increased intersection to the problem of protecting
the confidentiality and integrity of replicated data against a threshold of arbitrarily faulty servers.
In their constructions, replicated data is stored encrypted under a key that is shared among the
servers using a threshold secret-sharing scheme [40], and each client accesses a threshold number of
servers to reconstruct the key prior to performing (encrypted) reads and writes. This construction
exhibits one approach to make replicated data self-verifying via encryption, and thus the quorum
system they develop is a special case of our dissemination quorum systems, i.e., for a threshold of
faulty servers.

Since the initial conference publication of this work [28], several works that build upon its
contributions have appeared. A subsequent paper [31] is devoted to constructions of masking
quorum systems for the special case of a threshold of faulty servers. Bazzi [6] explored a variation
of our quorum systems for synchronous systems. Probabilistic constructions for dissemination and
masking quorum systems are explored in [32] and [33], respectively. A practical effort for building
a large-scale survivable data repository using Byzantine quorums is described in [29], and the
construction of a survivable consensus object in this context is described in [30].

3 Preliminaries

3.1 System model

We assume a universe U of servers, |U| = n, and an arbitrary number of clients that are distinct
from the servers. A quorum system Q C 2V is a non-empty set of subsets of U, every pair of which
intersect. Each ) € Q is called a quorum.

Servers (and clients) that obey their specifications are correct. A faulty server, however, may
deviate from its specification arbitrarily. A fail-prone system B C 2V is a non-empty set of subsets
of U, none of which is contained in another, such that some B € B contains all the faulty servers.
The fail-prone system represents an assumption characterizing the failure scenarios that can occur,
and could express typical assumptions that up to a threshold of servers fail (e.g., the sets By, ..., B
could be all sets of f servers), but it also generalizes to allow less uniform assumptions. For example,
servers in physical proximity to each other or in the same administrative domain may exhibit
correlated probabilities of being captured, or servers with identical hardware and software platforms
may have correlated probabilities of electronic penetration. By exploiting such correlations (i.e.,
knowledge of the collection B), we can design quorum systems that more effectively mask faulty
servers.

In the remainder of this section, and throughout Sections 4 and 5, we assume that clients behave
correctly. In Section 6 we will relax this assumption (and will be explicit when we do so).

We assume that any two processes (clients or servers) can communicate over a point-to-point
channel. If both endpoints of the channel are correct, then this channel is both authenticated and
reliable. That is, a correct process receives a message from another correct process if and only if the



other correct process sent it. However, we do not assume known bounds on message transmission
times; i.e., communication is asynchronous.

3.2 Access protocol

We consider a problem in which the clients perform read and write operations on a variable z that
is replicated at each server in the universe U. A copy of the variable z is stored at each server,
along with a timestamp value t. Timestamps are assigned by a client to each replica of the variable
when the client writes the replica. Our protocols require that different clients choose different times-
tamps, and thus each client ¢ chooses its timestamps from some globally-known set 7. that does not
intersect T,/ for any other client ¢’. The timestamps in 7. can be formed, e.g., as integers appended
with the name of ¢ in the low-order bits. The read and write operations are implemented as follows.

Write: For a client ¢ to write the value v, it queries servers to obtain a set of timestamps
A = {<t,>},eq for some quorum ; chooses a timestamp ¢ € 7, greater than the highest timestamp
value in A and greater than any timestamp it has chosen in the past; and sends the update <v,¢> to
servers until it has received an acknowledgement for this update from every server in some quorum

Q'

Read: For a client to read z, it queries servers to obtain a set of value/timestamp pairs A =
{<vy, ty>}ueq for some quorum . The client then applies a deterministic function Result() to A
to obtain the result Result(A) of the read operation.

In the case of a write operation, each server updates its local variable and timestamp to the received
values <v,t> only if ¢ is greater than the timestamp currently associated with the variable. In any
case, it returns an acknowledgement to the client.

Two points about this description deserve further discussion. First, the nature of the quorums
@ and the function Result() are intentionally left unspecified; further clarification of these are the
point of this paper. Second, read and write operations need to exchange messages with a full
quorum of servers. For example, the read operation requires a client to obtain a set A containing
value/timestamp pairs from every server in some quorum . This requirement stems from our
lack of synchrony assumptions on the network: in general, the only way that a client can know
that it has accessed every correct server in a quorum is to access every server in the quorum. QOur
framework guarantees the availability of a quorum at any moment, and thus by attempting the
operation at multiple quorums, a client can eventually make progress. In some cases, the client
can achieve progress by incrementally accessing servers until it obtains responses from a quorum
of them.

In Sections 4 and 5, we will argue the correctness of the above protocol—instantiated with
quorums and a Result() function that we will define—according to the following semantics; a more
formal treatment of these concepts can be found in [24]. We say that a read operation begins when
the client initiates the operation and ends when the client obtains the read value; an operation to
write value v with timestamp ¢ begins when the client initiates it and ends when all correct servers
in some quorum have received the update <v,¢>. An operation op; precedes an operation opy if op;
ends before op; begins (in real time). If op; does not precede op; and op; does not precede opy, then
they are called concurrent. Given a set of operations, a serialization of those operations is a total
ordering on them that extends the precedence ordering among them. Then, for the above protocol
to be correct, we require that any read that is concurrent with no writes returns the last value



written in some serialization of the preceding writes. This will immediately imply safe variable
semantics [24].

3.3 Load

A measure of the inherent performance of a quorum system is its load [35], defined as follows:
Given a quorum system Q, an access strategy w is a probability distribution on the elements of Q;
ie., EQEQw(Q) = 1. w(Q) is the probability that quorum ¢ will be chosen when the service is
accessed. Load is then defined as follows:

Definition 3.1 Let a strategy w be given for a quorum system Q = {Q1,...,Q,,} over a universe
U. For an element u € U, the load induced by w on u is l,,(u) = 3°5 5, w(Q;). The load induced
by a strategy w on a quorum system Q is

Ly(Q) = maxily(u)}.
The system load (or just load) on a quorum system Q is

L(Q) = min{L.(Q)},
where the minimum is taken over all strategies. O

We reiterate that the load is a best case definition. The load of the quorum system will be
achieved only if an optimal access strategy is used, and only in the case that no failures occur. A
strength of this definition is that load is a property of a quorum system, and not of the protocol
using it. A comparison of the definition of load to other seemingly plausible definitions is given

in [35].

4 Masking quorum systems

In this section we introduce masking quorum systems, which can be used to mask the arbitrarily
faulty behavior of data repositories. To motivate our definition, suppose that the replicated variable
x is written with quorum ), and that subsequently z is read using quorum ;. If B is the set of
arbitrarily faulty servers, then the following is obtained by reading from (Jo: the correct value for
¢ is obtained from each server in (@1 NQ2)\ B (see Figure 1); out-of-date values are obtained from
Q2 \ (@1 U B); and arbitrary values are obtained from 2 N B. In order for the client to obtain the
correct value, the client must be able to identify the most up-to-date value/timestamp pair as one
returned by a set of servers that could not all be faulty. This yields requirement M-Consistency
below. In addition, since communication is asynchronous and thus accurate failure detection is
not possible, in order for a client to know it completes an operation with all the correct servers of
some quorum, it must be able to obtain responses from a full quorum. Therefore, for availability
we require that there be no set of faulty servers that intersects all quorums.

Definition 4.1 A quorum system Q is a masking quorum system for a fail-prone system B if the
following properties are satisfied.

M-Consistency: VQ1,Q2 € QVB;,Bo e B: (Q1NQ2)\ By € By
M-Availability: VBe BIQ e Q: BN =10
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Figure 1: Reading from a masking quorum 4

For example, in the case that at most f servers can fail, M-Consistency guarantees that every
pair of quorums intersect in at least 2f + 1 elements, and thus in f 4 1 correct ones. If a read
operation accepts only a value returned by at least f + 1 servers, then any accepted value was
returned by at least one correct server.

More generally, the masking quorum system requirements enable a client to obtain the correct
answer from the service despite the Byzantine failure of any fail-prone set. The write operation
is implemented as described in Section 3. To obtain the correct value of z from a read operation,
the client reads a set of value/timestamp pairs from a quorum @), discards values that are returned
from any B’ € B or subsets thereof, and chooses among the remaining values the one with the
highest timestamp. This guarantees correctness of the returned value/timestamp pair, which was
received from some set BT C @ of servers, where Bt is not contained in any B’ € B and therefore
must contain at least one correct server. Furthermore, it is easy to see that if the most recent write
has completed in quorum @', then all of the servers in @ N Q" \ B will return this most up-to-date
value, and since by definition @ N@Q’\ B is not contained in any B’ € B, this value will be returned
by the read operation. The read operation is thus as follows:

Read: For a client to read a variable z, it queries servers to obtain a set of value/timestamp pairs
A = {<wvy, t,>}ueqg for some quorum . The client computes the set

A= {<v,> : ABT C Q[ YBeB[BY Z B] A
Vu € BY [v, =vAt, =t]]}.

The client then chooses the pair <v,t> in A’ with the highest timestamp, and chooses v as the
result of the read operation; if A’ is empty, the client returns L (a null value, which indicates that

the read failed).

Lemma 4.2 A read operation that is concurrent with no write operations returns the value written
by the last preceding write operation in some serialization of all preceding write operations.

Proof. Let W denote the set of write operations preceding the read. The read operation will
return the value written in the write operation in W with the highest timestamp, since, by the
construction of masking quorum systems, this value/timestamp pair will appear in A’ and will have
the highest timestamp in A’ (any pair with a higher timestamp will be returned only by servers in
some B € B). So, it suffices to argue that there is a serialization of the writes in W in which this



write operation appears last, or in other words, that this write operation precedes no other write
operation in W. This is immediate, however, as if it did precede another write operation in W,
that write operation would have a higher timestamp. O

This lemma implies that the protocol above implements a multi-writer multi-reader safe vari-
able [24]. A failure value (L) may be returned when some write overlaps a read operation. Never-
theless, from safe variables multi-writer multi-reader atomic variables can be built using well-known
constructions [24, 21, 25].

A necessary and sufficient condition for the existence of a masking quorum system (and a
construction for one, if it exists) for any given fail-prone system B is given in the following theorem:

Theorem 4.3 Let B be a fail-prone system for a universe U. Then there exists a masking quorum
system for B iff @ = {U \ B : B € B} is a masking quorum system for B.

Proof. Obviously, if Q is a masking quorum system for B, then one exists. To show the converse,
assume that Q is not a masking quorum. Since M-Availability holds in Q by construction, there
exist @Q1,Q2 € Q and B, B” € B, such that (Q1NQ2)\ B’ C B”. Let B = U\ Q1 and By = U\ Q3.
By the construction of Q, we know that By, By € B. By M-Availability, any masking quorum system
for B must contain quorums @} C @1, Q% C Q2. However, for any such @/, @5, it is the case that
(QINEQLY\ B C(Q1NQ2) \ B C B”, violating M-Consistency. Therefore, there does not exist a
masking quorum system for B under the assumption that Q is not a masking quorum system for

B. O

Corollary 4.4 Let B be a fail-prone system for a universe U. Then there exists a masking quorum
system for B iff for all By, By, B3, By € B, U € B; U By U B3 U By. In particular, suppose that
B={B CU:|B|=f}. Then, there exists a masking quorum system for B iff n > 4f.

Proof. By Theorem 4.3, there is a masking quorum for B iff @ = {U \ B : B € B} is a masking
quorum for B. By construction, @ is a masking quorum iff M-Consistency holds for Q, i.e., iff for
all Bl, BQ, B37 B4 € B:

(U\Bi1)N(U\ By)) \ Bs By
e U\(B1UB2)QB3UB4
< U@B1UB2UB3UB4-

The existence criterion for masking quorum systems identified by Theorem 4.3 characterizes
all possible masking systems for the fail-prone system B. In particular, the system Q in Theorem
4.3 is dominated (in the sense of [14]) by any other masking quorum system Q' for B, in that for
every (Q € Q there must exist ' € Q' such that Q' C Q. While this provides a characterization of
masking quorum systems for any fail-prone system B, it does not help in constructing ones to meet
any specific requirements. Garcia-Molina and Barbara [14] present techniques for enumerating a
certain class of (non-Byzantine) quorum systems. Their methods are not directly applicable for
enumerating masking quorum systems, and we leave as an open research topic the question of
efficiently mechanizing masking quorum generation. A separate paper [31] provides constructions
that are optimal in load and various availability measures for any threshold failure assumption up
to the maximum of n/4.



The following theorem was proved in [35] for benign-failure quorum systems, and holds a fortiori
for masking quorums (as a result of M-Consistency). Let ¢(Q) denote the size of the smallest quorum

of Q.

by 2,

Theorem 4.5 [35] If Q is a quorum system over a universe of n elements, then L(Q) > max{ 0w

and thus, L(Q) > ﬁ

Below we give several examples of masking quorum systems and describe their properties.

Example 4.6 (f-masking) Suppose that B = {B C U : |B| = f}, n > 4f. Note that this
corresponds to the usual threshold assumption that up to f servers may fail. Then, the quorum
system Q@ = {Q C U : |Q| = [%}} is a masking quorum system for B. M-Consistency is
satisfied because any QJ1,@2 € Q will intersect in at least 2f + 1 elements. M-Availability holds
because [%} < n — f. A strategy that assigns equal probability to each quorum induces a

load of %[%} on the system. By Theorem 4.5, this load is in fact the load of the system. O

The following example is interesting since its load decreases as a function of n, and since it
demonstrates a method for ensuring system-wide consistency in the face of Byzantine failures while
requiring the involvement of fewer than a majority of the correct servers. These advantages are
dramatic when n is sufficiently large, e.g., hundreds of servers.

Example 4.7 (Grid quorums) Suppose that the universe of servers is of size n = k? for some
integer k& and that B={B C U :|B| = f}, 3f + 1 < {/n. Arrange the universe into a \/n x \/n
grid, as shown in Figure 2. Denote the rows and columns of the grid by R; and C;, respectively,
where 1 < i < y/n. Then, the quorum system

Q:{OquRi:f,{j}g{1...ﬁ}7|f|:2f+1}

el

is a masking quorum system for B. M-Consistency holds since every pair of quorums intersect in
at least 2f + 1 elements (the column of one quorum intersects the 2f + 1 rows of the other), and
M-Availability holds since for any choice of f faulty elements in the grid, 2f + 1 full rows and a

column remain available. A strategy that assigns equal probability to each quorum induces a load
of (2f+2)vn=(2/+1)
n

, and again by Theorem 4.5, this is the load of the system. O

Note that by choosing B = {0} (i.e., f = 0) in the example above, the resulting construction
has a load of O(ﬁ), which asymptotically meets the bounds given in Theorem 4.5. In general,

however, this construction yields a load of O(%), which is not optimal: Malkhi et al. [31] show a

lower bound of \/2fn—+1 on the load of any masking quorum system for B={B C U : |B| = f}, and

provide a construction whose load matches that bound.

Example 4.8 (Partition) Suppose that B ={By,..., B,}, m > 4, is a partition of U where B; # (}
for all 7, 1 < 7 < m. This choice of B could arise, for example, in a wide area network composed
of multiple local clusters, each consisting of some B;, and expresses the assumption that at any
time, at most one cluster is faulty. Then, any collection of nonempty sets B; C B;, 1 <1< m,can
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Figure 2: Grid construction, k¥ X k =n, f =1 (one quorum shaded).

be thought of as ‘super-elements’ in a universe of size m, with a threshold assumption f =1 (see
Figure 3). Therefore, the following is a masking quorum system for B:

- _ 3
el
M-Consistency is satisfied because the intersection of any two quorums contains elements from at

least three sets in B. M-Availability holds since there is no B € B that intersects all quorums. A
strategy that assigns equal probability to each quorum induces a load of %[mT“’] on the system

regardless of the size of each Bi, and again Theorem 4.5 implies that this is the load of the system.
If m = k? for some k, then a more efficient construction can be achieved by forming the grid

construction from Example 4.8 on the ‘super elements’ {BZ}, achieving a load of N;L_S. a

U
Bl BQ BS B4 BS
N RN N [] H
N N — N
Bl BQ B3 B4 B5

Figure 3: Partition {By, By, Bs, By, Bs}, B;’s shaded.

5 Variations

5.1 Dissemination quorum systems

As a special case of services that can employ quorums in a Byzantine environment, we now consider
applications in which the service is a repository for self-verifying information, i.e., information that
only clients can create and to which clients can detect any attempted modification by a faulty server.
A natural example is a database of public key certificates as found in many public key distribution



systems (e.g., [10, 41, 23]). In its simplest form, a public key certificate is a structure containing a
name for a user and a public key, and represents the assertion that the indicated public key can be
used to authenticate messages from the indicated user. This structure is digitally signed (e.g., [39])
by a certification authority so that anyone with the public key of this authority can verify this
assertion and, providing it trusts the authority, use the indicated public key to authenticate the
indicated user. Due to this signature, it is not possible for a faulty server to undetectably modify a
certificate it stores. However, a faulty server can undetectably suppress a change from propagating
to clients, simply by ignoring an update from a certification authority. This could have the effect,
e.g., of suppressing the revocation of a key that has been compromised.

As can be expected, the use of digital signatures to verify data decreases the cost of accessing
replicated data. To support such a service, we employ a dissemination quorum system, which has
weaker requirements than masking quorums, but which nevertheless ensures that in applications like
those above, self-verifying writes will be propagated to all subsequent read operations despite the
arbitrary failure of some servers. To achieve this, it suffices for the intersection of every two quorums
to not be contained in any set of potentially faulty servers (so that a written value can propagate
to a read). This leads to requirement D-Consistency below. And, supposing that operations are
required to continue in the face of failures, then due to the lack of accurate failure detection, there
should be quorums that a faulty set cannot disable; this yields requirement D-Availability below.

Definition 5.1 A quorum system Q is a dissemination quorum system for a fail-prone system B if
the following properties are satisfied.

D-Consistency: VQ,Q2, € QVBeB: Q1NQ2 ¢ B
D-Availability: VBe B3Q € Q: BN =10

O

A dissemination quorum system will suffice for propagating self-verifying information as in the
application described above. The write operation is implemented as described in Section 3, and
the read operation becomes:

Read: For a client to read a variable z, it queries servers to obtain a set of value/timestamp pairs
A = {<vy, t,>}ueqg for some quorum (). The client then discards those pairs that are not verifiable
(e.g., using an appropriate digital signature verification algorithm) and chooses from the remaining
pairs the pair <v,t> with the largest timestamp. v is the result of the read operation.

It is important to note that timestamps must be included as part of the self-verifying infor-
mation, so they cannot be undetectably altered by faulty servers. In the case of the application
described above, existing standards for public key certificates (e.g., [10]) already require a real-time
timestamp in the certificate.

The following lemma proves correctness of the above protocol using dissemination quorum
systems. The proof is almost identical to that for masking quorum systems.

Lemma 5.2 A read operation that is concurrent with no write operations returns the value written
by the last preceding write operation in some serialization of all preceding write operations.

Due to the assumption of self-verifying data, we can also prove in this case the following property.

10



Lemma 5.3 A read operation that is concurrent with one or more write operations returns either
the value written by the last preceding write operation in some serialization of all preceding write
operations, or any of the values being written in the concurrent write operations.

The above lemmata imply that the protocol above implements a regular variable [24]. Theorems
analogous to the ones given for masking quorum systems above are easily derived for dissemination
quorums. Below, we list these results without proof.

Theorem 5.4 Let B be a fail-prone system for a universe U. Then there exists a dissemination
quorum system for B iff @ = {U \ B : B € B} is a dissemination quorum system for B.

Corollary 5.5 Let B be a fail-prone system for a universe UU. Then there exists a dissemination
quorum system for B iff for all By, By, Bs € B, U € By U By U Bs. In particular, suppose that
B={B CU:|B|= f}. Then, there exists a dissemination quorum system for B iff n > 3f.

Below, we provide several example constructions of dissemination quorum systems.

Example 5.6 (f-dissemination) Suppose that B = {B C U : |B| = f}, n > 3f. Note that this
corresponds to the usual threshold assumption that up to f servers may fail. Then, the quorum
system Q ={Q C U :|Q| = [%ﬁ'\} is a dissemination quorum system for B with load %[%]
O

Example 5.7 (Grid) Let the universe be arranged in a grid as in Example 4.8 above, and let
B={BCU:|B|=f},2f+1<+/n. Then, the quorum system

Q= {cquRi:I,{j}g {1---\/5},|I|=f+1}
el
U+2VA-(f+1) g

is a dissemination quorum system for B. The load of this system is ~—==~——=.

Example 5.8 ( Partition) Suppose that B = {Bi,..., By}, m > 3, is a partition of U as in Figure 3.
For any collection of nonempty sets B; C B;, 1 < i < m, the f-dissemination construction of
Example 5.7 on the ‘super-elements’ B; C B; (as in Example 4.8) yields a dissemination quorum
system with a load of % [mTH} If m = k? for some k, the Grid construction of Example 5.8 achieves

a load of W;Lb—? O

5.2 Opaque masking quorum systems

Masking quorums impose a requirement that clients know the fail-prone system B, while there may
be reasons that clients should not be required to know this. First, it somewhat complicates the
client’s read protocol, in particular, when no concise description of B exists. Second, by revealing
the failure scenarios for which the system was designed, the system also reveals the failure scenarios
to which it is vulnerable, which could be exploited by an attacker to guide an active attack against
the system. By not revealing the fail-prone system to clients, and indeed giving each client only
a small fraction of the possible quorums, the system can somewhat obscure (though perhaps not
secure in any formal sense) the failure scenarios to which it is vulnerable, especially in the absence
of client collusion.

In this section we describe one way to modify the masking quorum definition of Section 4 to
be opaque, i.e., to eliminate the need for clients to know B. In the absence of the client knowing
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B, the only method of which we are aware for the client to reduce a set of replies from servers to a
single reply from the service is via voting, i.e., choosing the reply that occurs most often. In order
for this reply to be the correct one, however, we must strengthen the requirements on our quorum
systems. Specifically, suppose that the variable z is written with quorum )1, and that subsequently
z is read with quorum Qs. If B is the set of arbitrarily faulty servers, then (Q; N Q32) \ B is the
set of correct servers that possess the latest value for z (see Iligure 4). In order for the client to
obtain this value by vote, this set must be larger than the set of faulty servers that are allowed
to respond, i.e., Q2 N B. Moreover, since these faulty servers can “team up” with the out-of-date
but correct servers in an effort to suppress the write operation, the number of correct, up-to-date
servers that reply must be no less than the number of faulty or out-of-date servers that can reply,
e, (Q2N B)U(Q2\ Q1). Finally, to effectively mask failures by any B € B in an asynchronous
environment, we add the availability requirement (O-Availability).

Definition 5.9 A quorum system Q is an opague masking quorum system for a fail-prone system
B if the following properties are satisfied.

O-Consistencyl: VQ1,Q2: € QVB e B: [(Q1NQ2)\ Bl > [(Q2nB)U (Q2\ Q1)]
O-Consistency2: VQ1,Q2: € QVB e B: |(Q1NQ2)\ Bl > Q2N B|
O-Availability: VBe B3IQ € Q: BN =10

O

B Q1
Q-
O-Consistencyl: ‘ IESINNNNES |
O-Consistency2: | N NNNN

Figure 4: O-Consistencyl and O-Consistency2

Note that O-Consistencyl admits the possibility of equality in size between (@1 N Q2) \ B and
(Q2NB)U(Q2\ @Q1). Equality is sufficient since, in the case that the faulty servers “team up” with
the correct but out-of-date servers in ()2, the value returned from (@1 N Q2) \ B will have a higher
timestamp than that returned by (Q2N B) U (Q2 \ Q1). Therefore, in the case of a tie, a reader can
choose the value with the higher timestamp. It is interesting to note that a strong inequality in
O-Consistencyl would permit a correct implementation of a single-reader singer-writer safe variable
that does not use timestamps (by taking the majority value in a read operation).

It is not difficult to verify that an opaque masking quorum system enables a client to obtain
the correct answer from the service. The write operation is implemented as described in Section 1,
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and the read operation becomes:

Read: For a client to read a variable z, it queries servers to obtain a set of value/timestamp pairs
A = {<vy, t,>}yeq for some quorum . The client chooses the pair <v, > that appears most often
in A, and if there are multiple such pairs, the one with the highest timestamp. The value v is the
result of the read operation.

Opaque masking quorum systems, combined with the access protocol described previously, provide
the same semantics as regular masking quorum systems. The proof is almost identical to that for
regular masking quorums.

Lemma 5.10 A read operation that is concurrent with no write operations returns the value written
by the last preceding write operation in some serialization of all preceding write operations.

Below we give several examples of opaque masking quorum systems (or just “opaque quorum
systems”) and describe their properties.

Example 5.11 (f-opaque) Suppose that B={B C U : |B| = f} where n > 5f and f > 0. Then,
the quorum system Q = {Q C U : |Q| = [%]} is an opaque quorum system for 5, whose load
is l[—2n+2f}. O

3

n

The next theorem proves a resilience bound for opaque quorum systems.

Theorem 5.12 Suppose that B={B C U : |B| = f}. There exists an opaque quorum system for
Biff n >5f.

Proof. That n > 5f is sufficient is already demonstrated in Example 5.11 above. Now suppose
that Q is an opaque quorum system for B. Fix any @1 € Q such that |Q;| < n — f (@1 exists
by O-Availability); note that || > f by O-Consistency2. Choose B; C @1, |B1| = f, and some
Q2 € Q such that Q3 C U\ By (Q2 exists by O-Availability). Then |Q1 N Q2| < n — 2f. By
O-Consistency?2, |@1 NQ2| > f, and therefore there is some By € B such that By C Q1 N Q3. Then

n—3f > [Q2NQ1|—|By
= [(Q2NQ1)\ By
> [(@1\Q2) U (Q1N By) (1)
= @1\ Q2| +|Ba]
> |Bi|+|Bs|
= 2f

Where (1) holds by O-Consistencyl. Therefore, we have n > 5f. O

Example 5.13 (Partition) Suppose that B = {By,..., B}, k > 1, is a partition of U where B; # (}
for all 7, 1 <2 < 3k. Choose any collection of sets BZ C B;, 1 <1 < 3k, such that |BZ| = ¢ for
a fixed constant ¢ > 0. Then, the f-opaque construction of Example 5.11 on the ‘super-elements’
{BZ} (as in Example 4.8), with universe size 3k and a threshold assumption f = 1, yields an opaque
quorum system with load 2];—:1 O
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Unlike the case for regular masking quorum systems, an open problem is to find a technique for
testing whether, given a fail-prone system B, there exists an opaque quorum system for B (other
than an exhaustive search of all subsets of 2V).

In the constructions in Examples 5.11 and 5.13, the resulting quorum systems exhibited loads
that at best were constant as a function of n. In the case of masking quorum systems, we were able
to exhibit quorum systems whose load decreased as a function of n, namely the grid quorums. A
natural question is whether there exists an opaque quorum system for any fail-prone system B that
has load that decreases as a function of n. In this section, we answer this question in the negative:
we show a lower bound of % on the load for any opaque quorum system construction, regardless of
the fail-prone system.

Theorem 5.14 The load of any opaque quorum system is at least %

Proof. O-Consistencyl implies that for any Q1,Q2 € Q, |[Q1NQ2| > |Q1\ @2, and thus |Q1NQ2| >

|Q2—1|. Let w be any strategy for the quorum system Q, and fix any ¢); € Q. Then, the total load

induced by w on the elements of () is:

Do hw(u) = Y Y w(@i)

u€Q1 uEQ1 Qidu

= > w@)

Qi uweQ1nNQ;
> @@y
Qi

Q1]

2

v

Therefore, there must be some server in ()1 that suffers a load at least % a

We now present a generic construction of an opaque quorum system for B = {(} and increasingly
large universe sizes m, that has a load that tends to % as n grows. We give this construction
primarily to show that in at least some cases the lower bound of % is tight; due to the requirement
that B = {0}, this construction is not of practical use for coping with Byzantine failures.

Example 5.15 Suppose that the universe of servers is U = {uy,...,u,} where n = 2¢ for some
¢ > 2, and that B = {0}. Consider the n x n Hadamard matrix H (¢), constructed recursively as

follows:
-1 -1
H(Q) = [—1 1 ]

Hk-1) H(k-1)

Hk) = lH(k—l) “H(k-1) | T2

H (£) has the property that H (¢)H (/)T = nI, where I is the n x n identity matrix. Using well-known

inductive arguments [16, Ch. 14], it can be shown that (i) the first row and column consist entirely

of —1’s, (ii) the i-th row and i-th column, for each i > 2, has 1’s in % positions (and similarly for

—1’s), and (iii) any two rows (and any two columns) ¢, j > 2 have identical elements in % positions,
i3 i3

i.e., I'sin % common positions and —1’s in & common positions.
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We treat the rows of H({) as indicators of subsets of U. That is, let Q; = {u; : H({)[i,j] = 1}
be the set defined by the i-th row, 1 < i < n. Note that ); = ) and that u; is not included in
any ;. We claim that the system Q = {Q2,...,Q,} is an opaque quorum system for 5. Using
properties (i)—(iii) above, we have that |Q;| = % for each ¢ > 2; that each u;, i > 2, is in exactly
% of the sets Qg,...,Qy; and that for any ¢,j > 2, if ¢ # j then |Q; N Q;| = %. From these, the
O-Consistencyl and O-Consistency?2 requirements can be quickly verified, and a load of % can
be achieved, e.g., with a strategy that assigns equal probability to each quorum. O

6 Faulty clients

So far, we have been concerned with providing a consistent service to a set of correct clients. In
this section, we extend our treatment to address faulty clients in addition to faulty servers. Since
updates may now be generated by faulty clients, we can make no assumption of self-verifying data,
and thus use masking quorum systems (Section 4) to implement the service. We focus on ensuring
the consistency of the data stored at the replicated service as seen by correct clients only.

A difficulty in handling faulty clients is that a faulty writer might send different updates to
different servers and may fail to contact a full quorum. We therefore modify the write protocol
to prevent clients from leaving the service in an inconsistent state, and to guarantee that updates
propagate to (at least) a full quorum. We maintain availability of the service despite the possibly
malicious behavior by any number of clients, so that a correct client can always complete a write
operation with as little as one available quorum.

The treatment here provides a single-writer multi-reader safe variable semantics (ignoring reads
by faulty clients). Since the initial conference publication of this work [28], single-writer objects
with stronger semantics in the case of faulty clients have been constructed using Byzantine quorums
and have been used to solve the distributed consensus problem [29]. Other work has extended
the treatment here to provide multi-writer variables [30], using a protocol that employs digital
signatures and avoids any communication among the servers themselves.

The write protocol performed by a client is changed in that a writer computes the timestamp
locally, without consulting the servers, and in that it denotes the quorum it attempts to access in
the update request. We replace the write operation of Section 3 by the following;:

Write: For a client ¢ to write the value v, it chooses a timestamp ¢ € T, greater than any value it
has chosen before, and then performs the following two steps: (i) it chooses a quorum ) and sends
an update message <update, ), v,?> to each server in @), and (ii) if after some timeout period, it
has not received an acknowledgement from every server in @, it repeats (i) (and (ii)).

Every server that receives an update message from a client engages in an “update” protocol
to guarantee uniqueness of the value associated with a timestamp and its propagation to a full
quorum. The protocol is presented in Figure 5.

In order to argue correctness for this protocol, we have to adapt the definition of operation
precedence and operation duration to allow for the behavior of a faulty client. The reason is that
it is unclear how to define when an operation by a faulty client begins or ends, as the client can
behave outside the specification of any protocol. We make use of the following terminology:

Definition 6.1 We say that a server delivers an update <v,t> when it receives <ready, ), v, t> from
each server in the set @~ = @ \ B for some fail-prone set B (step 4 of the update protocol in
Figure 5). O
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1. If a server receives <update, J, v, t> from a client ¢, if t € T,, and if the server has not previously
received from ¢ a message <update, @', v, t'> where either ' = ¢ and v’ # v or t' > ¢, then the
server sends <echo, @, v, t> to each member of Q).

2. If a server receives identical echo messages <echo, @, v, t> from every server in J, then it sends
<ready, (), v, t> to each member of Q.

3. If a server receives identical ready messages <ready, @, v, t> from a set B1 of servers, such that
Bt ¢ B for all B € B, then it sends <ready, @, v, t> to every member of @Q if it has not done so
already.

4. If a server receives identical ready messages <ready, (), v, t> from a set ()~ of servers, such that
for some B € B, Q~ =@\ B, then (i) if ¢ is greater than the timestamp it currently holds, then
it updates its variable and timestamp to v and ¢, respectively, and (ii) regardless of whether it
updates the variable and timestamp, it sends an acknowledgment message to ¢ where T, > ¢.

Figure 5: An update protocol

We now say that a write operation that writes v with timestamp ¢ begins when the first correct
server receives <update, (), v,t>, and ends when all correct servers in some quorum have delivered
the update. Note that by this definition, a write operation by a faulty client could last arbitrarily
long, and could overlap other writes by the same client. Nevertheless, carrying over the remainder
of the precedence definition, we have that the write protocol together with the update protocol in
Figure 5 implement a single-writer multi-reader safe variable:

Lemma 6.2 A correct process’ read operation that is concurrent with no write operations returns
the value written by the last preceding write operation in some serialization of all preceding write
operations.

To prove this lemma, we need the following properties of our protocol:

Lemma 6.3 A correct server delivers <v,t> only if some correct server previously received
<update, @), v, t>.

Proof. To deliver <v,t>, a correct server must receive a ready message from some correct server.
Moreover, the first <ready, ), v, t> message from a correct server is sent only after it receives
<echo, @, v, t> from each member of (). Since, a correct member sends <echo, ), v, t> only if it first
receives <update, (J, v, t>, this proves the lemma. O

Lemma 6.4(Agreement) If a correct server delivers <v,t> and a correct server delivers <v’, >, then

v =

Proof. As argued in the previous lemma, for a correct server to deliver <v, >, <echo, (), v, t> must
have been sent by all servers in (). Similarly, <echo, @)’, v/, t> must have been sent by all servers in
@'. Since every two quorums intersect in (at least) one correct server, and since any correct server
sends <echo, *, 0, t> for at most one value ¥, v must be identical to v'. O
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Proof of Lemma 6.2. Let W denote the set of write operations preceding the read. Note that by
Lemma 6.4, any value/timestamp pair in W is well defined, i.e., the same value corresponds to any
timestamp at all correct servers that deliver it. By definition, every write in W was delivered to a
full quorum, and by assumption and Lemma 6.3, no correct server has delivered any write outside
W. Therefore, by the construction of masking quorum systems, the read operation will return the
value written in the write operation in W with the highest timestamp. So, it suffices to argue that
there is a serialization of the writes in W in which this write operation appears last, or in other
words, that this write operation precedes no other write operation in W. This results, however, from
the fact that there is a single writer and that servers echo an update request only if its timestamp
is higher than the one they have in store, and so any later write operation has a higher timestamp. O

In addition, we argue liveness and completeness of our protocol as follows:

Lemma 6.5( Propagation) If a correct server delivers <v, t>, then eventually there exists a quorum
@@ € Q such that every correct server in ) delivers <wv,t>.

To prove this lemma, we make use of the following fact:

Lemma 6.6 If Q is a masking quorum system over a universe U with respect to a fail-prone system

B, then VQ € Q VB17B2,B3 € B, Q g By U By U Bs.

Proof. Assume otherwise for a contradiction, i.e., that there is a ) € Q and Bj, By, By € B such
that Q C B;UByUBs. By M-Availability, there exists Q' € Q, @Q'NB; = (. Then, QNQ’ C B,UB3
and thus (Q NQ") \ Bz C Bs, contradicting M-Consistency. O

Proof of Lemma 6.5. According to the protocol, the correct server that delivered <v,t> received a
message <ready, (), v, t> from each server in Q= = @Q \ B for some Q € Q and B € B. Since, for
some B’ € B, (at least) all the members in Q™ \ B are correct, every correct member of () receives
<ready, @, v, t> from each of the members of BT = @~ \ B’. Since, VB" € B, @~ \ B’ ¢ B" (by
Lemma 6.6), the ready messages from BT cause each correct member of @) to send such a ready
message. Consequently, <v, t> is delivered by all of the correct members of ). O

Lemma 6.7( Validity) If a correct client ¢ sends <update, ), v, t> to every server in ) and all servers
in @ are correct, then eventually a correct server delivers <wv, ¢>.

Proof. Since both the client and all of the members of () are correct, <update, (), v, t> will be
received and echoed by every member in (). Consequently, all the servers in ¢ will send <ready, @),
v, t> messages to the members of (), and will eventually deliver <v,t>. O

7 Conclusions

The literature contains an abundance of protocols that use quorums for accessing replicated data.
This approach is appealing for constructing replicated services as it allows for increasing the avail-
ability and efficiency of the service while maintaining its consistency. Our work extends this suc-
cessful approach to environments where both the servers and the clients of a service may deviate
from their prescribed behavior in arbitrary ways. We introduced a new class of quorum systems,
namely masking quorum systems, and devised protocols that use these quorums to enhance the
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availability of systems prone to Byzantine failures. We also explored two variations of our quo-
rum systems, namely dissemination and opaque masking quorums, and for all of these classes of
quorums we provided various constructions and analyzed the load they impose on the system.

Our work leaves a number of intriguing open challenges and directions for future work. One is to
characterize the average performance of our quorum constructions and their load in less-than-ideal
scenarios, e.g., when failures occur. Also, in this work we described only quorum systems that are
uniform, in the sense that any quorum is possible for both read and write operations. In practice it
may be beneficial to employ quorum systems with distinguished read quorums and write quorums,
with consistency requirements imposed only between pairs consisting of at least one write quorum.
Although this does not seem to improve our lower bounds on the overall load that can be achieved,
it may allow greater flexibility in trading between the availability of reads and writes.
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