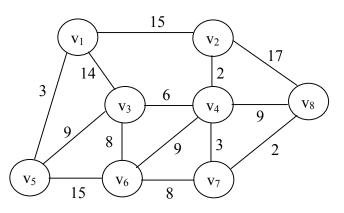
Instructions: You have 2 hours and 50 minutes to complete this exam. The exam is closed book and closed notes, with the exception of one 8.5" x 11" sheet of paper. No calculators are allowed. Make sure to show your work on all problems. No credit will be given for answers without sufficient work.

Problem 1	
Problem 2	
Problem 3	
Problem 4	
Problem 5	
Problem 6	
Problem 7	
Problem 8	
TOTAL	

Use proof by induction to prove that $(n+1)^2 < 2n^2$, for all $n \ge 3$.

Write C-like or Java-like pseudocode to implement a recursive sorting function that operates in the following way. When given an array of n integers to sort, the function ignores the first element of the array, recursively sorts the remaining n-1 elements, and then goes through the array to place the first element in its proper place shifting the other elements to the left as appropriate.

- 3) 12 points
- a) How many 3-of-a-kind poker hands are there? A poker hand consists of 5 cards. A 3-of-a-kind hand has 3 cards of the same rank. Make sure not to count 4-of-a-kind hands and full-house hands. A full house is made up of a 3-of-a-kind and a pair together.


b) What is the probability of being dealt a 3-of-a-kind hand when 5 cards are dealt from a 52-card deck? Assume that all hands are equally likely to be dealt.

A complete ternary tree is a tree where every non-leaf node has exactly 3 children and all leaves are at the same depth. Prove that a complete ternary tree of height h has exactly $(3^{h+1} - 1)/2$ nodes.

- 5) 12 points
- a) Draw the heap that results after the following items are inserted in sequence into an empty heap: 36, 15, 9, 24, 17, 21, 55, 12, 34. Assume the larger the value of the item, the higher is its priority.

b) Starting from your answer to a), show the resulting heap after 3 items are removed

Use Prim's Algorithm and Dijkstra's Algorithm to find a minimum spanning tree and shortest path tree for the below graph. For Dijkstra's Algorithm, use v_6 as the source node.

Current State	Next State		Output	
	$\mathbf{X} = 0$	X = 1	X = 0	X = 1
А	Н	С	1	0
В	С	D	0	1
С	Н	В	0	0
D	F	Н	0	0
Е	С	F	0	1
F	F	G	0	0
G	G	С	1	0
Н	А	С	1	0

Reduce the following state machine to a minimum number of states:

Draw a parse tree for the expression "w c w c { s ; s ; w c s ; }" with the following context-free grammar:

$$\langle S \rangle \rightarrow w c \langle S \rangle$$
$$\langle S \rangle \rightarrow \{ \langle L \rangle \}$$
$$\langle S \rangle \rightarrow s ;$$
$$\langle L \rangle \rightarrow \langle L \rangle \langle S \rangle$$
$$\langle L \rangle \rightarrow \varepsilon$$