
Deceptive Secret Sharing
DRAFT: final version pending

Lei Kong and Douglas M. Blough
Georgia Institute of Technology

Abstract—We propose deceptive secret sharing, which is a
novel approach to provide both confidentiality and deception in
distributed storage systems. The motivation for this is to protect
confidentiality as far as possible while acknowledging that no
confidentiality scheme provides perfect protection. If confiden-
tiality is breached and information is accessed by unauthorized
individuals, our deceptive secret sharing techniques will reveal,
with high probability, only false information. This provides an
added deception layer on top of the confidentiality provided
by basic secret sharing. We present deceptive techniques that
work with both XOR secret sharing and Shamir’s polynomial-
based threshold secret sharing. We provide extensive analyses
of both overhead and security of our techniques and we show
how they provide tunable security that can trade off security
and overhead by varying a single parameter of the schemes. The
proposed techniques were also implemented in CloudLab, where
experimental evaluations showed that, with appropriate param-
eter choices, they can provide both reasonable performance and
high availability.

I. INTRODUCTION

Confidentiality has long been one of the most important
system security goals. Access control, encryption, secret shar-
ing, and data obfuscation are common techniques that attempt
to prevent individuals from unauthorized access and/or use
of information. Unfortunately, none of these techniques is
perfect and so, despite designers’ best efforts, confidentiality is
often compromised in today’s systems. Confidentiality can be
breached even when encryption is deployed, because of errors
in integrating crypto protocols with broader security protocols,
when encryption keys are protected with weak techniques such
as passwords, or a variety of other design weaknesses.

Deception is a less common goal, in which the intention is to
mislead adversaries. This can help to detect or monitor attacks
and interfere with unauthorized access/use of information.
In this paper, we use deception to mean the planting of
false information in a system to mislead adversaries. False
information might primarily be intended to mislead but it
can also serve to detect or track adversaries based on their
attempts to use the false information after it has been ac-
cessed. A prominent example of the use of false information
involved the recent email hack of the policital campaign
staff of Emmanuel Macron, now the president of France.
Macron’s campaign reported that, in their email accounts, they
planted “numerous false documents intended to sow doubt and
disinformation” [6]. Pointing to definitively false information
among leaked emails casts doubt upon the veracity of any
potentially damaging emails in the collection.

In this paper, we consider ways in which secret sharing,
which has traditionally been used strictly for confidentiality

purposes can be used to efficiently provide confidentiality and
deception. The motivation is to protect confidentiality as far
as possible while acknowledging that confidentiality protection
cannot be guaranteed. With high probability, if confidentiality
is breached, only false information will be revealed with our
techniques, thus providing a layer of deception on top of the
confidentiality. Efficiency of such an approach is a critical
issue since secret sharing and deception, by themselves, can
incur high overheads so that naive combinations of the tech-
niques can cause overheads to explode.

Our main contributions are:
• novel and efficient schemes for deception within both

XOR-based and polynomial-based secret sharing,
• quantitative security analyses for these schemes and other

baseline approaches,
• demonstration that our schemes provide tunable security,

which allows overhead vs. security trade-offs, and
• evaluation and comparison of the performance and avail-

ability of the proposed schemes through a prototype
implementation on CloudLab [14].

II. BACKGROUND

We use XOR-based secret sharing to illustrate some fun-
damental ideas underlying our techniques. XOR-based secret
sharing is an (n, n) secret sharing scheme, which encodes a
secret of length b bits as follows. First, generate n−1 random
b-bit sequences to form the first n− 1 shares. Then, make the
nth share the XOR of the first n − 1 shares and the secret.
The secret can then be reconstructed by taking the XOR of
all shares. Possession of even n − 1 shares does not reveal
any information about the secret, because any secret value is
still possible since any b-bit value can be produced from the
known shares with an appropriate choice of the final share.

Suppose we want to plant m − 1 fake secrets in a system
with one real secret using (n, n) XOR-based secret sharing.
One approach, which we call NAIVE, would be to simply
encode each secret separately, which would result in mn total
shares. Since, with XOR-based secret sharing, each share is
the same size as the secret, this results in a storage blowup
of mn, which is most likely unacceptably large if we want to
deceptively share a large number of secrets. If m = 50 and
n = 10, then the storage requirements for NAIVE are 500
times what is needed without secret sharing and deception.

XOR-based secret sharing allows for a more efficient way
to plant fake secrets. If the real secret is encoded with n− 1
random shares and the nth share to allow it to be reconstructed

R1	 R2	 R3	

S4a	

S4b	

I1	

I2	

Fig. 1. Different Images XOR Secret Shared with Shares in Common

from all n shares, different nth shares can be generated to
produce different (fake) secrets. Figure 1 shows an example
with B/W images. This figure shows two images, three random
shares R1, R2, R3, and two 4th shares S4a and S4b, such that
the XOR of R1, R2, R3, and S4a yields the first image and
the XOR of R1, R2, R3, and S4b yields the second image.
With this approach, which we call SIMPLE, m secrets are
encoded using n + m− 1 shares. Thus, the storage blowup of
SIMPLE is reduced to approximately m + n (a factor of 60
for m = 50, n = 10 instead of 500 with NAIVE).

SIMPLE reduces the storage blowup by a large factor but
we will show later that it is vulnerable to an attack that
reduces significantly the computational burden on an adversary
to break confidentiality. This discussion illuminates the goals
of a deceptive secret sharing scheme:

1) Overhead: use as few shares as possible to construct a
given number of secrets (one real and the rest fake)

2) Security: place a very high computational requirement
on adversaries attempting to recover a secret after com-
promising some or all of the secret shares

These are competing goals, i.e. reducing overhead by reusing
shares can reveal information that reduces the adversary’s
computational burden. In Sections IV and V, we present two
deceptive secret sharing schemes, one using XOR-based secret
sharing and the other using Shamir’s threshold scheme [16],
which allow trade-offs between these competing objectives.

III. SYSTEM AND THREAT MODELS

A. System Model

We primarily target distributed storage systems such as the
cloud, where a large number of storage servers are distributed
across one or more data centers. Prior works have suggested
using secret sharing to scatter information about a data object
across multiple storage servers, e.g. [18], [19]. With (k, n)
secret sharing, it is assumed that fewer than k storage servers
among the n storing one data object leak data at any time. This
might be difficult to achieve, in practice, for several reasons:

S	

Co
rr
ec
t	 S

ha
re
s	

Addi/onal	 Shares	

Wri/ng	
Client	

Storage	 Servers	

Reading	
Client	

Sea	 of	 Shares	

Fig. 2. “Sea of Shares” Approach

• a vulnerability that is common to most or all of the
storage servers could lead to a high percentage of the
servers being compromised simultaneously,

• given enough time, an adversary could compromise more
than the threshold number of servers, or

• a cloud administrator could bypass access control mech-
anisms and read data from all storage servers.

To address these problems, other work has suggested distribut-
ing shares across multiple cloud providers [2]. While this
can partially deal with these issues, the user must manage
relationships with multiple providers and do cross-domain
accesses on each operation. It also does not deter a powerful
adversary, such as a nation state, that has the ability to gain
access to the systems of multiple providers.

Our approach is equally effective within one cloud
provider’s domain or across multiple providers. For any object,
many shares are written to different servers and only a small
number of those shares represent the actual object, whereas the
remaining ones serve to confuse even an adversary that can
access all shares. The high-level approach, which we refer to
as the “sea of shares” approach, is depicted in Figure 2. Here,
many shares are generated when an object is written. Those
shares are spread across a large number of storage servers. A
legitimate user must then be able to identify the correct shares
out of the “sea of shares” when accessing the object.

Our approach has a deceptive feature, which is not shown
in the figure. The shares are generated such that putting some
combinations of shares together yields fake but correct-looking
information. This serves to mislead the adversary, because
they cannot be sure even if they are able to assemble a
valid secret, that it reveals the correct information. We assume
correctly assembled secrets are easily recognizable, either by
a human or an algorithm. This assumption holds for images,
natural language text, and many other types of data. This
approach provides an extra layer of protection in case the
threshold assumption of secret sharing is violated. Even if the
adversary compromises enough servers to reconstruct a secret,
the probability that the secret is real data is small.

An important question with our approach is how legitimate
users can identify the correct shares for an object. There are

different ways that this can be done. A simple approach is
to store share metadata within a separate service, run by a
different provider. The metadata provider could be the data
owner if the approach is used by a large organization. Another
approach is for legitimate users to maintain a shared secret that
they can use to identify the correct shares. An example of this
would be the use of HMACs on the shares. The HMACs for
correct shares would be produced with the proper key, while
incorrect shares would have valid HMAC values but produced
with different keys.1 A final idea is to use shared knowledge by
legitimate users in combination with a deterministic mapping
method. An example is based on [4]: users have a shared key,
there is a set of random salts for each object, and the hash
of the key concatenated with the ith salt gives the location of
the ith correct share. If the salts are stored as metadata within
a separate service, this forces the adversary to do 3 separate
actions to break confidentiality: 1) compromise the secret key,
2) defeat the access control of the metadata service, and 3)
compromise all of the servers storing the shares.

B. Threat Model and Security Goals

We assume that the adversary can potentially access data
from all servers in a distributed storage system and that it has
a way to match shares on different servers to detect that they
belong to the same object.2 We will show that our approach
is effective even against this extremely powerful adversary. If
it is difficult for the adversary to match shares across servers,
then our approach will be even more effective.

Assuming that an adversary has access to all shares of an
object, both real and fake, our security goals are several:

1) to maximize the computation time required by the ad-
versary to reconstruct one secret,

2) to maximize the computation time required by the ad-
versary to reconstruct all secrets given that they have
already reconstructed one secret, and

3) to minimize the probability that any given secret recon-
structed by an adversary is the correct secret.

We do not assume perfect security and thus, we allow for the
possibility that a determined and resource-powerful adversary
might be able to reconstruct a secret or a few secrets. The goal
of 1) is to make the reconstruction of any secrets as hard as
possible. The goal of 2) is to not provide information from
one or a few secrets’ reconstructions that can make it easy to
reveal the remaining secrets. The goal of 3) is to make the
probability that an adversary learns the true secret small, even
if a few secrets are reconstructed.

IV. CYCLIC XOR-BASED DSS

A major problem with the SIMPLE scheme described in
Section II is that some shares are present in many secrets while
other shares are present in only one secret. This imbalance can

1This is reminiscent of Rivest’s chaffing and winnowing method [15].
2This can occur if the adversary is able to eavesdrop network traffic to

capture shares as they are written or is present on the servers and performs
timing analysis to determine which shares belong together.

m	=	4,	n	=	4,	r	=	1	
N_share	=	12

m	=	6,	n	=	4,	r	=	2	
N_share	=	12	+	1

S1

S4

S3

S2

S1

S2

S3 S4

S5

S6

Fig. 3. Examples of Cyclic XOR-Based DSS

be exploited by an attacker to learn information about which
shares are part of the true secret. In this section, we present
and analyze a family of schemes, which we call Cyclic XOR-
Based Deceptive Secret Sharing (or CYCLIC for short). With
CYCLIC, the number of secrets that a share is part of is nearly
identical for every share in the system. Furthermore, CYCLIC
has a parameter, which controls the amount of overlap between
different secrets that have common shares. Later analysis will
show that this parameter can be used to tune the storage
overhead and security of CYCLIC. At one extreme when
overlap is small, CYCLIC is similar to NAIVE with high
storage overhead but strong security.3 At the other extreme,
i.e. large overlap, CYCLIC is similar to SIMPLE with much
lower storage overhead but weaker security. In between the
extremes, CYCLIC provides a range of options that provide
both storage savings, as compared to NAIVE, and security
improvements relative to SIMPLE.

A. Description of CYCLIC Scheme

CYCLIC is based on (n, n) XOR secret sharing. Suppose
we need m secrets, where one is the real secret and m − 1
are fake secrets planted for deception purposes. The scheme is
illustrated with examples in Figure 3. We draw all shares on a
circle. A set of neighboring shares make up the shares of one
secret, as indicated by the oblong groupings. Note that some
shares belong to more than one grouping meaning those shares
are part of more than one secret. Note also that the number of
secrets which each share is a part of is nearly identical for all
shares. In the example on the left, each share is part of either
one or two different secrets. In the example on the right, most
shares are part of exactly two different secrets.

We now present CYCLIC in a more general fashion. We
denote the overlap between two neighboring groups on the
circle by r. In Figure 3, r = 1 for the example on the left and
r = 2 for the example on the right. Most secrets have exactly
r shares in common with the previous secret on the circle.
For certain values of m, n, and r, there are some secrets that
share fewer than r shares with the previous secret, as happens
in the example on the right-hand side of Figure 3.

3How we measure security will be described later.

The following describes a method to generate share values
in the CYCLIC scheme. For the first secret, we generate n−1
random shares and one final share to produce the proper secret.
Other secrets contain some shares that belong to the previous
secret on the circle and some new shares. For example, the
second secret uses the last r shares from the first secret,
generates n − r − 1 shares randomly, and generates its nth

share so as to produce its secret value. This continues until
the generated number of secrets is approaching m. As can be
seen in the figure, some secrets on the end of the circle wrap
around and overlap with the first secret. As long as these wrap-
around secrets have at least one share that is not in common
with any other secret, their wrap-around parts use the existing
shares from Secret 1 (see the example on the left of Figure 3).
In some cases, e.g. the example on the right of Figure 3, the
secrets that wrap around use some of the shares from the first
secret, but generate one additional share at the same position
on the circle as one of the first secret’s shares. In the example
on the right in Figure 3, note that Secret 6 has one share
outside the circle in the same position as one of Secret 1’s
shares. This new share takes the same position on the circle
as the corresponding share of Secret 1 and can be thought as a
second version of the original share. This share is necessary,
because all other shares of Secret 6 are pre-determined by
either Secret 5 or Secret 1. The new share is unique to Secret
6 and can be generated so as to produce the proper secret
value, despite all other shares being pre-determined.

Since the total number of shares is an important overhead
measure of a secret sharing scheme, we now analyze the
number of additional shares that are needed when wrapping
around. Since a “wrap-around secret” has r shares in common
with the previous secret and r shares in common with Secret
1, a new share at an existing position is needed if r + r ≥ n,
meaning that the existing shares would cover all the shares
of the wrap-around secret. So, the situation on the right of
Figure 3 occurs if and only if r ≥ n/2 (note that r < n/2
in the example on the left of Figure 3 while r = n/2 in the
example on the right). We denote the number of additional
shares by p. When r ≥ n/2, p is the number of secrets that
wrap around on the circle since one additional share is needed
for each such secret. Thus, in this case, p is equal to the
number of secrets that have their last n−r positions contained
in the positions of the first secret, i.e. p = b n

n−r c − 1.

B. Overhead of CYCLIC Scheme

The overhead of a deceptive secret sharing scheme is
determined by the total number of shares that are used to secret
share a single object, including shares created for deception
purposes. The number of shares corresponds to the storage
blow-up, as compared to storing an object without secret
sharing and deception. The number of shares also indicates
the communication overhead of reading or writing an object.
This can be seen from Figure 2 since all shares are written
(read) each time an object is written (read). Here, we evaluate
the number of shares required by CYCLIC and we compare it
against the NAIVE and SIMPLE schemes mentioned earlier.

0 2 4 6 8 10 12 14

(a)
overlap

N
sh

ar
e

0

500

1000

1500

2000

2500

3000
m=50

m=100

m=150

m=200

0 5 10 15 20 25 30

(b)
overlap

N
sh

ar
e

0

300

600

900

1200

1500 n=15

n=20

n=25

n=30

Fig. 4. Number of shares for CYCLIC scheme. We fix n = 15 in (a), and
m = 50 in (b).

Given the number of shares making up each secret n, and
the overlap r, we can derive the total number of shares,
Nshare, used by the CYCLIC scheme. We start by counting
the number of share positions around the circle. Note that
each secret has r positions in common with both the secret
that follows it and the secret that precedes it. Thus, the total
number of share positions is m(n − r). There is one share
for each position on the circle and, when r ≥ n/2, there are
p additional shares, one for each wrap-around secret. Thus,
Nshare = m(n− r) + p = (n− r)m + b n

n−r c − 1. Note that
this formula is valid even when no additional shares are used,
because from the equation for p, we see that if r < n/2 and
no additional shares are needed, then p = 0.

We assume that m, which is the total number of secrets
(real and fake) for one object, is given as a parameter. This
parameter measures how deceptive the approach is, i.e. how
many fake secrets the true secret is hidden among. With a
given m, to reduce the number of shares with CYCLIC we
should increase the overlap r, since a larger overlap produces
a higher share re-use.

When r = 0, the formula for Nshare given above for
CYCLIC simplifies to mn, which is the number of shares for
NAIVE (m secrets independently secret shared with n shares).
With r = n−1, the formula simplifies to m+n−1, which is
the number of shares for SIMPLE (see Section II). Thus, the
number of shares with the two extreme overlaps, r = 0 and
r = n − 1 for CYCLIC, produce the same number of shares
as the NAIVE and SIMPLE schemes, respectively.

Figure 4 shows how the overhead of the CYCLIC scheme
varies with r, for different values of n and m. In Figure 4a,
we fix n = 15 and vary m from 50 to 200. In Figure 4b, we

fix m = 50 and vary n from 15 to 30. In both figures, r is
varied across its full range, i.e. from 0 to n−1. From the two
figures, we see that when the overlap increases, the number
of shares decreases linearly. More importantly, depending on
the choice of r, the overhead of the CYCLIC scheme varies
from the highest possible, which is the same as NAIVE, to
the lowest, which is the same as SIMPLE. This provides the
flexibility to vary the deceptive secret sharing scheme across
a wide range of overheads. In the next subsection, we will see
how this flexibility can be used to produce tunable security.

C. Security of CYCLIC Scheme

As mentioned in Section III-B, we are interested both in
the amount of work an adversary must do to reconstruct one
secret and the amount of work required to reconstruct all
secrets given one secret has already been reconstructed. Next,
we evaluate these quantities for CYCLIC and compare them
against SIMPLE and NAIVE.

1) Reconstructing a first secret: As mentioned earlier, we
make a worst-case assumption that an adversary has access to
all shares of an object (both real and fake). We also do not rely
on security by obscurity, in that we assume an adversary knows
all the parameters of the CYCLIC scheme, which includes m,
n, and r. We use Ncomb all to denote the number of possible
share combinations that could make up a secret. If Nshare is
the total number of shares and n is the number of shares in one
secret, then Ncomb all =

(
Nshare

n

)
. When constructing the first

secret, there is no previous information to use, so the adversary
can only try different possible combinations of shares until
one produces a correct reconstruction. If an adversary picks
combinations at random to try in this manner, then the number
of attempts required to reconstruct the first secret is a random
variable. Thus, we quantify the security of this step as the
probability that an adversary can reconstruct at least one secret
within t attempts.

Note that, when an adversary tries a particular combination
of shares and fails to reconstruct a valid secret, they get very
little information that can help guide future attempts. This is
because it is still possible for any of the other combinations to
produce a valid secret and the probability of any combination
being correct is affected very little by a single incorrect
attempt. Given this, we assume that the adversary’s strategy
before it has reconstructed any valid secret is to choose a
combination at random from all unattempted combinations.4

Under this strategy, the probability of reconstructing at least

4We have considered alternative strategies an adversary might attempt but
have not found any that produce an improvement over a random one.

one secret in t attempts can be calculated as:

P (t) = P (at least one secret reconstructed within t attempts)
= 1− P (no secret reconstructed within t attempts)

= 1− P (no secret reconstructed on tth attempt |
no secret reconstructed within t− 1 attempts)
× P (no secret reconstructed within t− 1 attempts)

= 1−
tY

i=1

P (no secret reconstructed on ith attempt |

no secret reconstructed on all previous attempts)

= 1− N −m

N
× . . .× N −m− t + 1

N − t + 1
(1)

In the above analysis, N is used as a shorthand for Ncomb all.
A secure secret sharing scheme should guarantee that the

adversary has to make a large number of attempts to retrieve
one secret with even a small probability. We define Np

comb as
the minimum number of attempts an adversary has to make
to have a probability of at least p of reconstructing at least
one secret. In other words, Np

comb is the minimum t such that
P (t) ≥ p. A higher Np

comb means an adversary must work
harder to achieve a given probability of secret reconstruction.

Note that a larger Ncomb all will reduce the probability
to retrieve one secret and will, therefore, increase Np

comb.
Np

comb should be large enough to make the reconstruction
process impractical for the adversary. We compare the security
levels, quantified by Np

comb, of the three different schemes in
Figure 5. Figure 5a and 5b show the number of combinations
when p = 0.1 and m and n are varied, respectively. We can see
that NAIVE and CYCLIC can always provide security levels
that are significantly higher than SIMPLE.

From the results above, we can see that CYCLIC, with the
chosen overlaps, always provides better security than SIMPLE
and we know from Section IV-B that it has lower overhead
than NAIVE when the overlap is less than n−1. This illustrates
the trade-off between overhead and security possible with
CYCLIC. While SIMPLE has the lowest overhead, in some
cases, its security level can simply be too low. We give a
concrete example next to illustrate this.

We estimate the computing resource of a powerful ad-
versary by assuming it has a thousand computational nodes
dedicated to this one task, each with a 5 GHz processor.
The computational cycles for the adversary for this task are
1.6 ∗ 1020 a year. Another estimation we need is the time
to reconstruct one secret. Here, we ignore memory and disk
I/O time, and just consider the XOR operation, where each
operation takes one clock time. We consider a 256*256 B/W
bitmap image as the secret. If n = 15, reconstructing a secret
requires 256 ∗ 256 ∗ (15 − 1) ≈ 9 ∗ 105 XOR operations.
Then to guarantee that an adversary cannot reconstruct one
secret within one year with a probability of at least 0.1,
the scheme needs to provide at least 1.61023

9∗105 = 1.8 ∗ 1014

possible combinations. For m = 50, the computation times
for SIMPLE, NAIVE, and CYCLIC under these assumptions
are shown in Table I (the overlaps considered for CYCLIC
are 9 and 13). In this example, SIMPLE is not secure enough

100 200 300 400 500

(a)
m

N
um

be
r

of
 A

tte
m

pt
s

1010

1020

1030

1040

1050

NAIVE

SIMPLE

CYCLIC 3/5

CYCLIC 2/5

10 20 30 40 50

(b)
n

N
um

be
r

of
 A

tte
m

pt
s

100

1020

1040

1060

1080

10100 NAIVE

SIMPLE

CYCLIC 3/5

CYCLIC 2/5

Fig. 5. Number of attempts to reconstruct one secret with probability 0.1 for
different schemes. We fix n = 15 in (a), and fix m = 50 in (b). (log scale
on y axes)

SIMPLE NAIVE CYCLIC 9 CYCLIC 13
attempts 1013 1030 1024 1017

time 1 month 1016years 108years 1000 years
no. shares 64 750 301 106

TABLE I
COMPARISON OF DIFFERENT SECRET SHARING SCHEMES

for preventing one secret from being reconstructed since an
adversary has a 1 in 10 chance to retrieve the first secret
within a month. But an adversary would need many years
to reconstruct at least one secret with probability 0.1 for both
NAIVE and CYCLIC.

Table I also shows the numbers of shares generated by
these schemes for the same scenario. As expected, SIMPLE
produces the fewest shares (less than 1/10 of NAIVE) but this
comes at the expense of security. CYCLIC with an overlap of
13 increases the number of shares by about 65% over SIMPLE.
However, CYCLIC 13 uses less than 1/7 the number of shares
of NAIVE, while providing far greater security than SIMPLE.

2) Reconstructing all secrets with one secret reconstructed:
A major weakness of SIMPLE is that if the adversary is able
to to reconstruct one secret, even a fake one, they know that
n − 1 of those shares must appear in all other secrets of the
same object also. This dramatically reduces the number of
combinations the adversary must try to reveal all remaining
secrets. Even if this happens, we note that the adversary will
not be able to tell which is the correct secret but they will
know that the correct secret is among the ones that they have
found. In some scenarios, this could be highly undesirable. We
will show in this subsection that CYCLIC, with a reasonable
choice of overlap, is far more secure in terms of this second

(a)	n=7	r=2

(b)	n=7	r=6

(c)	n=7	r=5

Already	determined	when		
reconstruc;ng	the	7th	secret

Not	determined	and	need	to	choose	1		
when	reconstruc;ng	the	5th	secret

Already	determined	when		
reconstruc;ng	the	5th	secret

Fig. 6. Different cases for reconstructing all secrets with one leaked secret
for the CYCLIC scheme

security measure.
For both CYCLIC and SIMPLE, once one secret is recon-

structed, some information is revealed so that the adversary
can reconstruct more secrets in a more efficient way than
simply attempting random combinations. Since secrets have
overlap of shares, the adversary can focus on secrets that
are neighbors of the reconstructed secret in the schemes to
more efficiently reconstruct additional secrets. Note, however,
that the security of remaining secrets in NAIVE is affected
very little by reconstruction of other secrets. This is because
there is no share overlap between secrets in NAIVE and
so the adversary can still only try random combinations of
the remaining shares. Since NAIVE is affected very little by
the first secret reconstruction, in this section, we focus on a
comparison between CYCLIC and SIMPLE.

We first calculate how many attempts does an adversary
need to guarantee that they can reconstruct all remaining se-
crets in the SIMPLE scheme, once one secret is reconstructed.
Given m and n, the number of shares in SIMPLE is m+n−1,
and after one secret is reconstructed, there are m − 1 shares
left. We know that n− 1 of the n shares of the first secret are
also part of every other secret. To find those n−1 shares only
takes n attempts, since the adversary can pick one share from
all remaining shares, and use it to replace each share in the
reconstructed secret to see if a new secret is revealed. After
that, the adversary can easily use the n−1 identified common
shares to reconstruct the remaining secrets with the last m−2
shares. The overall process takes only n + m − 2 attempts,
which is highly insecure.

In the CYCLIC scheme, some information is also leaked
from the first reconstructed secret, but we will show that the
adversary still needs a lot of attempts to guarantee reconstruc-
tion of the remaining secrets as long as the overlap between
secrets is not too high. Since in CYCLIC, a secret shares
r shares with its neighboring secret, with one reconstructed
secret, the best choice is to try to reconstruct the neighboring
secret next, to maximize the use of the information from the
first secret.

We denote the last secret that was revealed by Sc, and the
next secret to be reconstructed by Sn. Note that Sc and Sn

are neighbors in the CYCLIC scheme. Initially, the number
of remaining shares that are not part of already reconstructed
secrets is Nshare − n. The basic idea to reconstruct Sn with
information from Sc is to find the overlapping shares from
Sc, to reduce the number of attempts. Based on the specific
parameters for CYCLIC, we divide the process into three
cases, as shown in Figure 6.

The first case, e.g. Figure 6a, is r < n
2 , where the

overlapping shares cannot be precisely determined from Sc.
For example, 2 out of the 5 non-overlapping shares in the right
circled secret will be part of the next secret but the adversary
has no way to know which of the 5 are the correct ones.
The adversary needs to pick the r overlapping shares from all
shares of Sc other than the ones that Sc had in common with
the previous secret, which means choosing r shares out of
n−r shares (2 out of 5 in the figure). The adversary must put
those r shares together with n− r shares from all remaining
shares that are not part of any reconstructed secret. Summing
these two expressions over all the remaining secrets gives the
number of combinations for this case as:

Nshare−n

n−r −1∑
k=0

(
n−r

r

)
×
(
Nshare−n−k(n−r)

n−r

)
The second case, e.g. Figure 6b, is r ≥ n

2 , and n
mod n − r = 0. In this case, there is an initial period where
the adversary does not know exactly which shares from the
previous secret will be reused in the next secret. However,
after a small number of consecutive secrets are reconstructed,
the common shares can be exactly identified, which reduces
the number of combinations that must be attempted. In the
Figure 6b example, when reconstructing the 2nd secret, the
adversary knows there are 6 shares that overlap with the 1st

secret, but he has no idea which 6 of the 7 shares in the 1st

secret those are, which means he needs to consider up to
(
7
6

)
combinations to find the correct common shares and, for each
of those, he needs to combine them with combinations of the
remaining unused shares. However, after the first 6 secrets
are revealed, the 6 overlapping shares between the 6th and
7th secrets can be definitively identified since the other share
was already known to be part of the 5th and 6th secrets. So,
from this point forward, the adversary only needs to consider
the combinations of the remaining unused shares each time.
Generalizing this logic yields the number of combinations as:

b r
n−r c∑
k=0

(
n−k(n−r)
r−k(n−r)

)
×
(
Nshare−n−k(n−r)

n−r

)
+

Nshare−n

n−r −1∑
k=b r

n−r c+1

(
Nshare−n−k(n−r)

n−r

)
The third case, e.g. Figure 6c, is r ≥ n

2 , and n
mod n− r 6= 0. Similar to the previous case, some shares are
determined from Sc, while some shares cannot be determined
from Sc. In the figure’s example, when reconstructing the

0 2 4 6 8 10 12 14

overlap

N
um

be
r

of
 A

tte
m

pt
s

100

1010

1020

1030

Fig. 7. Number of attempts needed to reconstruct all secrets given one secret
in CYCLIC scheme (m = 50, n = 15, log scale on y-axis)

2nd secret, the adversary knows that 5 of 7 shares from the
first secret are included. However, when reconstructing the 5th

secret, 4 shares are predetermined from the 4th secret, while
1 share cannot be determined (1 of the 2 orange shares should
be included and the other should not). Generalizing this yields
the following number of combinations:

b r
n−r c∑
k=0

(
n−k(n−r)
r−k(n−r)

)
×
(
Nshare−n−k(n−r)

n−r

)
+

(
n−r

r mod n−r

)
×

Nshare−n

n−r −1∑
k=b r

n−r c+1

(
Nshare−n−k(n−r)

n−r

)
We again give an example to make the number of combina-

tions concrete. As before, assume there are 50 secrets, each has
15 shares, and the overlap is varied from 0 to n−1. The results
are shown in Figure 7. We can see that when we choose an
overlap of 13 as in the previous subsection, the adversary needs
about 106 attempts to retrieve all secrets. When we choose an
overlap of 9, the number of combinations reaches 1015, which
is 10 years using the computational numbers from the earlier
example. This is another example of the overhead/security
trade-off. If we only consider retrieving the first secret, r = 13
provides very strong security as shown in Table I by the
huge number of attempts an adversary needs. However, if
we also are concerned about the security after one secret is
reconstructed, we need to further reduce the overlap, which
again increases the number of shares. Recall that, with the
SIMPLE scheme, the adversary only needs n + m− 2 = 113
attempts with these parameter values to reconstruct all secrets
given the first secret. We can conclude that, after one secret is
retrieved by an adversary, SIMPLE provides almost no security
for the remaining secrets, while CYCLIC can still provide very
strong security with a properly chosen overlap, at the expense
of an additional increase in the number of shares.

D. Discussion

As we showed in Subsection IV-C1, reconstructing the first
secret is hard for any of the schemes discussed in this section.
The computation time depends on many factors including not

only the parameters of the schemes but also the computational
power of the adversary and the size of the secret. In certain
scenarios, it might actually be that the computational difficulty
yielded by SIMPLE for reconstruction of the first secret with
a small probability is high enough. Given that SIMPLE has
the lowest overhead of any scheme, this would make it the
scheme of choice in those situations. However, as pointed out,
if the adversary is extremely powerful and/or the secret size is
small, SIMPLE might not be secure enough on the first secret
reconstruction. It should also be pointed out that the time
to reconstruct the first secret is a random variable. Although
unlikely, it is possible that an adversary could get very lucky
and reconstruct a valid secret with far fewer combinations than
those presented in the earlier examples. If the designer of the
deception scheme is not comfortable with guaranteeing that
the adversary will not be able to reconstruct a single secret,
then the use of SIMPLE is dangerous as we have pointed out
due to the ease of reconstructing remaining secrets given the
first. In this situation, CYCLIC allows the designer to, with a
modest increase of overhead, significantly increase the overall
security in the event that one secret is revealed.

In the next section, we consider approaches to deceptive
secret sharing that work with Shamir’s polynomial-based
secret sharing scheme [16]. For that type of secret sharing
scheme, we will show that the analagous approach to SIMPLE
is completely insecure, which means that our overlapping share
approach, generalized to Shamir’s scheme, is the only way we
know to achieve both security and efficiency in that case.

V. NOTCHED CYCLIC POLYNOMIAL-BASED DSS

In this section, we investigate a deception scheme that works
with Shamir’s secret sharing scheme [16], which is a (k, n)
threshold-based scheme, where k < n and any k of the n
shares allow the secret to be reconstructed, while any k − 1
shares do not reveal any information about the secret. (k, n) se-
cret sharing can offer better fault tolerance than (n, n) schemes
such as XOR, because the secret can still be reconstructed
even if some shares are not available. We present and analyze
a scheme, which we call Notched Cyclic Polynomial-Based
Deceptive Secret Sharing (or NCP for short) that performs
deceptive secret sharing using Shamir’s scheme.

A. Deception and Shamir’s Scheme

In Shamir’s scheme, each secret corresponds to a degree
k − 1 polynomial q(x) = a0 + a1 · x + a2 · x2 + . . . + ak−1 ·
xk−1, where a0 is the value of the secret. The n shares that
make up the secret are n points (i, Di), i = 1, 2, ..., n on the
polynomial, i.e.

D1 = q(1), D2 = q(2), . . . , Dn = q(n)

Share i is represented by the pair (i, Di) and we call i the
share’s index. The secret can also be expressed as D0. Any
k shares with k different indexes from 1, 2, ..., n determine
the secret’s polynomial and can therefore be used to recover
the secret’s value, and any k− 1 shares reveal no information
since there are an infinite number of degree k−1 polynomials

that go through the k− 1 points corresponding to those share
values.

There is a naive way to provide deception using Shamir’s
scheme, which is simply to choose polynomial points for each
secret to be encoded, independently of the points of all other
polynomials. We call this scheme P NAIVE and it requires
mn shares, just as NAIVE did. There also is an analagous
scheme to the SIMPLE scheme defined for the XOR case.
Here, the simple scheme would choose k−1 polynomial points
to be the same for all secrets. Each of the m secrets would
then be defined by a distinct kth point, which is the secret
value. To complete the (k, n) scheme, each secret would then
require generating n−k+1 additional points on the polynomial
defined by the first k points. We refer to this scheme as
P SIMPLE.

We assume throughout this section that an adversary who
compromises a share knows its index. This comports with
our assumption of a powerful adversary and also reduces the
amount of information that we assume a valid user is able to
determine but is not available to the adversary. This would
also simplify implementation of the approach considerably
since a share’s index can simply be stored with the share
as is the case in many implementations of Shamir’s scheme.
Unfortunately, under this assumption, the P SIMPLE scheme
is highly insecure. This is because the k − 1 shares that are
common to all secrets can be immediately identified since they
are the only ones that have their particular index. Suppose
those indexes are 1, 2, . . . , k − 1. Then, the adversary can
simply put those shares together with each share that has
index k, in turn, and recover all m secrets with only m
reconstructions. Thus, with Shamir’s scheme and with this
assumption, P SIMPLE is not a viable approach.5 For this
reason, we primarily compare our proposed NCP scheme
against P NAIVE in the remainder of this section.

B. Description of NCP scheme

The NCP scheme is similar to the CYCLIC scheme in the
way that it reuses shares across multiple secrets and attempts
to balance the number of secrets of which each share is a
part. Because of their similarity, we will mainly describe how
NCP is different from CYCLIC in this section. We still denote
the number of secrets by m and the overlap between two
neighboring secrets by r. A significant difference of NCP,
as compared to CYCLIC, is that the overlap r between two
consecutive secrets has to be less than k. If this were not
true, then two consecutive secrets would have the same value
since they would share at least k points on their degree k− 1
polynomials, meaning the polynomials (and hence the secret
values) would actually be the same.

Next, we describe two aspects in which the NCP scheme
is different from CYCLIC, namely the process of generating
shares and the structure of the circle.

5If we instead assume that indexes are available to valid users but not to
the adversary, the security of P SIMPLE would be similar to that of SIMPLE,
evaluated in the last section.

Since two secrets may have common shares, two polynomi-
als may share some points. To make the scheme simple and
effective, we give each share the same index in all secrets
it belongs to, so there is a bijection between the shares and
the points. The generating process is similar to the CYCLIC
scheme, but here each share needs to be numbered with an
index. Again drawing the shares and secrets around a circle,
the indexes are generated in a round-robin fashion around the
circle from 1 to n, wrapping back around to 1, and repeating
until all shares are assigned an index. Figure 8 shows the
indexes generated for m = 3, n = 6, k = 4, and two different
values of r < k.

Once the share indexes are assigned, share generation can
occur. For the first secret, the first k − 1 shares are generated
randomly. With a0 as the secret, once the first k − 1 shares
are determined, the polynomial q(x) is determined and the
remaining n − k + 1 shares are also determined and are
generated as q(k), q(k+1), . . . , q(n). The second secret shares
r < k shares with the first secret, which have indexes
n−r+1, n−r+2, . . . , n. These same share values are re-used
by the second secret and an additional k − r − 1 shares with
indexes starting from 1 are generated at random. At this point,
a total of k − 1 shares of the second secret are known and,
along with its secret value, this determines its polynomial. The
remaining n − k + 1 shares can then be generated according
to the polynomial’s formula and their corresponding indexes.
The process is similar for each new secret around the circle.
The first r < k shares are in common with the previous secret,
an additional r−k−1 shares are generated randomly, and the
final n − k + 1 shares are then generated from the chosen
polynomial.

Due to the fact that we would like to keep a share’s index
the same in every secret it belongs to, we choose not to have
the circle wrap around as in the CYCLIC scheme, because
choosing shares for the wrapped-around portions can become
quite complex. In Figure 8, we see that if the example on
the right-hand side wrapped around, we could simply select
the shares with indexes 1 and 2 from Secret 1, which is quite
simple. However, if the example on the left-hand side wrapped
around, the final share should have index 4 and so it would
need to use the 4th share from Secret 1 instead of wrapping
around in the normal way. While it would be possible to define
the scheme to wrap around and this might reduce the overall
number of shares in some cases, we have chosen not to include
the wrap-around feature in order to simply specification and
analysis of the scheme.

There are several things to emphasize about the scheme.
First, each share has only one index, no matter how many
secrets it belongs to. This helps simplify implementation of
the scheme, since we don’t need to store (or be able to
dynamically generate) multiple indexes for the same share.
Second, two consecutive secrets on the circle have r shares in
common, where r < k as discussed earlier.

m	=	3,	n	=	6,	k	=	4	
r	=	1,	N_share	=	16

m	=	3,	n	=	6,	k	=	4	
r	=	2,	N_share	=	14

1 2

4

5

6

1

2

3

S1

S2
S3

S1

S2

S3

4

5

6

3

4 5
6

1

2

3

4

1

1

1

2

2

2

3

3

4

5

6

Fig. 8. Examples of NCP scheme

C. Overhead of NCP scheme

We follow a similar analysis to that done for CYCLIC in
the previous section. To derive the total number of shares,
Nshare, we see that the first secret generates n shares and
each additional secret generates n − r new shares. Thus,
Nshare = n + (m − 1) × (n − r) = m(n − r) + r =
mn−r(m−1). Compared with Nshare for CYCLIC, here it is
obvious that, with fixed m and n, a higher overlap r reduces
Nshare. Therefore, to minimize the overhead of NCP, we
should maximize r, subject to constraints on security, which
we analyze in the next two subsections.

It is clear from the above expression that, for a given m
and n, Nshare decreases linearly with r. Thus, the shape of
the Nshare curves is very similar to those shown in Figure 4,
except that r cannot be increased beyond k − 1. Note that,
just as with NAIVE in Figure 4, the number of shares used
by P NAIVE would be the left-most point on the NCP curves
(corresponding with r = 0).

D. Security of NCP scheme

In this section, we discuss the security of NCP. Recon-
structing secrets is very different from CYCLIC because, as
mentioned earlier, we assume that an adversary knows the
index for any share that it is able to retrieve. Knowledge of
the index provides more information about where the share
fits and this makes the reconstruction process simpler. Despite
this, we will show that NCP can still provide high security
with a reasonable overhead. Due to page limitations, we omit
some details of the security analyses.

1) Reconstructing a first secret: The number of combina-
tions an adversary must try to reconstruct a secret, Ncomb all

for NCP with (k, n) secret sharing can be shown to be lower
bounded by wk, where w = bm(n−r)+r

n c. With this new
value of Ncomb all, we can use the same formula from the
last section for the probability of reconstructing at least one
secret in t attempts (see Equation 1) and the same definition
of Np

comb. We show Np
comb for p = 0.1 and varying k and r,

with the y-axis on a log scale in Figure 9. We fix m = 50 and
n = 15 in the example. We choose k as 14, 12, 10, and 8 and
vary r from 0 to k− 1 in each case. We note that r = 0 gives
the number of combinations for P NAIVE. We can see that a
higher k increases the security level, since wk will be larger

0 2 4 6 8 10 12 14

overlap

N
um

be
r

of
 A

tte
m

pt
s

1010

1015

1020

1025

k=14

k=12

k=10

k=8

Fig. 9. Number of attempts needed to reconstruct first secret with probability
0.1 for NCP scheme (n = 15, m = 50, log scale on y-axis)

and there are more overall combinations for the adversary to
consider.

Note that the calculations for decoding a secret using
Shamir’s scheme involve polynomial interpolation and, there-
fore, the process is significantly more complex than for (n, n)
secret sharing using only XOR operations. Thus, one secret
reconstruction will take considerably longer for NCP than for
CYCLIC. Nevertheless, we will assume the same security goal
from the previous section where 1016 attempts was considered
secure enough. In reality, significantly fewer attempts will
likely suffice in this situation. To reach 1016 attempts in
Figure 9, k must be at least 12. We can see that there are
many possible choices of r with both k = 12 and k = 14 that
will yield at least 1016 attempts.

It is also interesting to consider the overhead of NCP
configured to achieve the required security level and compare
it to P NAIVE. With n = 15 and m = 50 as used in Figure 9,
the number of shares required by P NAIVE is 750. If we
choose k = 14 and r = 10, then Nshare for NCP is 260 and
the desired security level is achieved with only about 1/3 the
number of shares required by P NAIVE.

2) Reconstructing all secrets with one secret reconstructed:
We still assume that, once a secret is reconstructed, the adver-
sary will next try a neighboring secret in the circle, because
the first secret reconstruction reveals some information about
the neighboring secrets. As in the analysis of CYCLIC, there
are again three cases depending on the overlap. We omit
the analysis details due to page limitations and simply state
the results for these cases. When r < k/2, the number of
combinations is:

n× wk−r +

wn
k−r∑
t=1

(bw − t× k − r

n
c)

k−r

When k/2 ≤ r < n/2, the number of combinations is:

n× wk−r +

2wn
k∑

t=1

(bw − t× k

2n
c)
b k

2 c

Lastly, for k/2 ≤ r < n/2, the number of combinations is:

n× wk−r +

wn
k(n−r)∑

t=1

(bw − t× k(n− r)
n ∗ n

c)
b k(n−r)

n c

We use the above expressions to generate Figure 10, which
shows the number of combinations to guarantee that all

2 4 6 8 10 12 14

overlap

N
um

be
r

of
 A

tte
m

pt
s

105

1010

1015

1020

1025
k=14

k=12

k=10

k=8

Fig. 10. Number of attempts needed to reconstruct remaining secrets given
one secret in NCP scheme (m = 50, n = 15, log scale on y-axis)

remaining secrets can be reconstructed given the first secret.
With the example from the previous subsection with k = 14
and r = 10, which was sufficient to ensure the desired security
level for the first secret, an adversary can reconstruct all
remaining secrets with only about 106 attempts. However, if
we reduce r to 5, the number of attempts increases to about
1016, which was our target. This decrease in r causes the
number of shares to increase to 505, which is still about 2/3
of the number needed in P NAIVE but is significantly higher
than when only considering the security of the first secret.

VI. PROTOTYPE EVALUATION

Here, we evaluate our techniques using a CloudLab [14]
prototype. Since security was extensively evaluated in previous
sections, we focus on performance and data availability in the
experimental evaluation.

A. Overview of Prototype Implementation

The implementation follows the architecture of Figure 2. For
determining which shares make up the real data, we adopt the
basic metadata server approach for simplicity. Use of the more
complicated mechanism described in Section III-A should not
have a significant latency impact since communication with
storage servers is the dominant factor in performance.

The storage servers shown in Figure 2 are implemented on
servers in CloudLab. The metadata server is deployed on a
separate CloudLab server. Each server has eight ARMv8 cores
running at 2.4GHz. The client is deployed at the CloudLab site
in South Carolina while the servers reside in Utah. The client
contacts the metadata server on writes, to determine on which
storage servers to write shares, and on reads, to determine from
which storage servers to read shares and which shares make
up the real secret. All shares (real and fake) are read so as not
to reveal to an adversary eavesdropping on the storage servers’
network which are the real shares. We were able to maintain
up to 150 servers reliably in CloudLab for the durations of
our experiments. Since the number of shares in our schemes
often exceeds 150, we store multiple shares on each server
and the metadata server chooses a server at random for each
individual share (random share assignment).

We have implemented both CYCLIC and NCP in the
prototype. Since availability is an important issue in cloud
storage and CYCLIC cannot tolerate a single crashed server,

Fig. 12. Availability of CYCLIC and NCP. s is number of storage nodes.
(m = 50, n = 15, r = 9)

we also implemented CYCLIC with triple-modular replication,
where each primary storage server is matched with two other
storage servers that maintain exact replicas.

B. Evaluation

Metrics: We evaluated the performance of the schemes by
measuring the latency of reads and writes for different object
sizes and different secret sharing parameters. The latency
includes the time to communicate with the metadata server
and all relevant storage servers, to generate shares for a write,
and to reconstruct the secret for a read. We also evaluated
the data availability of the approaches. Data availability was
measured as follows: for a given number of crashed servers,
say c, we wrote 10,000 objects to the prototype scheme and
then did 10,000 random read operations with a random set
of c crashed servers for each read. The fraction of reads that
were successful is our data availability metric.

Latency: Figure 11 shows the latency of the three schemes
for different object sizes and secret sharing parameters. As can
be seen, the read latencies are between 1.5 and 3 seconds for
a 256KB file, which is an acceptable value for cloud storage.
The latency for CYCLIC writes is comparable to reads while
NCP writes take slightly longer (up to a maximum of 3.5
seconds) due to the higher complexity of secret reconstruction.
The slowest operations are writes for CYCLIC with replica-
tion. In this case, the number of shares is tripled, which results
in latencies up to about 4 seconds. All latencies increase as
overlap decreases (n − r increases), because smaller overlap
increases the total number of shares that must be read or
written. The bottom left of the figure shows the impact of
object size. Performance increases with object size but the
increase is sub-linear for the sizes we evaluated. The bottom
right compares all 3 schemes and shows that their latencies
are similar except for the replicated write latency as already
discussed. Latency is most sensitive to the overlap in our
techniques while n and k have much less impact since the
number of shares is primarily determined by n− r.

Availability: Figure 12 depicts the data availability of the
three schemes. Note that the availability of CYCLIC without
replication drops very quickly as the number of crashed servers
increases. Each server stores shares of some real secrets and
CYCLIC needs all shares to reconstruct the secret, therefore
even one crashed server causes some data objects to be
unavailable. Notice also that availability decreases with the

number of servers since, with fewer servers, more shares need
to be stored on each server. CYCLIC with three replicas
improves fault tolerance significantly, having availability near
one even with up to 10 crashed servers, except when the
number of servers is quite small (51). Triplication comes
with very high cost, however, as the storage overhead is
tripled and write latency is also increased. Note, however,
that NCP with appropriate values of k and a large enough
number of servers can also achieve availabilities near one
for a relatively large number of crashed servers. Since NCP
has similar overheads to CYCLIC without replication, in
those scenarios it provides an ideal solution when considering
security, performance, and availability. As an example, with
n = 15, k = 12, r = 9, m = 50, and 150 servers of which 7
are crashed,6 NCP requires 309 shares and has an availability
of 0.998, while CYCLIC with triplication requires 903 shares
and has an availability of 0.999.

VII. RELATED WORK

Fake resources are often used to detect and/or track attacks.
This was first done with honeypots [13], [17], [22], which
capture attack traffic. An additional deception is used in
honey patches [1], in which an attempt to exploit a patched
vulnerability on a system causes the attack to be redirected to
a honeypot where the attack is monitored and the attacker is
led to believe that the attack succeeded. Deception has also
been used inside legitimate systems to detect attacks using
fake credentials [3], [9] or fake documents [3], [20]. Access
to fake resources causes alerts to be generated and, in [3], also
generates information about where an exfiltrated document
was opened. In [11], the authors discuss information deception
generally. These works deploy fake resources openly, because
they want adversaries to access them. The issue of confiden-
tiality of sensitive information that might exist on the same
systems is considered to be orthogonal and not addressed.
Our work combines the protection of the real information with
provision of fake information to provide two layers of security.

One aspect of our work involves hiding true information
among a sea of true and fake information. The earliest use
of this idea is Rivest’s chaffing and winnowing concept,
which he applied in the context of confidential exchange of
messages across a network [15]. This idea has also been
proposed to protect stored information. In [4], the authors
secret share sensitive information and hide the shares within
a very large file, which increases the difficulty for an attacker
to exfiltrate the information for off-line analysis. In [5], large
shares that are hard to exfiltrate are also used together with an
interactive secret reconstruction scheme, which is resilient to
attackers that can compromise a limited number of rounds
of reconstruction. None of these approaches addresses the
additional deception aspect that we consider herein.

Secret sharing has been used in various ways in distributed
storage systems [2], [7], [12], [18], [19]. One approach is
to encrypt data and secret share the key among multiple

6n = 15 and r = 9 were earlier shown to provide strong security.

Fig. 11. Latency. The top shows the three schemes with 256KB objects and m = 50. The bottom left focuses on impact of object size using CYCLIC
without replication for illustration. The bottom right compares the three schemes on one graph.

servers [7]. In [12], secret sharing and replication are com-
bined to reduce write cost compared to (k, n) secret sharing.
In [19], secret sharing and XOR replication are combined to
provide equivalent guarantees to (k, n) secret sharing but with
better read and write performance. Another approach is to
secret share data across multiple cloud providers [2], which
can protect against insider attacks within a single provider.
In [18], the authors propose combining secret sharing with
RAID to provide confidentiality and reliability of archival data.
All of these works are only concerned with confidentiality and
do not address the issue of deception.

Another work that addresses confidentiality in distributed
storage is [21]. This work provides a novel encoding that
borrows from Rivest in that it produces both wheat pieces
and chaff pieces that are stored in the servers. The decoding
process eliminates the chaff to produce the correct result.
However, the approach does not consider how to produce
correct-looking but fake results through alternative decodings
of the same information.

The only work of which we are aware that combines
confidentiality and deception as is done in our approach is
honey encryption [8], [10]. In honey encryption, decryption
with the proper key yields the correct plaintext but decryption
with other keys yields correct-looking but fake plaintext. The
approach relies on distribution-transforming encoders (DTEs),
which transform messages into seeds that are then encrypted.
To date, DTEs have been given for only a few message types,
e.g. RSA keys and credit card numbers in [10] and genomic
data in [8]. Since our approach is built upon basic secret
sharing schemes, it can be applied to any type of data.

VIII. CONCLUSION

We presented deceptive secret sharing techniques that work
with both XOR secret sharing and Shamir’s threshold secret
sharing. We presented analyses, which showed that the tech-
niques permit tunable security, i.e. a tradeoff between security
and overhead, by varying a single parameter. A prototype de-

ployed in CloudLab was used to show that our techniques have
acceptable latency and, with appropriate parameter choices,
also can achieve high availability.

REFERENCES

[1] Araujo F, Hamlen K W, Biedermann S, et al, “From patches to honey-
patches: Lightweight attacker misdirection, deception, and disinforma-
tion,” Proceedings of the 2014 ACM SIGSAC conference on computer
and communications security. ACM, 2014: 942-953.

[2] Bessani A, Correia M, Quaresma B, et al, “DepSky: dependable and
secure storage in a cloud-of-clouds,” ACM Transactions on Storage
(TOS), 2013, 9(4): 12.

[3] Bowen B M, Hershkop S, Keromytis A D, et al, “Baiting inside attackers
using decoy documents,” International Conference on Security and
Privacy in Communication Systems. Springer Berlin Heidelberg, 2009:
51-70.

[4] Dagon D, Lee W, Lipton R, “Protecting secret data from insider attacks,”
International Conference on Financial Cryptography and Data Security,
2005: 16-30.

[5] Dziembowski S, Pietrzak K, “Intrusion-resilient secret sharing,” Foun-
dations of Computer Science, 2007. FOCS’07. 48th Annual IEEE
Symposium on. IEEE, 2007: 227-237.

[6] Greenberg, A., “Hackers Hit Macron with Huge Email
Leak ahead of French Election,” Wired Security blog,
https://www.wired.com/2017/05/macron-email-hack-french-election.
(URL checked on 5/16/2017)

[7] Herlihy, M., and Tygar, J., “How to Make Replicated Data Secure,”
Proc. of Advances in Cryptology, pp. 379–391, 1987.

[8] Huang Z, Ayday E, Fellay J, et al, “GenoGuard: Protecting genomic
data against brute-force attacks,” Security and Privacy (SP), 2015 IEEE
Symposium on. IEEE, 2015: 447-462.

[9] Juels A, Rivest R L, “ Honeywords: Making password-cracking de-
tectable,” Proceedings of the 2013 ACM SIGSAC conference on Com-
puter & communications security. ACM, 2013: 145-160.

[10] Juels A, Ristenpart T, “Honey encryption: Security beyond the brute-
force bound,” Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer Berlin Heidelberg,
2014: 293-310.

[11] A. Kott, A. Swami, and B. West, “The Fog of War in Cyberspace,” IEEE
Computer, pp. 84–87, Nov. 2016.

[12] Lakshmanan, S., Ahamad, M., and Venkateswaran, H., “Responsive Se-
curity for Stored Data,” IEEE Transactions on Parallel and Distributed
Systems, Vol. 14, pp. 818-828, 2003.

[13] Provos, N, “Honeyd: A Virtual Honeypot Daemon,” Proc. of 10th DFN-
CERT Workshop, pp. 4–9, 2003.

[14] R. Ricci, E. Eide, and the CloudLab Team, “Introducing CloudLab:
Scientific Infrastructure for Advancing Cloud Architectures and Appli-
cations,” ;login: The Usenix Magazine, Vol. 39, pp. 36–38, Dec. 2014.

[15] R.L. Rivest, “ Chaffing and winnowing: Confidentiality without encryp-
tion,” CryptoBytes (RSA laboratories), 1998, 4(1): 12-17.

[16] A. Shamir, “How to Share a Secret,” Communications of the ACM, Vol.
22, pp. 612–613, Nov. 1979.

[17] Spitzner L, “Honeypots: Catching the insider threat,” Computer Security
Applications Conference, 2003. Proceedings. 19th Annual. IEEE, 2003:
170-179.

[18] Storer M W, Greenan K M, Miller E L, et al, “POTSHARDS: secure
long-term storage without encryption,” 2007 USENIX Annual Technical
Conference. USENIX Association, 2008.

[19] A. Subbiah and D.M. Blough, “An approach for fault tolerant and secure
data storage in collaborative work environments,” Proceedings of the
2005 ACM Workshop on Storage Security and Survivability, pp. 84–93,
2005.

[20] Yuill J, Zappe M, Denning D, et al, “Honeyfiles: deceptive files for in-
trusion detection,” Information Assurance Workshop, 2004. Proceedings
from the Fifth Annual IEEE SMC. IEEE, 2004: 116-122.

[21] Zage D, Obert J, “Utilizing linear subspaces to improve cloud secu-
rity,” Dependable Systems and Networks Workshops (DSN-W), 2012
IEEE/IFIP 42nd International Conference on. IEEE, 2012: 1-6.

[22] Zhang, F., Zhou, S., Qin, Z., and Liu, J., “Honeypot: A Supplemented
Active Defense System for Network Security,” Proc. of the 4th Int’l.
Conf. on Parallel and Distributed Computing, Applications and Tech-
nologies, pp. 231–235, 2003.

